rockbox/firmware/drivers/adc.c
Barry Wardell e367b05fca Move X5 ADC code to target tree. Fix power button detection on H10. New ADC
driver for H10. Thanks to Laurent Baum for all his help with this code.


git-svn-id: svn://svn.rockbox.org/rockbox/trunk@10701 a1c6a512-1295-4272-9138-f99709370657
2006-08-22 20:17:09 +00:00

376 lines
9.1 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "system.h"
#include "kernel.h"
#include "thread.h"
#include "string.h"
#include "adc.h"
#include "pcf50605.h"
#include "pcf50606.h"
#if CONFIG_CPU == SH7034
/**************************************************************************
** The A/D conversion is done every tick, in three steps:
**
** 1) On the tick interrupt, the conversion of channels 0-3 is started, and
** the A/D interrupt is enabled.
**
** 2) After the conversion is done (approx. 256*4 cycles later), an interrupt
** is generated at level 1, which is the same level as the tick interrupt
** itself. This interrupt will be pending until the tick interrupt is
** finished.
** When the A/D interrupt is finally served, it will read the results
** from the first conversion and start the conversion of channels 4-7.
**
** 3) When the conversion of channels 4-7 is finished, the interrupt is
** triggered again, and the results are read. This time, no new
** conversion is started, it will be done in the next tick interrupt.
**
** Thus, each channel will be updated HZ times per second.
**
*************************************************************************/
static int current_channel;
static unsigned short adcdata[NUM_ADC_CHANNELS];
static void adc_tick(void)
{
/* Start a conversion of channel group 0. This will trigger an interrupt,
and the interrupt handler will take care of group 1. */
current_channel = 0;
ADCSR = ADCSR_ADST | ADCSR_ADIE | ADCSR_SCAN | 3;
}
void ADITI(void) __attribute__((interrupt_handler));
void ADITI(void)
{
if(ADCSR & ADCSR_ADF)
{
ADCSR = 0;
if(current_channel == 0)
{
adcdata[0] = ADDRA >> 6;
adcdata[1] = ADDRB >> 6;
adcdata[2] = ADDRC >> 6;
adcdata[3] = ADDRD >> 6;
current_channel = 4;
/* Convert the next group */
ADCSR = ADCSR_ADST | ADCSR_ADIE | ADCSR_SCAN | 7;
}
else
{
adcdata[4] = ADDRA >> 6;
adcdata[5] = ADDRB >> 6;
adcdata[6] = ADDRC >> 6;
adcdata[7] = ADDRD >> 6;
}
}
}
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
void adc_init(void)
{
ADCR = 0x7f; /* No external trigger; other bits should be 1 according
to the manual... */
ADCSR = 0;
current_channel = 0;
/* Enable the A/D IRQ on level 1 */
IPRE = (IPRE & 0xf0ff) | 0x0100;
tick_add_task(adc_tick);
sleep(2); /* Ensure valid readings when adc_init returns */
}
#elif CONFIG_CPU == MCF5249
static unsigned char adcdata[NUM_ADC_CHANNELS];
#ifdef IRIVER_H300_SERIES
static int channelnum[] =
{
5, /* ADC_BUTTONS (ADCIN2) */
6, /* ADC_REMOTE (ADCIN3) */
0, /* ADC_BATTERY (BATVOLT, resistive divider) */
2, /* ADC_REMOTEDETECT (ADCIN1, resistive divider) */
};
unsigned short adc_scan(int channel)
{
unsigned char data;
pcf50606_write(0x2f, 0x80 | (channelnum[channel] << 1) | 1);
data = pcf50606_read(0x30);
adcdata[channel] = data;
return data;
}
#else
#define CS_LO and_l(~0x80, &GPIO_OUT)
#define CS_HI or_l(0x80, &GPIO_OUT)
#define CLK_LO and_l(~0x00400000, &GPIO_OUT)
#define CLK_HI or_l(0x00400000, &GPIO_OUT)
#define DO (GPIO_READ & 0x80000000)
#define DI_LO and_l(~0x00200000, &GPIO_OUT)
#define DI_HI or_l(0x00200000, &GPIO_OUT)
/* delay loop */
#define DELAY do { int _x; for(_x=0;_x<10;_x++);} while (0)
unsigned short adc_scan(int channel)
{
unsigned char data = 0;
int i;
CS_LO;
DI_HI; /* Start bit */
DELAY;
CLK_HI;
DELAY;
CLK_LO;
DI_HI; /* Single channel */
DELAY;
CLK_HI;
DELAY;
CLK_LO;
