rockbox/firmware/pcm_playback.c
Dave Chapman 9581ad39ec iPod: Audio driver for iPod Video/5G. Rename wm8971_* functions to wmcodec_* to enable unification of the audio code for WM codecs
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@8676 a1c6a512-1295-4272-9138-f99709370657
2006-02-13 13:48:08 +00:00

688 lines
15 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdbool.h>
#include "config.h"
#include "debug.h"
#include "panic.h"
#include <kernel.h>
#ifndef SIMULATOR
#include "cpu.h"
#include "i2c.h"
#if defined(HAVE_UDA1380)
#include "uda1380.h"
#elif defined(HAVE_WM8975)
#include "wm8975.h"
#elif defined(HAVE_WM8758)
#include "wm8758.h"
#elif defined(HAVE_TLV320)
#include "tlv320.h"
#elif defined(HAVE_WM8731L)
#include "wm8731l.h"
#endif
#include "system.h"
#endif
#include "logf.h"
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "pcm_playback.h"
#include "lcd.h"
#include "button.h"
#include "file.h"
#include "buffer.h"
#include "sprintf.h"
#include "button.h"
#include <string.h>
#ifdef HAVE_UDA1380
#ifdef HAVE_SPDIF_OUT
#define EBU_DEFPARM ((7 << 12) | (3 << 8) | (1 << 5) | (5 << 2))
#endif
#define IIS_DEFPARM(freq) ((freq << 12) | 0x300 | 4 << 2)
#define IIS_RESET 0x800
static bool pcm_playing;
static bool pcm_paused;
static int pcm_freq = 0x6; /* 44.1 is default */
size_t next_size IBSS_ATTR;
unsigned char *next_start IBSS_ATTR;
/* Set up the DMA transfer that kicks in when the audio FIFO gets empty */
static void dma_start(const void *addr, size_t size)
{
pcm_playing = true;
addr = (void *)((unsigned long)addr & ~3); /* Align data */
size &= ~3; /* Size must be multiple of 4 */
/* Reset the audio FIFO */
#ifdef HAVE_SPDIF_OUT
EBU1CONFIG = IIS_RESET | EBU_DEFPARM;
#endif
/* Set up DMA transfer */
SAR0 = ((unsigned long)addr); /* Source address */
DAR0 = (unsigned long)&PDOR3; /* Destination address */
BCR0 = size; /* Bytes to transfer */
/* Enable the FIFO and force one write to it */
IIS2CONFIG = IIS_DEFPARM(pcm_freq);
/* Also send the audio to S/PDIF */
#ifdef HAVE_SPDIF_OUT
EBU1CONFIG = EBU_DEFPARM;
#endif
DCR0 = DMA_INT | DMA_EEXT | DMA_CS | DMA_SINC | DMA_START;
}
/* Stops the DMA transfer and interrupt */
static void dma_stop(void)
{
pcm_playing = false;
DCR0 = 0;
DSR0 = 1;
/* Reset the FIFO */
IIS2CONFIG = IIS_RESET | IIS_DEFPARM(pcm_freq);
#ifdef HAVE_SPDIF_OUT
EBU1CONFIG = IIS_RESET | EBU_DEFPARM;
#endif
pcm_paused = false;
}
/* sets frequency of input to DAC */
void pcm_set_frequency(unsigned int frequency)
{
switch(frequency)
{
case 11025:
pcm_freq = 0x4;
uda1380_set_nsorder(3);
break;
case 22050:
pcm_freq = 0x6;
uda1380_set_nsorder(3);
break;
case 44100:
default:
pcm_freq = 0xC;
uda1380_set_nsorder(5);
break;
}
}
/* the registered callback function to ask for more mp3 data */
static void (*callback_for_more)(unsigned char**, size_t*) IDATA_ATTR = NULL;
void pcm_play_data(void (*get_more)(unsigned char** start, size_t* size),
unsigned char* start, size_t size)
{
callback_for_more = get_more;
if (!(start && size))
{
if (get_more)
get_more(&start, &size);
else
return;
}
if (start && size)
dma_start(start, size);
}
