rockbox/firmware/buflib.c
Thomas Martitz af4e408555 buflib: Change buflib_available() and add buflib_allocatable().
buflib_allocatable() is what buflib_available() was before (it was in fact
simply renamed). It returns the largest contiguous block of memory. This
can be allocated and will definitely succeed, although larger allocations
may also succeed if the buffer can be compacted and shrinked.

buflib_available() now counts all free bytes, contiguous or not. This
better matches the description and how the caller use it.

Change-Id: I511e4eb5f4cf1821d957b3f4ef8a685ce40fe289
Reviewed-on: http://gerrit.rockbox.org/481
Reviewed-by: Thomas Martitz <kugel@rockbox.org>
Tested-by: Thomas Martitz <kugel@rockbox.org>
2013-07-07 10:46:07 +02:00

893 lines
31 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* This is a memory allocator designed to provide reasonable management of free
* space and fast access to allocated data. More than one allocator can be used
* at a time by initializing multiple contexts.
*
* Copyright (C) 2009 Andrew Mahone
* Copyright (C) 2011 Thomas Martitz
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h> /* for abs() */
#include <stdio.h> /* for snprintf() */
#include "buflib.h"
#include "string-extra.h" /* strlcpy() */
#include "debug.h"
#include "system.h" /* for ALIGN_*() */
/* The main goal of this design is fast fetching of the pointer for a handle.
* For that reason, the handles are stored in a table at the end of the buffer
* with a fixed address, so that returning the pointer for a handle is a simple
* table lookup. To reduce the frequency with which allocated blocks will need
* to be moved to free space, allocations grow up in address from the start of
* the buffer. The buffer is treated as an array of union buflib_data. Blocks
* start with a length marker, which is included in their length. Free blocks
* are marked by negative length. Allocated blocks have a positiv length marker,
* and additional metadata forllowing that: It follows a pointer
* (union buflib_data*) to the corresponding handle table entry. so that it can
* be quickly found and updated during compaction. After that follows
* the pointer to the struct buflib_callbacks associated with this allocation
* (may be NULL). That pointer follows a variable length character array
* containing the nul-terminated string identifier of the allocation. After this
* array there's a length marker for the length of the character array including
* this length marker (counted in n*sizeof(union buflib_data)), which allows
* to find the start of the character array (and therefore the start of the
* entire block) when only the handle or payload start is known.
*
* Example:
* |<- alloc block #1 ->|<- unalloc block ->|<- alloc block #2 ->|<-handle table->|
* |L|H|C|cccc|L2|XXXXXX|-L|YYYYYYYYYYYYYYYY|L|H|C|cc|L2|XXXXXXXXXXXXX|AAA|
*
* L - length marker (negative if block unallocated)
* H - handle table enry pointer
* C - pointer to struct buflib_callbacks
* c - variable sized string identifier
* L2 - second length marker for string identifier
* X - actual payload
* Y - unallocated space
*
* A - pointer to start of payload (first X) in the handle table (may be null)
*
* The blocks can be walked by jumping the abs() of the L length marker, i.e.
* union buflib_data* L;
* for(L = start; L < end; L += abs(L->val)) { .... }
*
*
* The allocator functions are passed a context struct so that two allocators
* can be run, for example, one per core may be used, with convenience wrappers
* for the single-allocator case that use a predefined context.
*/
#define B_ALIGN_DOWN(x) \
ALIGN_DOWN(x, sizeof(union buflib_data))
#define B_ALIGN_UP(x) \
ALIGN_UP(x, sizeof(union buflib_data))
#ifdef DEBUG
#include <stdio.h>
#define BDEBUGF DEBUGF
#else
#define BDEBUGF(...) do { } while(0)
#endif
#define IS_MOVABLE(a) (!a[2].ops || a[2].ops->move_callback)
static union buflib_data* find_first_free(struct buflib_context *ctx);
static union buflib_data* find_block_before(struct buflib_context *ctx,
union buflib_data* block,
bool is_free);
/* Initialize buffer manager */
void
buflib_init(struct buflib_context *ctx, void *buf, size_t size)
{
union buflib_data *bd_buf = buf;
/* Align on sizeof(buflib_data), to prevent unaligned access */
ALIGN_BUFFER(bd_buf, size, sizeof(union buflib_data));
size /= sizeof(union buflib_data);
/* The handle table is initialized with no entries */
ctx->handle_table = bd_buf + size;
ctx->last_handle = bd_buf + size;
ctx->first_free_handle = bd_buf + size - 1;
ctx->buf_start = bd_buf;
/* A marker is needed for the end of allocated data, to make sure that it
* does not collide with the handle table, and to detect end-of-buffer.