if(channel & 1) /* LSB of channel number */
DI_HI;
else
DI_LO;
DELAY;
CLK_HI;
DELAY;
CLK_LO;
if(channel & 2) /* MSB of channel number */
DI_HI;
else
DI_LO;
DELAY;
CLK_HI;
DELAY;
CLK_LO;
DELAY;
for(i = 0;i < 8;i++) /* 8 bits of data */
{
CLK_HI;
DELAY;
CLK_LO;
DELAY;
data <<= 1;
data |= DO?1:0;
}
CS_HI;
adcdata[channel] = data;
return data;
}
#endif
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
static int adc_counter;
static void adc_tick(void)
{
if(++adc_counter == HZ)
{
adc_counter = 0;
adc_scan(ADC_BATTERY);
adc_scan(ADC_REMOTEDETECT); /* Temporary. Remove when the remote
detection feels stable. */
}
}
void adc_init(void)
{
#ifndef IRIVER_H300_SERIES
or_l(0x80600080, &GPIO_FUNCTION); /* GPIO7: CS
GPIO21: Data In (to the ADC)
GPIO22: CLK
GPIO31: Data Out (from the ADC) */
or_l(0x00600080, &GPIO_ENABLE);
or_l(0x80, &GPIO_OUT); /* CS high */
and_l(~0x00400000, &GPIO_OUT); /* CLK low */
#endif
adc_scan(ADC_BATTERY);
tick_add_task(adc_tick);
}
#elif CONFIG_CPU == TCC730
/**************************************************************************
**
** Each channel will be updated HZ/CHANNEL_ORDER_SIZE times per second.
**
*************************************************************************/
static int current_channel;
static int current_channel_idx;
static unsigned short adcdata[NUM_ADC_CHANNELS];
#define CHANNEL_ORDER_SIZE 2
static int channel_order[CHANNEL_ORDER_SIZE] = {6,7};
static void adc_tick(void)
{
if (ADCON & (1 << 3)) {
/* previous conversion finished? */
adcdata[current_channel] = ADDATA >> 6;
if (++current_channel_idx >= CHANNEL_ORDER_SIZE)
current_channel_idx = 0;
current_channel = channel_order[current_channel_idx];
int adcon = (current_channel << 4) | 1;
ADCON = adcon;
}
}
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
void adc_init(void)
{
current_channel_idx = 0;
current_channel = channel_order[current_channel_idx];
ADCON = (current_channel << 4) | 1;
tick_add_task(adc_tick);
sleep(2); /* Ensure valid readings when adc_init returns */
}
#elif defined(IPOD_ARCH)
struct adc_struct {
long timeout;
void (*conversion)(unsigned short *data);
short channelnum;
unsigned short data;
};
static struct adc_struct adcdata[NUM_ADC_CHANNELS] IDATA_ATTR;
static unsigned short _adc_read(struct adc_struct *adc)
{
if (adc->timeout < current_tick) {
unsigned char data[2];
unsigned short value;
/* 5x per 2 seconds */
adc->timeout = current_tick + (HZ * 2 / 5);
/* ADCC1, 10 bit, start */
pcf50605_write(0x2f, (adc->channelnum << 1) | 0x1);
pcf50605_read_multiple(0x30, data, 2); /* ADCS1, ADCS2 */
value = data[0];
value <<= 2;
value |= data[1] & 0x3;
if (adc->conversion) {
adc->conversion(&value);
}
adc->data = value;
return value;
} else {
return adc->data;
}
}
/* Force an ADC scan _now_ */
unsigned short adc_scan(int channel) {
struct adc_struct *adc = &adcdata[channel];
adc->timeout = 0;
return _adc_read(adc);
}
/* Retrieve the ADC value, only does a scan periodically */
unsigned short adc_read(int channel) {
return _adc_read(&adcdata[channel]);
}
void adc_init(void)
{
struct adc_struct *adc_battery = &adcdata[ADC_BATTERY];
adc_battery->channelnum = 0x2; /* ADCVIN1, resistive divider */
adc_battery->timeout = 0;
_adc_read(adc_battery);
}
#elif CONFIG_CPU == PNX0101
static unsigned short adcdata[NUM_ADC_CHANNELS];
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
static void adc_tick(void)
{
if (ADCST & 0x10) {
adcdata[0] = ADCCH0 & 0x3ff;
adcdata[1] = ADCCH1 & 0x3ff;
adcdata[2] = ADCCH2 & 0x3ff;
adcdata[3] = ADCCH3 & 0x3ff;
adcdata[4] = ADCCH4 & 0x3ff;
ADCST = 0xa;
}
}
void adc_init(void)
{
ADCR24 = 0xaaaaa;
ADCR28 = 0;
ADCST = 2;
ADCST = 0xa;
while (!(ADCST & 0x10));
adc_tick();
tick_add_task(adc_tick);
}
#endif