rockbox/firmware/target/arm/imx31/mc13783-imx31.c

427 lines
10 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (c) 2008 by Michael Sevakis
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "system.h"
#include "cpu.h"
#include "gpio-imx31.h"
#include "mc13783.h"
#include "mc13783-target.h"
#include "debug.h"
#include "kernel.h"
extern const struct mc13783_event mc13783_events[MC13783_NUM_EVENTS];
extern struct spi_node mc13783_spi;
/* PMIC event service data */
static int mc13783_thread_stack[DEFAULT_STACK_SIZE/sizeof(int)];
static const char *mc13783_thread_name = "pmic";
static struct wakeup mc13783_svc_wake;
/* Synchronous thread communication objects */
static struct mutex mc13783_spi_mutex;
static struct wakeup mc13783_spi_wake;
/* Tracking for which interrupts are enabled */
static uint32_t pmic_int_enabled[2] =
{ 0x00000000, 0x00000000 };
static const unsigned char pmic_intm_regs[2] =
{ MC13783_INTERRUPT_MASK0, MC13783_INTERRUPT_MASK1 };
static const unsigned char pmic_ints_regs[2] =
{ MC13783_INTERRUPT_STATUS0, MC13783_INTERRUPT_STATUS1 };
static volatile unsigned int mc13783_thread_id = 0;
static void mc13783_xfer_complete_cb(struct spi_transfer_desc *trans);
/* Transfer descriptor for synchronous reads and writes */
static struct spi_transfer_desc mc13783_transfer =
{
.node = &mc13783_spi,
.txbuf = NULL,
.rxbuf = NULL,
.count = 0,
.callback = mc13783_xfer_complete_cb,
.next = NULL,
};
/* Called when a transfer is finished and data is ready/written */
static void mc13783_xfer_complete_cb(struct spi_transfer_desc *xfer)
{
if (xfer->count != 0)
return;
wakeup_signal(&mc13783_spi_wake);
}
static inline bool wait_for_transfer_complete(void)
{
return wakeup_wait(&mc13783_spi_wake, HZ*2) == OBJ_WAIT_SUCCEEDED &&
mc13783_transfer.count == 0;
}
static void mc13783_interrupt_thread(void)
{
uint32_t pending[2];
/* Enable mc13783 GPIO event */
gpio_enable_event(MC13783_EVENT_ID);
while (1)
{
const struct mc13783_event *event, *event_last;
wakeup_wait(&mc13783_svc_wake, TIMEOUT_BLOCK);
if (mc13783_thread_id == 0)
break;
mc13783_read_regs(pmic_ints_regs, pending, 2);
/* Only clear interrupts being dispatched */
pending[0] &= pmic_int_enabled[0];
pending[1] &= pmic_int_enabled[1];
mc13783_write_regs(pmic_ints_regs, pending, 2);
/* Whatever is going to be serviced in this loop has been
* acknowledged. Reenable interrupt and if anything was still
* pending or became pending again, another signal will be
* generated. */
bitset32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE);
event = mc13783_events;
event_last = event + MC13783_NUM_EVENTS;
/* .count is surely expected to be > 0 */
do
{
enum mc13783_event_sets set = event->set;
uint32_t pnd = pending[set];
uint32_t mask = event->mask;
if (pnd & mask)
{
event->callback();
pnd &= ~mask;
pending[set] = pnd;
}
if ((pending[0] | pending[1]) == 0)
break; /* Terminate early if nothing more to service */
}
while (++event < event_last);
}
gpio_disable_event(MC13783_EVENT_ID);
}
/* GPIO interrupt handler for mc13783 */
void mc13783_event(void)
{
/* Mask the interrupt (unmasked when PMIC thread services it). */
bitclr32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE);
MC13783_GPIO_ISR = (1ul << MC13783_GPIO_LINE);
wakeup_signal(&mc13783_svc_wake);
}
void INIT_ATTR mc13783_init(void)
{
/* Serial interface must have been initialized first! */
wakeup_init(&mc13783_svc_wake);
mutex_init(&mc13783_spi_mutex);
wakeup_init(&mc13783_spi_wake);
/* Enable the PMIC SPI module */
spi_enable_module(&mc13783_spi);
/* Mask any PMIC interrupts for now - modules will enable them as
* required */
mc13783_write(MC13783_INTERRUPT_MASK0, 0xffffff);
mc13783_write(MC13783_INTERRUPT_MASK1, 0xffffff);
MC13783_GPIO_ISR = (1ul << MC13783_GPIO_LINE);
mc13783_thread_id =
create_thread(mc13783_interrupt_thread,
mc13783_thread_stack, sizeof(mc13783_thread_stack), 0,
mc13783_thread_name IF_PRIO(, PRIORITY_REALTIME) IF_COP(, CPU));
}
void mc13783_close(void)
{
unsigned int thread_id = mc13783_thread_id;
if (thread_id == 0)
return;
mc13783_thread_id = 0;
wakeup_signal(&mc13783_svc_wake);
thread_wait(thread_id);
spi_disable_module(&mc13783_spi);
}
bool mc13783_enable_event(enum mc13783_event_ids id)
{
const struct mc13783_event * const event = &mc13783_events[id];