size_t pcm_get_bytes_waiting(void)
{
return (BCR0 & 0xffffff);
}
void pcm_mute(bool mute)
{
uda1380_mute(mute);
if (mute)
sleep(HZ/16);
}
void pcm_play_stop(void)
{
if (pcm_playing) {
dma_stop();
}
}
void pcm_play_pause(bool play)
{
if (!pcm_playing)
return ;
if(pcm_paused && play)
{
if (BCR0 & 0xffffff)
{
logf("unpause");
/* Enable the FIFO and force one write to it */
IIS2CONFIG = IIS_DEFPARM(pcm_freq);
#ifdef HAVE_SPDIF_OUT
EBU1CONFIG = EBU_DEFPARM;
#endif
DCR0 |= DMA_EEXT | DMA_START;
}
else
{
logf("unpause, no data waiting");
void (*get_more)(unsigned char**, size_t*) = callback_for_more;
if (get_more)
get_more(&next_start, &next_size);
if (next_start && next_size)
dma_start(next_start, next_size);
else
{
dma_stop();
logf("unpause attempted, no data");
}
}
}
else if(!pcm_paused && !play)
{
logf("pause");
/* Disable DMA peripheral request. */
DCR0 &= ~DMA_EEXT;
IIS2CONFIG = IIS_RESET | IIS_DEFPARM(pcm_freq);
#ifdef HAVE_SPDIF_OUT
EBU1CONFIG = IIS_RESET | EBU_DEFPARM;
#endif
}
pcm_paused = !play;
}
bool pcm_is_paused(void)
{
return pcm_paused;
}
bool pcm_is_playing(void)
{
return pcm_playing;
}
/* DMA0 Interrupt is called when the DMA has finished transfering a chunk */
void DMA0(void) __attribute__ ((interrupt_handler, section(".icode")));
void DMA0(void)
{
int res = DSR0;
DSR0 = 1; /* Clear interrupt */
DCR0 &= ~DMA_EEXT;
/* Stop on error */
if(res & 0x70)
{
dma_stop();
logf("DMA Error:0x%04x", res);
}
else
{
{
void (*get_more)(unsigned char**, size_t*) = callback_for_more;
if (get_more)
get_more(&next_start, &next_size);
else
{
next_size = 0;
next_start = NULL;
}
}
if(next_size)
{
SAR0 = (unsigned long)next_start; /* Source address */
BCR0 = next_size; /* Bytes to transfer */
DCR0 |= DMA_EEXT;
}
else
{
/* Finished playing */
dma_stop();
logf("DMA No Data:0x%04x", res);
}
}
IPR |= (1<<14); /* Clear pending interrupt request */
}
void pcm_init(void)
{
pcm_playing = false;
pcm_paused = false;
MPARK = 0x81; /* PARK[1,0]=10 + BCR24BIT */
DIVR0 = 54; /* DMA0 is mapped into vector 54 in system.c */
DMAROUTE = (DMAROUTE & 0xffffff00) | DMA0_REQ_AUDIO_1;
DMACONFIG = 1; /* DMA0Req = PDOR3 */
/* Reset the audio FIFO */
IIS2CONFIG = IIS_RESET;
/* Enable interrupt at level 7, priority 0 */
ICR6 = 0x1c;
IMR &= ~(1<<14); /* bit 14 is DMA0 */
pcm_set_frequency(44100);
/* Prevent pops (resets DAC to zero point) */
IIS2CONFIG = IIS_DEFPARM(pcm_freq) | IIS_RESET;
#if defined(HAVE_UDA1380)
/* Initialize default register values. */
uda1380_init();
/* Sleep a while so the power can stabilize (especially a long
delay is needed for the line out connector). */
sleep(HZ);
/* Power on FSDAC and HP amp. */
uda1380_enable_output(true);
/* Unmute the master channel (DAC should be at zero point now). */
uda1380_mute(false);
#elif defined(HAVE_TLV320)
tlv320_init();
tlv320_enable_output(true);
sleep(HZ/4);
tlv320_mute(false);
#endif
/* Call dma_stop to initialize everything. */
dma_stop();
}
#elif defined(HAVE_WM8975) || defined(HAVE_WM8758)
/* We need to unify this code with the uda1380 code as much as possible, but
we will keep it separate during early development.
