rockbox/firmware/target/arm/imx31/spi-imx31.c

431 lines
12 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (c) 2007 Will Robertson
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "spi-imx31.h"
#include "avic-imx31.h"
#include "ccm-imx31.h"
#include "debug.h"
#include "kernel.h"
/* Forward interrupt handler declarations */
#if (SPI_MODULE_MASK & USE_CSPI1_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI1_HANDLER(void);
#endif
#if (SPI_MODULE_MASK & USE_CSPI2_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI2_HANDLER(void);
#endif
#if (SPI_MODULE_MASK & USE_CSPI3_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI3_HANDLER(void);
#endif
/* State data associatated with each CSPI module */
static struct spi_module_desc
{
struct cspi_map * const base; /* CSPI module address */
struct spi_transfer_desc *head; /* Running job */
struct spi_transfer_desc *tail; /* Most recent job added */
const struct spi_node *last_node; /* Last node used for module */
void (*handler)(void); /* Interrupt handler */
int rxcount; /* Independent copy of txcount */
int8_t enab; /* Enable count */
int8_t byte_size; /* Size of transfers in bytes */
int8_t cg; /* Clock-gating value */
int8_t ints; /* AVIC vector number */
} spi_descs[SPI_NUM_CSPI] =
/* Init non-zero members */
{
#if (SPI_MODULE_MASK & USE_CSPI1_MODULE)
{
.base = (struct cspi_map *)CSPI1_BASE_ADDR,
.cg = CG_CSPI1,
.ints = INT_CSPI1,
.handler = CSPI1_HANDLER,
},
#endif
#if (SPI_MODULE_MASK & USE_CSPI2_MODULE)
{
.base = (struct cspi_map *)CSPI2_BASE_ADDR,
.cg = CG_CSPI2,
.ints = INT_CSPI2,
.handler = CSPI2_HANDLER,
},
#endif
#if (SPI_MODULE_MASK & USE_CSPI3_MODULE)
{
.base = (struct cspi_map *)CSPI3_BASE_ADDR,
.cg = CG_CSPI3,
.ints = INT_CSPI3,
.handler = CSPI3_HANDLER,
},
#endif
};
/* Reset the module */
static void spi_reset(struct spi_module_desc * const desc)
{
/* Reset by leaving it disabled */
struct cspi_map * const base = desc->base;
base->conreg &= ~CSPI_CONREG_EN;
}
/* Write the context for the node and remember it to avoid unneeded reconfigure */
static bool spi_set_context(struct spi_module_desc *desc,
struct spi_transfer_desc *xfer)
{
const struct spi_node * const node = xfer->node;
struct cspi_map * const base = desc->base;
if (desc->enab == 0)
return false;
if (node == desc->last_node)
return true;
/* Errata says CSPI should be disabled when writing PERIODREG. */
base->conreg &= ~CSPI_CONREG_EN;
/* Switch the module's node */
desc->last_node = node;
desc->byte_size = (((node->conreg >> 8) & 0x1f) + 1 + 7) / 8 - 1;
/* Set the wait-states */
base->periodreg = node->periodreg & 0xffff;
/* Keep reserved and start bits cleared. Keep enabled bit. */
base->conreg =
(node->conreg & ~(0xfcc8e000 | CSPI_CONREG_XCH | CSPI_CONREG_SMC));
return true;
}
/* Fill the TX fifo. Returns the number of remaining words. */
static int tx_fill_fifo(struct spi_module_desc * const desc,
struct cspi_map * const base,
struct spi_transfer_desc * const xfer)
{
int count = xfer->count;
int size = desc->byte_size;
while ((base->statreg & CSPI_STATREG_TF) == 0)
{
uint32_t word = 0;
switch (size & 3)
{
case 3:
word = *(unsigned char *)(xfer->txbuf + 3) << 24;
case 2:
word |= *(unsigned char *)(xfer->txbuf + 2) << 16;
case 1:
word |= *(unsigned char *)(xfer->txbuf + 1) << 8;
case 0:
word |= *(unsigned char *)(xfer->txbuf + 0);
}
xfer->txbuf += size + 1; /* Increment buffer */
base->txdata = word; /* Write to FIFO */
if (--count == 0)
break;
}
xfer->count = count;
return count;
}
/* Start a transfer on the SPI */
static bool start_transfer(struct spi_module_desc * const desc,
struct spi_transfer_desc * const xfer)
{
struct cspi_map * const base = desc->base;
unsigned long intreg;
if (!spi_set_context(desc, xfer))
return false;
base->conreg |= CSPI_CONREG_EN; /* Enable module */
desc->rxcount = xfer->count;
intreg = (xfer->count < 8) ?