int set = event->set;
uint32_t mask = event->mask;
mutex_lock(&mc13783_spi_mutex);
pmic_int_enabled[set] |= mask;
mc13783_clear(pmic_intm_regs[set], mask);
mutex_unlock(&mc13783_spi_mutex);
return true;
}
void mc13783_disable_event(enum mc13783_event_ids id)
{
const struct mc13783_event * const event = &mc13783_events[id];
int set = event->set;
uint32_t mask = event->mask;
mutex_lock(&mc13783_spi_mutex);
pmic_int_enabled[set] &= ~mask;
mc13783_set(pmic_intm_regs[set], mask);
mutex_unlock(&mc13783_spi_mutex);
}
uint32_t mc13783_set(unsigned address, uint32_t bits)
{
uint32_t data;
mutex_lock(&mc13783_spi_mutex);
data = mc13783_read(address);
if (data != MC13783_DATA_ERROR)
mc13783_write(address, data | bits);
mutex_unlock(&mc13783_spi_mutex);
return data;
}
uint32_t mc13783_clear(unsigned address, uint32_t bits)
{
uint32_t data;
mutex_lock(&mc13783_spi_mutex);
data = mc13783_read(address);
if (data != MC13783_DATA_ERROR)
mc13783_write(address, data & ~bits);
mutex_unlock(&mc13783_spi_mutex);
return data;
}
int mc13783_write(unsigned address, uint32_t data)
{
uint32_t packet;
int i;
if (address >= MC13783_NUM_REGS)
return -1;
packet = (1 << 31) | (address << 25) | (data & 0xffffff);
mutex_lock(&mc13783_spi_mutex);
mc13783_transfer.txbuf = &packet;
mc13783_transfer.rxbuf = NULL;
mc13783_transfer.count = 1;
i = -1;
if (spi_transfer(&mc13783_transfer) && wait_for_transfer_complete())
i = 1 - mc13783_transfer.count;
mutex_unlock(&mc13783_spi_mutex);
return i;
}
uint32_t mc13783_write_masked(unsigned address, uint32_t data, uint32_t mask)
{
uint32_t old;
mutex_lock(&mc13783_spi_mutex);
old = mc13783_read(address);
if (old != MC13783_DATA_ERROR)
{
data = (old & ~mask) | (data & mask);
if (mc13783_write(address, data) != 1)
old = MC13783_DATA_ERROR;
}
mutex_unlock(&mc13783_spi_mutex);
return old;
}
uint32_t mc13783_read(unsigned address)
{
uint32_t packet;
if (address >= MC13783_NUM_REGS)
return MC13783_DATA_ERROR;
packet = address << 25;
mutex_lock(&mc13783_spi_mutex);
mc13783_transfer.txbuf = &packet;
mc13783_transfer.rxbuf = &packet;
mc13783_transfer.count = 1;
if (!spi_transfer(&mc13783_transfer) || !wait_for_transfer_complete())
packet = MC13783_DATA_ERROR;
mutex_unlock(&mc13783_spi_mutex);
return packet;
}
int mc13783_read_regs(const unsigned char *regs, uint32_t *buffer,
int count)
{
int i;
for (i = 0; i < count; i++)
{
unsigned reg = regs[i];
if (reg >= MC13783_NUM_REGS)
return -1;
buffer[i] = reg << 25;
}
mutex_lock(&mc13783_spi_mutex);
mc13783_transfer.txbuf = buffer;
mc13783_transfer.rxbuf = buffer;
mc13783_transfer.count = count;
i = -1;
if (spi_transfer(&mc13783_transfer) && wait_for_transfer_complete())
i = count - mc13783_transfer.count;
mutex_unlock(&mc13783_spi_mutex);
return i;
}
int mc13783_write_regs(const unsigned char *regs, uint32_t *buffer,
int count)
{
int i;
for (i = 0; i < count; i++)
{
unsigned reg = regs[i];
if (reg >= MC13783_NUM_REGS)
return -1;
buffer[i] = (1 << 31) | (reg << 25) | (buffer[i] & 0xffffff);
}
mutex_lock(&mc13783_spi_mutex);
mc13783_transfer.txbuf = buffer;
mc13783_transfer.rxbuf = NULL;
mc13783_transfer.count = count;
i = -1;
if (spi_transfer(&mc13783_transfer) && wait_for_transfer_complete())
i = count - mc13783_transfer.count;
mutex_unlock(&mc13783_spi_mutex);
return i;
}
#if 0 /* Not needed right now */
bool mc13783_read_async(struct spi_transfer_desc *xfer,
const unsigned char *regs, uint32_t *buffer,
int count, spi_transfer_cb_fn_type callback)
{
int i;
for (i = 0; i < count; i++)
{
unsigned reg = regs[i];
if (reg >= MC13783_NUM_REGS)
return false;
buffer[i] = reg << 25;
}
xfer->node = &mc13783_spi;
xfer->txbuf = buffer;
xfer->rxbuf = buffer;
xfer->count = count;
xfer->callback = callback;
return spi_transfer(xfer);
}
#endif
bool mc13783_write_async(struct spi_transfer_desc *xfer,
const unsigned char *regs, uint32_t *buffer,
int count, spi_transfer_cb_fn_type callback)
{
int i;
for (i = 0; i < count; i++)
{
unsigned reg = regs[i];
if (reg >= MC13783_NUM_REGS)
return false;
buffer[i] = (1 << 31) | (reg << 25) | (buffer[i] & 0xffffff);
}
xfer->node = &mc13783_spi;
xfer->txbuf = buffer;
xfer->rxbuf = NULL;
xfer->count = count;
xfer->callback = callback;
return spi_transfer(xfer);
}