*/
#define FIFO_FREE_COUNT ((IISFIFO_CFG & 0x3f0000) >> 16)
static bool pcm_playing;
static bool pcm_paused;
static int pcm_freq = 0x6; /* 44.1 is default */
unsigned short* p IBSS_ATTR;
long p_size IBSS_ATTR;
static void dma_start(const void *addr, size_t size)
{
p=(unsigned short*)addr;
p_size=size;
pcm_playing = true;
/* setup I2S interrupt for FIQ */
outl(inl(0x6000402c) | I2S_MASK, 0x6000402c);
outl(I2S_MASK, 0x60004024);
/* Clear the FIQ disable bit in cpsr_c */
enable_fiq();
/* Enable playback FIFO */
IISCONFIG |= 0x20000000;
/* Fill the FIFO - we assume there are enough bytes in the pcm buffer to
fill the 32-byte FIFO. */
while (p_size > 0) {
if (FIFO_FREE_COUNT < 2) {
/* Enable interrupt */
IISCONFIG |= 0x2;
return;
}
IISFIFO_WR = (*(p++))<<16;
IISFIFO_WR = (*(p++))<<16;
p_size-=4;
}
}
/* Stops the DMA transfer and interrupt */
static void dma_stop(void)
{
pcm_playing = false;
/* Disable playback FIFO */
IISCONFIG &= ~0x20000000;
/* Disable the interrupt */
IISCONFIG &= ~0x2;
disable_fiq();
pcm_paused = false;
}
void pcm_set_frequency(unsigned int frequency)
{
pcm_freq=frequency;
}
/* the registered callback function to ask for more PCM data */
static void (*callback_for_more)(unsigned char**, size_t*) IDATA_ATTR = NULL;
void pcm_play_data(void (*get_more)(unsigned char** start, size_t* size),
unsigned char* start, size_t size)
{
callback_for_more = get_more;
if (!(start && size))
{
if (get_more)
get_more(&start, &size);
else
return;
}
if (start && size)
dma_start(start, size);
}
size_t pcm_get_bytes_waiting(void)
{
return p_size;
}
void pcm_mute(bool mute)
{
wmcodec_mute(mute);
if (mute)
sleep(HZ/16);
}
void pcm_play_stop(void)
{
if (pcm_playing) {
dma_stop();
}
}
void pcm_play_pause(bool play)
{
size_t next_size;
unsigned char *next_start;
if (!pcm_playing)
return ;
if(pcm_paused && play)
{
if (pcm_get_bytes_waiting())
{
logf("unpause");
/* Enable the FIFO and fill it */
enable_fiq();
/* Enable playback FIFO */
IISCONFIG |= 0x20000000;
/* Fill the FIFO - we assume there are enough bytes in the
pcm buffer to fill the 32-byte FIFO. */
while (p_size > 0) {
if (FIFO_FREE_COUNT < 2) {
/* Enable interrupt */
IISCONFIG |= 0x2;
return;
}
IISFIFO_WR = (*(p++))<<16;
IISFIFO_WR = (*(p++))<<16;
p_size-=4;
}
}
else
{
logf("unpause, no data waiting");
void (*get_more)(unsigned char**, size_t*) = callback_for_more;
if (get_more)
get_more(&next_start, &next_size);
if (next_start && next_size)
dma_start(next_start, next_size);
else
{
dma_stop();
logf("unpause attempted, no data");
}
}
}
else if(!pcm_paused && !play)
{
logf("pause");
/* Disable the interrupt */
IISCONFIG &= ~0x2;
/* Disable playback FIFO */
IISCONFIG &= ~0x20000000;
disable_fiq();
}
pcm_paused = !play;
}
bool pcm_is_paused(void)
{
return pcm_paused;
}
bool pcm_is_playing(void)
{
return pcm_playing;
}
unsigned int fiq_count IBSS_ATTR;
void fiq(void) ICODE_ATTR;
void fiq(void)
{
/* Clear interrupt */
IISCONFIG &= ~0x2;
fiq_count++;
do {
while (p_size) {
if (FIFO_FREE_COUNT < 2) {
/* Enable interrupt */
IISCONFIG |= 0x2;
return;
}
IISFIFO_WR = (*(p++))<<16;
IISFIFO_WR = (*(p++))<<16;
p_size-=4;
}
/* p is empty, get some more data */
if (callback_for_more) {
callback_for_more((unsigned char**)&p,&p_size);
}
} while (p_size);
/* No more data, so disable the FIFO/FIQ */
dma_stop();
}
void pcm_init(void)
{
pcm_playing = false;
pcm_paused = false;
/* Initialize default register values. */
wmcodec_init();
/* The uda1380 needs a sleep(HZ) here - do we need one? */
/* Power on */
wmcodec_enable_output(true);
/* Unmute the master channel (DAC should be at zero point now). */
wmcodec_mute(false);
/* Call dma_stop to initialize everything. */
dma_stop();
}
#elif CONFIG_CPU == PNX0101
/* TODO: Implement for iFP7xx
For now, just implement some dummy functions.