*/
ctx->alloc_end = bd_buf;
ctx->compact = true;
BDEBUGF("buflib initialized with %lu.%2lu kiB",
(unsigned long)size / 1024, ((unsigned long)size%1000)/10);
}
/* Allocate a new handle, returning 0 on failure */
static inline
union buflib_data* handle_alloc(struct buflib_context *ctx)
{
union buflib_data *handle;
/* first_free_handle is a lower bound on free handles, work through the
* table from there until a handle containing NULL is found, or the end
* of the table is reached.
*/
for (handle = ctx->first_free_handle; handle >= ctx->last_handle; handle--)
if (!handle->alloc)
break;
/* If the search went past the end of the table, it means we need to extend
* the table to get a new handle.
*/
if (handle < ctx->last_handle)
{
if (handle >= ctx->alloc_end)
ctx->last_handle--;
else
return NULL;
}
handle->val = -1;
return handle;
}
/* Free one handle, shrinking the handle table if it's the last one */
static inline
void handle_free(struct buflib_context *ctx, union buflib_data *handle)
{
handle->alloc = 0;
/* Update free handle lower bound if this handle has a lower index than the
* old one.
*/
if (handle > ctx->first_free_handle)
ctx->first_free_handle = handle;
if (handle == ctx->last_handle)
ctx->last_handle++;
else
ctx->compact = false;
}
/* Get the start block of an allocation */
static union buflib_data* handle_to_block(struct buflib_context* ctx, int handle)
{
union buflib_data* name_field =
(union buflib_data*)buflib_get_name(ctx, handle);
return name_field ? name_field - 3 : NULL;
}
/* Shrink the handle table, returning true if its size was reduced, false if
* not
*/
static inline
bool
handle_table_shrink(struct buflib_context *ctx)
{
bool rv;
union buflib_data *handle;
for (handle = ctx->last_handle; !(handle->alloc); handle++);
if (handle > ctx->first_free_handle)
ctx->first_free_handle = handle - 1;
rv = handle != ctx->last_handle;
ctx->last_handle = handle;
return rv;
}
/* If shift is non-zero, it represents the number of places to move
* blocks in memory. Calculate the new address for this block,
* update its entry in the handle table, and then move its contents.
*
* Returns false if moving was unsucessful
* (NULL callback or BUFLIB_CB_CANNOT_MOVE was returned)
*/
static bool
move_block(struct buflib_context* ctx, union buflib_data* block, int shift)
{
char* new_start;
union buflib_data *new_block, *tmp = block[1].handle;
struct buflib_callbacks *ops = block[2].ops;
if (!IS_MOVABLE(block))
return false;
int handle = ctx->handle_table - tmp;
BDEBUGF("%s(): moving \"%s\"(id=%d) by %d(%d)\n", __func__, block[3].name,
handle, shift, shift*(int)sizeof(union buflib_data));
new_block = block + shift;
new_start = tmp->alloc + shift*sizeof(union buflib_data);
/* If move must be synchronized with use, user should have specified a
callback that handles this */
if (ops && ops->sync_callback)
ops->sync_callback(handle, true);
bool retval = false;
if (!ops || ops->move_callback(handle, tmp->alloc, new_start)
!= BUFLIB_CB_CANNOT_MOVE)
{
tmp->alloc = new_start; /* update handle table */
memmove(new_block, block, block->val * sizeof(union buflib_data));
retval = true;
}
if (ops && ops->sync_callback)
ops->sync_callback(handle, false);
return retval;
}
/* Compact allocations and handle table, adjusting handle pointers as needed.
