rockbox/firmware/kernel/thread.c
Michael Sevakis 981d028c09 Do some kernel cleanup
* Seal away private thread and kernel definitions and declarations
into the internal headers in order to better hide internal structure.

* Add a thread-common.c file that keeps shared functions together.
List functions aren't messed with since that's about to be changed to
different ones.

* It is necessary to modify some ARM/PP stuff since GCC was complaining
about constant pool distance and I would rather not force dump it. Just
bl the cache calls in the startup and exit code and let it use veneers
if it must.

* Clean up redundant #includes in relevant areas and reorganize them.

* Expunge useless and dangerous stuff like remove_thread().

Change-Id: I6e22932fad61a9fac30fd1363c071074ee7ab382
2014-08-08 01:59:59 -04:00

2131 lines
67 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Ulf Ralberg
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#ifdef HAVE_SIGALTSTACK_THREADS
/*
* The sp check in glibc __longjmp_chk() will cause
* a fatal error when switching threads via longjmp().
*/
#undef _FORTIFY_SOURCE
#endif
#include "thread-internal.h"
#include "kernel.h"
#include "cpu.h"
#include "string.h"
#ifdef RB_PROFILE
#include <profile.h>
#endif
#include "core_alloc.h"
/****************************************************************************
* ATTENTION!! *
* See notes below on implementing processor-specific portions! *
***************************************************************************/
/* Define THREAD_EXTRA_CHECKS as 1 to enable additional state checks */
#ifdef DEBUG
#define THREAD_EXTRA_CHECKS 1 /* Always 1 for DEBUG */
#else
#define THREAD_EXTRA_CHECKS 0
#endif
/**
* General locking order to guarantee progress. Order must be observed but
* all stages are not nescessarily obligatory. Going from 1) to 3) is
* perfectly legal.
*
* 1) IRQ
* This is first because of the likelyhood of having an interrupt occur that
* also accesses one of the objects farther down the list. Any non-blocking
* synchronization done may already have a lock on something during normal
* execution and if an interrupt handler running on the same processor as
* the one that has the resource locked were to attempt to access the
* resource, the interrupt handler would wait forever waiting for an unlock
* that will never happen. There is no danger if the interrupt occurs on
* a different processor because the one that has the lock will eventually
* unlock and the other processor's handler may proceed at that time. Not
* nescessary when the resource in question is definitely not available to
* interrupt handlers.
*
* 2) Kernel Object
* 1) May be needed beforehand if the kernel object allows dual-use such as
* event queues. The kernel object must have a scheme to protect itself from
* access by another processor and is responsible for serializing the calls
* to block_thread(_w_tmo) and wakeup_thread both to themselves and to each
* other. Objects' queues are also protected here.
*
* 3) Thread Slot
* This locks access to the thread's slot such that its state cannot be
* altered by another processor when a state change is in progress such as
* when it is in the process of going on a blocked list. An attempt to wake
* a thread while it is still blocking will likely desync its state with
* the other resources used for that state.
*
* 4) Core Lists
* These lists are specific to a particular processor core and are accessible
* by all processor cores and interrupt handlers. The running (rtr) list is
* the prime example where a thread may be added by any means.
*/
/*---------------------------------------------------------------------------
* Processor specific: core_sleep/core_wake/misc. notes
*
* ARM notes:
* FIQ is not dealt with by the scheduler code and is simply restored if it
* must by masked for some reason - because threading modifies a register
* that FIQ may also modify and there's no way to accomplish it atomically.
* s3c2440 is such a case.
*
* Audio interrupts are generally treated at a higher priority than others
* usage of scheduler code with interrupts higher than HIGHEST_IRQ_LEVEL
* are not in general safe. Special cases may be constructed on a per-
* source basis and blocking operations are not available.
*
* core_sleep procedure to implement for any CPU to ensure an asychronous
* wakup never results in requiring a wait until the next tick (up to
* 10000uS!). May require assembly and careful instruction ordering.
*
* 1) On multicore, stay awake if directed to do so by another. If so, goto
* step 4.
* 2) If processor requires, atomically reenable interrupts and perform step
* 3.
* 3) Sleep the CPU core. If wakeup itself enables interrupts (stop #0x2000
* on Coldfire) goto step 5.
* 4) Enable interrupts.
* 5) Exit procedure.
*
* core_wake and multprocessor notes for sleep/wake coordination:
* If possible, to wake up another processor, the forcing of an interrupt on
* the woken core by the waker core is the easiest way to ensure a non-
* delayed wake and immediate execution of any woken threads. If that isn't
* available then some careful non-blocking synchonization is needed (as on
* PP targets at the moment).
*---------------------------------------------------------------------------
*/
/* Cast to the the machine pointer size, whose size could be < 4 or > 32
* (someday :). */
static struct core_entry cores[NUM_CORES] IBSS_ATTR;
struct thread_entry threads[MAXTHREADS] IBSS_ATTR;
static const char main_thread_name[] = "main";
#if (CONFIG_PLATFORM & PLATFORM_NATIVE)