*/
void pcm_init(void)
{
}
void pcm_set_frequency(unsigned int frequency)
{
(void)frequency;
}
void pcm_play_data(void (*get_more)(unsigned char** start, size_t* size),
unsigned char* start, size_t size)
{
(void)get_more;
(void)start;
(void)size;
}
void pcm_play_stop(void)
{
}
void pcm_mute(bool mute)
{
(void)mute;
}
void pcm_play_pause(bool play)
{
(void)play;
}
bool pcm_is_paused(void)
{
return false;
}
bool pcm_is_playing(void)
{
return false;
}
void pcm_calculate_peaks(int *left, int *right)
{
(void)left;
(void)right;
}
size_t pcm_get_bytes_waiting(void)
{
return 0;
}
#endif
#if CONFIG_CPU != PNX0101
/*
* This function goes directly into the DMA buffer to calculate the left and
* right peak values. To avoid missing peaks it tries to look forward two full
* peek periods (2/HZ sec, 100% overlap), although it's always possible that
* the entire period will not be visible. To reduce CPU load it only looks at
* every third sample, and this can be reduced even further if needed (even
* every tenth sample would still be pretty accurate).
*/
#define PEAK_SAMPLES (44100*2/HZ) /* 44100 samples * 2 / 100 Hz tick */
#define PEAK_STRIDE 3 /* every 3rd sample is plenty... */
void pcm_calculate_peaks(int *left, int *right)
{
#ifdef HAVE_UDA1380
long samples = (BCR0 & 0xffffff) / 4;
short *addr = (short *) (SAR0 & ~3);
#elif defined(HAVE_WM8975) || defined(HAVE_WM8758)
long samples = p_size / 4;
short *addr = p;
#elif defined(HAVE_WM8731L)
long samples = next_size / 4;
short *addr = (short *)next_start;
#elif defined(HAVE_TLV320)
long samples = 4; /* TODO X5 */
short *addr = NULL;
#endif
if (samples > PEAK_SAMPLES)
samples = PEAK_SAMPLES;
samples /= PEAK_STRIDE;
if (left && right) {
int left_peak = 0, right_peak = 0, value;
while (samples--) {
if ((value = addr [0]) > left_peak)
left_peak = value;
else if (-value > left_peak)
left_peak = -value;
if ((value = addr [PEAK_STRIDE | 1]) > right_peak)
right_peak = value;
else if (-value > right_peak)
right_peak = -value;
addr += PEAK_STRIDE * 2;
}
*left = left_peak;
*right = right_peak;
}
else if (left || right) {
int peak_value = 0, value;
if (right)
addr += (PEAK_STRIDE | 1);
while (samples--) {
if ((value = addr [0]) > peak_value)
peak_value = value;
else if (-value > peak_value)
peak_value = -value;
addr += PEAK_STRIDE * 2;
}
if (left)
*left = peak_value;
else
*right = peak_value;
}
}
#endif