* Return true if any space was freed or consolidated, false otherwise.
*/
static bool
buflib_compact(struct buflib_context *ctx)
{
BDEBUGF("%s(): Compacting!\n", __func__);
union buflib_data *block,
*hole = NULL;
int shift = 0, len;
/* Store the results of attempting to shrink the handle table */
bool ret = handle_table_shrink(ctx);
/* compaction has basically two modes of operation:
* 1) the buffer is nicely movable: In this mode, blocks can be simply
* moved towards the beginning. Free blocks add to a shift value,
* which is the amount to move.
* 2) the buffer contains unmovable blocks: unmovable blocks create
* holes and reset shift. Once a hole is found, we're trying to fill
* holes first, moving by shift is the fallback. As the shift is reset,
* this effectively splits the buffer into portions of movable blocks.
* This mode cannot be used if no holes are found yet as it only works
* when it moves blocks across the portions. On the other side,
* moving by shift only works within the same portion
* For simplicity only 1 hole at a time is considered */
for(block = find_first_free(ctx); block < ctx->alloc_end; block += len)
{
bool movable = true; /* cache result to avoid 2nd call to move_block */
len = block->val;
/* This block is free, add its length to the shift value */
if (len < 0)
{
shift += len;
len = -len;
continue;
}
/* attempt to fill any hole */
if (hole && -hole->val >= len)
{
intptr_t hlen = -hole->val;
if ((movable = move_block(ctx, block, hole - block)))
{
ret = true;
/* Move was successful. The memory at block is now free */
block->val = -len;
/* add its length to shift */
shift += -len;
/* Reduce the size of the hole accordingly
* but be careful to not overwrite an existing block */
if (hlen != len)
{
hole += len;
hole->val = len - hlen; /* negative */
}
else /* hole closed */
hole = NULL;
continue;
}
}
/* attempt move the allocation by shift */
if (shift)
{
union buflib_data* target_block = block + shift;
if (!movable || !move_block(ctx, block, shift))
{
/* free space before an unmovable block becomes a hole,
* therefore mark this block free and track the hole */
target_block->val = shift;
hole = target_block;
shift = 0;
}
else
ret = true;
}
}
/* Move the end-of-allocation mark, and return true if any new space has
* been freed.
*/
ctx->alloc_end += shift;
ctx->compact = true;
return ret || shift;
}
/* Compact the buffer by trying both shrinking and moving.
*
* Try to move first. If unsuccesfull, try to shrink. If that was successful
* try to move once more as there might be more room now.
*/
static bool
buflib_compact_and_shrink(struct buflib_context *ctx, unsigned shrink_hints)
{
bool result = false;
/* if something compacted before already there will be no further gain */
if (!ctx->compact)
result = buflib_compact(ctx);
if (!result)
{
union buflib_data *this, *before;
for(this = ctx->buf_start, before = this;
this < ctx->alloc_end;
before = this, this += abs(this->val))
{
if (this->val > 0 && this[2].ops
&& this[2].ops->shrink_callback)
{
int ret;
int handle = ctx->handle_table - this[1].handle;
char* data = this[1].handle->alloc;
bool last = (this+this->val) == ctx->alloc_end;
unsigned pos_hints = shrink_hints & BUFLIB_SHRINK_POS_MASK;
/* adjust what we ask for if there's free space in the front
* this isn't too unlikely assuming this block is
* shrinkable but not movable */
if (pos_hints == BUFLIB_SHRINK_POS_FRONT
&& before != this && before->val < 0)
{
size_t free_space = (-before->val) * sizeof(union buflib_data);
size_t wanted = shrink_hints & BUFLIB_SHRINK_SIZE_MASK;
if (wanted < free_space) /* no shrink needed? */
continue;
wanted -= free_space;
shrink_hints = pos_hints | wanted;
}
ret = this[2].ops->shrink_callback(handle, shrink_hints,
data, (char*)(this+this->val)-data);
result |= (ret == BUFLIB_CB_OK);
/* 'this' might have changed in the callback (if it shrinked
* from the top or even freed the handle), get it again */
this = handle_to_block(ctx, handle);
/* The handle was possibly be freed in the callback,
* re-run the loop with the handle before */
if (!this)
this = before;
/* could also change with shrinking from back */
else if (last)
ctx->alloc_end = this + this->val;
}
}
/* shrinking was successful at least once, try compaction again */
if (result)
result |= buflib_compact(ctx);
}
return result;
}
/* Shift buffered items by size units, and update handle pointers. The shift
* value must be determined to be safe *before* calling.