CSPI_INTREG_TCEN : /* Trans. complete: TX will run out in prefill */
CSPI_INTREG_THEN; /* INT when TX half-empty */
intreg |= (xfer->count < 4) ?
CSPI_INTREG_RREN : /* Must grab data on every word */
CSPI_INTREG_RHEN; /* Enough data to wait for half-full */
tx_fill_fifo(desc, base, xfer);
base->statreg = CSPI_STATREG_TC; /* Ack 'complete' */
base->intreg = intreg; /* Enable interrupts */
base->conreg |= CSPI_CONREG_XCH; /* Begin transfer */
return true;
}
/* Common code for interrupt handlers */
static void spi_interrupt(enum spi_module_number spi)
{
struct spi_module_desc *desc = &spi_descs[spi];
struct cspi_map * const base = desc->base;
unsigned long intreg = base->intreg;
struct spi_transfer_desc *xfer = desc->head;
int inc = desc->byte_size + 1;
/* Data received - empty out RXFIFO */
while ((base->statreg & CSPI_STATREG_RR) != 0)
{
uint32_t word = base->rxdata;
if (desc->rxcount <= 0)
continue;
if (xfer->rxbuf != NULL)
{
/* There is a receive buffer */
switch (desc->byte_size & 3)
{
case 3:
*(unsigned char *)(xfer->rxbuf + 3) = word >> 24;
case 2:
*(unsigned char *)(xfer->rxbuf + 2) = word >> 16;
case 1:
*(unsigned char *)(xfer->rxbuf + 1) = word >> 8;
case 0:
*(unsigned char *)(xfer->rxbuf + 0) = word;
}
xfer->rxbuf += inc;
}
if (--desc->rxcount < 4)
{
if (desc->rxcount == 0)
{
/* No more to receive - stop RX interrupts */
intreg &= ~(CSPI_INTREG_RHEN | CSPI_INTREG_RREN);
base->intreg = intreg;
}
else if (intreg & CSPI_INTREG_RHEN)
{
/* < 4 words expected - switch to RX ready */
intreg &= ~CSPI_INTREG_RHEN;
intreg |= CSPI_INTREG_RREN;
base->intreg = intreg;
}
}
}
if (xfer->count > 0)
{
/* Data to transmit - fill TXFIFO or write until exhausted. */
if (tx_fill_fifo(desc, base, xfer) != 0)
return;
/* Out of data - stop TX interrupts, enable TC interrupt. */
intreg &= ~CSPI_INTREG_THEN;
intreg |= CSPI_INTREG_TCEN;
base->intreg = intreg;
}
if ((intreg & CSPI_INTREG_TCEN) && (base->statreg & CSPI_STATREG_TC))
{
/* Outbound transfer is complete. */
intreg &= ~CSPI_INTREG_TCEN;
base->intreg = intreg;
base->statreg = CSPI_STATREG_TC; /* Ack 'complete' */
}
if (intreg != 0)
return;
/* All interrupts are masked; we're done with current transfer. */
for (;;)
{
struct spi_transfer_desc *next = xfer->next;
spi_transfer_cb_fn_type callback = xfer->callback;
xfer->next = NULL;
base->conreg &= ~CSPI_CONREG_EN; /* Disable module */
if (next == xfer)
{
/* Last job on queue */
desc->head = NULL;
if (callback != NULL)
callback(xfer);
/* Callback may have restarted transfers. */
}
else
{
/* Queue next job. */
desc->head = next;
if (callback != NULL)
callback(xfer);
if (!start_transfer(desc, next))
{
xfer = next;
xfer->count = -1;
continue; /* Failed: try next */
}
}
break;
}
}
/* Interrupt handlers for each CSPI module */