*/
static void
buflib_buffer_shift(struct buflib_context *ctx, int shift)
{
memmove(ctx->buf_start + shift, ctx->buf_start,
(ctx->alloc_end - ctx->buf_start) * sizeof(union buflib_data));
ctx->buf_start += shift;
ctx->alloc_end += shift;
shift *= sizeof(union buflib_data);
union buflib_data *handle;
for (handle = ctx->last_handle; handle < ctx->handle_table; handle++)
if (handle->alloc)
handle->alloc += shift;
}
/* Shift buffered items up by size bytes, or as many as possible if size == 0.
* Set size to the number of bytes freed.
*/
void*
buflib_buffer_out(struct buflib_context *ctx, size_t *size)
{
if (!ctx->compact)
buflib_compact(ctx);
size_t avail = ctx->last_handle - ctx->alloc_end;
size_t avail_b = avail * sizeof(union buflib_data);
if (*size && *size < avail_b)
{
avail = (*size + sizeof(union buflib_data) - 1)
/ sizeof(union buflib_data);
avail_b = avail * sizeof(union buflib_data);
}
*size = avail_b;
void *ret = ctx->buf_start;
buflib_buffer_shift(ctx, avail);
return ret;
}
/* Shift buffered items down by size bytes */
void
buflib_buffer_in(struct buflib_context *ctx, int size)
{
size /= sizeof(union buflib_data);
buflib_buffer_shift(ctx, -size);
}
/* Allocate a buffer of size bytes, returning a handle for it */
int
buflib_alloc(struct buflib_context *ctx, size_t size)
{
return buflib_alloc_ex(ctx, size, "<anonymous>", NULL);
}
/* Allocate a buffer of size bytes, returning a handle for it.
*
* The additional name parameter gives the allocation a human-readable name,
* the ops parameter points to caller-implemented callbacks for moving and
* shrinking. NULL for default callbacks (which do nothing but don't
* prevent moving or shrinking)
*/
int
buflib_alloc_ex(struct buflib_context *ctx, size_t size, const char *name,
struct buflib_callbacks *ops)
{
union buflib_data *handle, *block;
size_t name_len = name ? B_ALIGN_UP(strlen(name)+1) : 0;
bool last;
/* This really is assigned a value before use */
int block_len;
size += name_len;
size = (size + sizeof(union buflib_data) - 1) /
sizeof(union buflib_data)
/* add 4 objects for alloc len, pointer to handle table entry and
* name length, and the ops pointer */
+ 4;
handle_alloc:
handle = handle_alloc(ctx);
if (!handle)
{
/* If allocation has failed, and compaction has succeded, it may be
* possible to get a handle by trying again.
*/
union buflib_data* last_block = find_block_before(ctx,
ctx->alloc_end, false);
struct buflib_callbacks* ops = last_block[2].ops;
unsigned hints = 0;
if (!ops || !ops->shrink_callback)
{ /* the last one isn't shrinkable
* make room in front of a shrinkable and move this alloc */
hints = BUFLIB_SHRINK_POS_FRONT;
hints |= last_block->val * sizeof(union buflib_data);
}
else if (ops && ops->shrink_callback)
{ /* the last is shrinkable, make room for handles directly */
hints = BUFLIB_SHRINK_POS_BACK;
hints |= 16*sizeof(union buflib_data);
}
/* buflib_compact_and_shrink() will compact and move last_block()
* if possible */
if (buflib_compact_and_shrink(ctx, hints))
goto handle_alloc;
return -1;
}
buffer_alloc:
/* need to re-evaluate last before the loop because the last allocation
* possibly made room in its front to fit this, so last would be wrong */
last = false;
for (block = find_first_free(ctx);;block += block_len)
{
/* If the last used block extends all the way to the handle table, the
* block "after" it doesn't have a header. Because of this, it's easier
* to always find the end of allocation by saving a pointer, and always
* calculate the free space at the end by comparing it to the
* last_handle pointer.
*/
if(block == ctx->alloc_end)
{
last = true;
block_len = ctx->last_handle - block;
if ((size_t)block_len < size)
block = NULL;
break;
}
block_len = block->val;
/* blocks with positive length are already allocated. */
if(block_len > 0)
continue;
block_len = -block_len;
/* The search is first-fit, any fragmentation this causes will be
* handled at compaction.
*/
if ((size_t)block_len >= size)
break;
}
if (!block)
{
/* Try compacting if allocation failed */
unsigned hint = BUFLIB_SHRINK_POS_FRONT |
((size*sizeof(union buflib_data))&BUFLIB_SHRINK_SIZE_MASK);
if (buflib_compact_and_shrink(ctx, hint))
{
goto buffer_alloc;
} else {
handle->val=1;
handle_free(ctx, handle);
return -2;
}
}
/* Set up the allocated block, by marking the size allocated, and storing
* a pointer to the handle.
*/
union buflib_data *name_len_slot;
block->val = size;
block[1].handle = handle;
block[2].ops = ops;
strcpy(block[3].name, name);
name_len_slot = (union buflib_data*)B_ALIGN_UP(block[3].name + name_len);
name_len_slot->val = 1 + name_len/sizeof(union buflib_data);
handle->alloc = (char*)(name_len_slot + 1);
block += size;
/* alloc_end must be kept current if we're taking the last block. */
if (last)
ctx->alloc_end = block;
/* Only free blocks *before* alloc_end have tagged length. */
else if ((size_t)block_len > size)
block->val = size - block_len;
/* Return the handle index as a positive integer. */
return ctx->handle_table - handle;
}
static union buflib_data*
find_first_free(struct buflib_context *ctx)
{
union buflib_data* ret = ctx->buf_start;
while(ret < ctx->alloc_end)
{
if (ret->val < 0)
break;
ret += ret->val;
}
/* ret is now either a free block or the same as alloc_end, both is fine */
return ret;
}
/* Finds the free block before block, and returns NULL if it's not free */
static union buflib_data*
find_block_before(struct buflib_context *ctx, union buflib_data* block,
bool is_free)
{
union buflib_data *ret = ctx->buf_start,
*next_block = ret;
/* find the block that's before the current one */
while (next_block < block)
{
ret = next_block;
next_block += abs(ret->val);
}
/* If next_block == block, the above loop didn't go anywhere. If it did,
* and the block before this one is empty, that is the wanted one
*/
if (next_block == block && ret < block)
{
if (is_free && ret->val >= 0) /* NULL if found block isn't free */
return NULL;
return ret;
}
return NULL;
}
/* Free the buffer associated with handle_num. */
int
buflib_free(struct buflib_context *ctx, int handle_num)
{
union buflib_data *handle = ctx->handle_table - handle_num,
*freed_block = handle_to_block(ctx, handle_num),
*block, *next_block;
/* We need to find the block before the current one, to see if it is free
* and can be merged with this one.
*/
block = find_block_before(ctx, freed_block, true);
if (block)
{
block->val -= freed_block->val;
}
else
{
/* Otherwise, set block to the newly-freed block, and mark it free, before
* continuing on, since the code below exects block to point to a free
* block which may have free space after it.