#if (SPI_MODULE_MASK & USE_CSPI1_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI1_HANDLER(void)
{
spi_interrupt(CSPI1_NUM);
}
#endif
#if (SPI_MODULE_MASK & USE_CSPI2_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI2_HANDLER(void)
{
spi_interrupt(CSPI2_NUM);
}
#endif
#if (SPI_MODULE_MASK & USE_CSPI3_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI3_HANDLER(void)
{
spi_interrupt(CSPI3_NUM);
}
#endif
/* Initialize the SPI driver */
void spi_init(void)
{
unsigned i;
for (i = 0; i < SPI_NUM_CSPI; i++)
{
struct spi_module_desc * const desc = &spi_descs[i];
ccm_module_clock_gating(desc->cg, CGM_ON_RUN_WAIT);
spi_reset(desc);
ccm_module_clock_gating(desc->cg, CGM_OFF);
}
}
/* Enable the specified module for the node */
void spi_enable_module(const struct spi_node *node)
{
struct spi_module_desc * const desc = &spi_descs[node->num];
if (++desc->enab == 1)
{
/* Enable clock-gating register */
ccm_module_clock_gating(desc->cg, CGM_ON_RUN_WAIT);
/* Reset */
spi_reset(desc);
desc->last_node = NULL;
/* Enable interrupt at controller level */
avic_enable_int(desc->ints, INT_TYPE_IRQ, INT_PRIO_DEFAULT,
desc->handler);
}
}
/* Disable the specified module for the node */
void spi_disable_module(const struct spi_node *node)
{
struct spi_module_desc * const desc = &spi_descs[node->num];
if (desc->enab > 0 && --desc->enab == 0)
{
/* Last enable for this module */
struct cspi_map * const base = desc->base;
/* Wait for outstanding transactions */
while (*(void ** volatile)&desc->head != NULL);
/* Disable interrupt at controller level */
avic_disable_int(desc->ints);
/* Disable interface */
base->conreg &= ~CSPI_CONREG_EN;
/* Disable interface clock */
ccm_module_clock_gating(desc->cg, CGM_OFF);
}
}
/* Send and/or receive data on the specified node */
bool spi_transfer(struct spi_transfer_desc *xfer)
{
bool retval;
struct spi_module_desc * desc;
int oldlevel;
if (xfer->count == 0)
return true; /* No data? No problem. */
if (xfer->count < 0 || xfer->next != NULL || xfer->node == NULL)
{
/* Can't pass a busy descriptor, requires a node and negative size
* is invalid to pass. */
return false;
}
oldlevel = disable_irq_save();
desc = &spi_descs[xfer->node->num];
if (desc->head == NULL)
{
/* No transfers in progress; start interface. */
retval = start_transfer(desc, xfer);
if (retval)
{
/* Start ok: actually put it in the queue. */
desc->head = xfer;
desc->tail = xfer;
xfer->next = xfer; /* First, self-reference terminate */
}
else
{
xfer->count = -1; /* Signal error */
}
}
else
{
/* Already running: simply add to end and the final INT on the
* running transfer will pick it up. */
desc->tail->next = xfer; /* Add to tail */
desc->tail = xfer; /* New tail */
xfer->next = xfer; /* Self-reference terminate */
retval = true;
}
restore_irq(oldlevel);
return retval;
}