*/
block = freed_block;
block->val = -block->val;
}
next_block = block - block->val;
/* Check if we are merging with the free space at alloc_end. */
if (next_block == ctx->alloc_end)
ctx->alloc_end = block;
/* Otherwise, the next block might still be a "normal" free block, and the
* mid-allocation free means that the buffer is no longer compact.
*/
else {
ctx->compact = false;
if (next_block->val < 0)
block->val += next_block->val;
}
handle_free(ctx, handle);
handle->alloc = NULL;
return 0; /* unconditionally */
}
static size_t
free_space_at_end(struct buflib_context* ctx)
{
/* subtract 5 elements for
* val, handle, name_len, ops and the handle table entry*/
ptrdiff_t diff = (ctx->last_handle - ctx->alloc_end - 5);
diff -= 16; /* space for future handles */
diff *= sizeof(union buflib_data); /* make it bytes */
diff -= 16; /* reserve 16 for the name */
if (diff > 0)
return diff;
else
return 0;
}
/* Return the maximum allocatable contiguous memory in bytes */
size_t
buflib_allocatable(struct buflib_context* ctx)
{
union buflib_data *this;
size_t free_space = 0, max_free_space = 0;
/* make sure buffer is as contiguous as possible */
if (!ctx->compact)
buflib_compact(ctx);
/* now look if there's free in holes */
for(this = find_first_free(ctx); this < ctx->alloc_end; this += abs(this->val))
{
if (this->val < 0)
{
free_space += -this->val;
continue;
}
/* an unmovable section resets the count as free space
* can't be contigous */
if (!IS_MOVABLE(this))
{
if (max_free_space < free_space)
max_free_space = free_space;
free_space = 0;
}
}
/* select the best */
max_free_space = MAX(max_free_space, free_space);
max_free_space *= sizeof(union buflib_data);
max_free_space = MAX(max_free_space, free_space_at_end(ctx));
if (max_free_space > 0)
return max_free_space;
else
return 0;
}
/* Return the amount of unallocated memory in bytes (even if not contiguous) */
size_t
buflib_available(struct buflib_context* ctx)
{
union buflib_data *this;
size_t free_space = 0;
/* now look if there's free in holes */
for(this = find_first_free(ctx); this < ctx->alloc_end; this += abs(this->val))
{
if (this->val < 0)
{
free_space += -this->val;
continue;
}
}
free_space *= sizeof(union buflib_data); /* make it bytes */
free_space += free_space_at_end(ctx);
return free_space;
}
/*
* Allocate all available (as returned by buflib_available()) memory and return
* a handle to it
*
* This grabs a lock which can only be unlocked by buflib_free() or
* buflib_shrink(), to protect from further allocations (which couldn't be
* serviced anyway).
*/
int
buflib_alloc_maximum(struct buflib_context* ctx, const char* name, size_t *size, struct buflib_callbacks *ops)
{
/* limit name to 16 since that's what buflib_available() accounts for it */
char buf[16];
*size = buflib_available(ctx);
if (*size <= 0) /* OOM */
return -1;
strlcpy(buf, name, sizeof(buf));
return buflib_alloc_ex(ctx, *size, buf, ops);
}
/* Shrink the allocation indicated by the handle according to new_start and
* new_size. Grow is not possible, therefore new_start and new_start + new_size
* must be within the original allocation
*/
bool
buflib_shrink(struct buflib_context* ctx, int handle, void* new_start, size_t new_size)
{
char* oldstart = buflib_get_data(ctx, handle);
char* newstart = new_start;
char* newend = newstart + new_size;
/* newstart must be higher and new_size not "negative" */
if (newstart < oldstart || newend < newstart)
return false;
union buflib_data *block = handle_to_block(ctx, handle),
*old_next_block = block + block->val,
/* newstart isn't necessarily properly aligned but it
* needn't be since it's only dereferenced by the user code */
*aligned_newstart = (union buflib_data*)B_ALIGN_DOWN(newstart),
*aligned_oldstart = (union buflib_data*)B_ALIGN_DOWN(oldstart),
*new_next_block = (union buflib_data*)B_ALIGN_UP(newend),
*new_block, metadata_size;
/* growing is not supported */
if (new_next_block > old_next_block)
return false;
metadata_size.val = aligned_oldstart - block;
/* update val and the handle table entry */
new_block = aligned_newstart - metadata_size.val;
block[0].val = new_next_block - new_block;
block[1].handle->alloc = newstart;
if (block != new_block)
{
/* move metadata over, i.e. pointer to handle table entry and name
* This is actually the point of no return. Data in the allocation is
* being modified, and therefore we must successfully finish the shrink
* operation */
memmove(new_block, block, metadata_size.val*sizeof(metadata_size));
/* mark the old block unallocated */
block->val = block - new_block;
/* find the block before in order to merge with the new free space */
union buflib_data *free_before = find_block_before(ctx, block, true);
if (free_before)
free_before->val += block->val;
/* We didn't handle size changes yet, assign block to the new one
* the code below the wants block whether it changed or not */
block = new_block;
}
/* Now deal with size changes that create free blocks after the allocation */
if (old_next_block != new_next_block)
{
if (ctx->alloc_end == old_next_block)
ctx->alloc_end = new_next_block;
else if (old_next_block->val < 0)
{ /* enlarge next block by moving it up */
new_next_block->val = old_next_block->val - (old_next_block - new_next_block);
}
else if (old_next_block != new_next_block)
{ /* creating a hole */
/* must be negative to indicate being unallocated */
new_next_block->val = new_next_block - old_next_block;
}
}
return true;
}
const char* buflib_get_name(struct buflib_context *ctx, int handle)
{
union buflib_data *data = ALIGN_DOWN(buflib_get_data(ctx, handle), sizeof (*data));
if (!data)
return NULL;
size_t len = data[-1].val;
if (len <= 1)
return NULL;
return data[-len].name;
}
#ifdef BUFLIB_DEBUG_BLOCKS
void buflib_print_allocs(struct buflib_context *ctx,
void (*print)(int, const char*))
{
union buflib_data *this, *end = ctx->handle_table;
char buf[128];
for(this = end - 1; this >= ctx->last_handle; this--)
{
if (!this->alloc) continue;
int handle_num;
const char *name;
union buflib_data *block_start, *alloc_start;
intptr_t alloc_len;
handle_num = end - this;
alloc_start = buflib_get_data(ctx, handle_num);
name = buflib_get_name(ctx, handle_num);
block_start = (union buflib_data*)name - 3;
alloc_len = block_start->val * sizeof(union buflib_data);
snprintf(buf, sizeof(buf),
"%s(%d):\t%p\n"
" \t%p\n"
" \t%ld\n",
name?:"(null)", handle_num, block_start, alloc_start, alloc_len);
/* handle_num is 1-based */
print(handle_num - 1, buf);
}
}
void buflib_print_blocks(struct buflib_context *ctx,
void (*print)(int, const char*))
{
char buf[128];
int i = 0;
for(union buflib_data* this = ctx->buf_start;
this < ctx->alloc_end;
this += abs(this->val))
{
snprintf(buf, sizeof(buf), "%8p: val: %4ld (%s)",
this, this->val,
this->val > 0? this[3].name:"<unallocated>");
print(i++, buf);
}
}
#endif
#ifdef BUFLIB_DEBUG_BLOCK_SINGLE
int buflib_get_num_blocks(struct buflib_context *ctx)
{
int i = 0;
for(union buflib_data* this = ctx->buf_start;
this < ctx->alloc_end;
this += abs(this->val))
{
i++;
}
return i;
}
void buflib_print_block_at(struct buflib_context *ctx, int block_num,
char* buf, size_t bufsize)
{
union buflib_data* this = ctx->buf_start;
while(block_num > 0 && this < ctx->alloc_end)
{
this += abs(this->val);
block_num -= 1;
}
snprintf(buf, bufsize, "%8p: val: %4ld (%s)",
this, (long)this->val,
this->val > 0? this[3].name:"<unallocated>");
}
#endif