extern uintptr_t stackbegin[];
extern uintptr_t stackend[];
#else
extern uintptr_t *stackbegin;
extern uintptr_t *stackend;
#endif
static inline void core_sleep(IF_COP_VOID(unsigned int core))
__attribute__((always_inline));
void check_tmo_threads(void)
__attribute__((noinline));
static inline void block_thread_on_l(struct thread_entry *thread, unsigned state)
__attribute__((always_inline));
static void add_to_list_tmo(struct thread_entry *thread)
__attribute__((noinline));
static void core_schedule_wakeup(struct thread_entry *thread)
__attribute__((noinline));
#if NUM_CORES > 1
static inline void run_blocking_ops(
unsigned int core, struct thread_entry *thread)
__attribute__((always_inline));
#endif
static void thread_stkov(struct thread_entry *thread)
__attribute__((noinline));
static inline void store_context(void* addr)
__attribute__((always_inline));
static inline void load_context(const void* addr)
__attribute__((always_inline));
#if NUM_CORES > 1
static void thread_final_exit_do(struct thread_entry *current)
__attribute__((noinline)) NORETURN_ATTR USED_ATTR;
#else
static inline void thread_final_exit(struct thread_entry *current)
__attribute__((always_inline)) NORETURN_ATTR;
#endif
void switch_thread(void)
__attribute__((noinline));
/****************************************************************************
* Processor/OS-specific section - include necessary core support
*/
#include "asm/thread.c"
#if defined (CPU_PP)
#include "thread-pp.c"
#endif /* CPU_PP */
#ifndef IF_NO_SKIP_YIELD
#define IF_NO_SKIP_YIELD(...)
#endif
/*
* End Processor-specific section
***************************************************************************/
static NO_INLINE
void thread_panicf(const char *msg, struct thread_entry *thread)
{
IF_COP( const unsigned int core = thread->core; )
static char namebuf[sizeof (((struct thread_debug_info *)0)->name)];
const char *name = thread->name;
if (!name)
name = "";
snprintf(namebuf, sizeof (namebuf), *name ? "%s" : "%s%08lX",
name, (unsigned long)thread->id);
panicf ("%s %s" IF_COP(" (%d)"), msg, name IF_COP(, core));
}
static void thread_stkov(struct thread_entry *thread)
{
thread_panicf("Stkov", thread);
}
#if THREAD_EXTRA_CHECKS
#define THREAD_PANICF(msg, thread) \
thread_panicf(msg, thread)
#define THREAD_ASSERT(exp, msg, thread) \
({ if (!({ exp; })) thread_panicf((msg), (thread)); })
#else
#define THREAD_PANICF(msg, thread) \
do {} while (0)
#define THREAD_ASSERT(exp, msg, thread) \
do {} while (0)
#endif /* THREAD_EXTRA_CHECKS */
/* RTR list */
#define RTR_LOCK(core) \
({ corelock_lock(&cores[core].rtr_cl); })
#define RTR_UNLOCK(core) \
({ corelock_unlock(&cores[core].rtr_cl); })
#ifdef HAVE_PRIORITY_SCHEDULING
#define rtr_add_entry(core, priority) \
prio_add_entry(&cores[core].rtr, (priority))
#define rtr_subtract_entry(core, priority) \
prio_subtract_entry(&cores[core].rtr, (priority))
#define rtr_move_entry(core, from, to) \
prio_move_entry(&cores[core].rtr, (from), (to))
#else
#define rtr_add_entry(core, priority)
#define rtr_add_entry_inl(core, priority)
#define rtr_subtract_entry(core, priority)
#define rtr_subtract_entry_inl(core, priotity)
#define rtr_move_entry(core, from, to)
#define rtr_move_entry_inl(core, from, to)
#endif
static inline void thread_store_context(struct thread_entry *thread)
{
#if (CONFIG_PLATFORM & PLATFORM_HOSTED)
thread->__errno = errno;
#endif
store_context(&thread->context);
}
static inline void thread_load_context(struct thread_entry *thread)
{
load_context(&thread->context);
#if (CONFIG_PLATFORM & PLATFORM_HOSTED)
errno = thread->__errno;
#endif
}
static inline unsigned int should_switch_tasks(void)
{
unsigned int result = THREAD_OK;
#ifdef HAVE_PRIORITY_SCHEDULING
struct thread_entry *current = cores[CURRENT_CORE].running;
if (current &&
priobit_ffs(&cores[IF_COP_CORE(current->core)].rtr.mask)
< current->priority)
{
/* There is a thread ready to run of higher priority on the same
* core as the current one; recommend a task switch. */
result |= THREAD_SWITCH;
}
#endif /* HAVE_PRIORITY_SCHEDULING */
return result;
}
#ifdef HAVE_PRIORITY_SCHEDULING
/*---------------------------------------------------------------------------
* Locks the thread registered as the owner of the block and makes sure it
* didn't change in the meantime
*---------------------------------------------------------------------------
*/
#if NUM_CORES == 1
static inline struct thread_entry * lock_blocker_thread(struct blocker *bl)
{
return bl->thread;
}
#else /* NUM_CORES > 1 */
static struct thread_entry * lock_blocker_thread(struct blocker *bl)
{
/* The blocker thread may change during the process of trying to
capture it */
while (1)
{
struct thread_entry *t = bl->thread;
/* TRY, or else deadlocks are possible */
if (!t)
{
struct blocker_splay *blsplay = (struct blocker_splay *)bl;
if (corelock_try_lock(&blsplay->cl))
{
if (!bl->thread)
return NULL; /* Still multi */
corelock_unlock(&blsplay->cl);
}
}
else
{
if (TRY_LOCK_THREAD(t))
{
if (bl->thread == t)
return t;
UNLOCK_THREAD(t);
}
}
}
}
#endif /* NUM_CORES */
static inline void unlock_blocker_thread(struct blocker *bl)
{
#if NUM_CORES > 1
struct thread_entry *blt = bl->thread;
if (blt)
UNLOCK_THREAD(blt);
else
corelock_unlock(&((struct blocker_splay *)bl)->cl);
#endif /* NUM_CORES > 1*/
(void)bl;
}
#endif /* HAVE_PRIORITY_SCHEDULING */
/*---------------------------------------------------------------------------
* Thread list structure - circular:
* +------------------------------+
* | |
* +--+---+<-+---+<-+---+<-+---+<-+
* Head->| T | | T | | T | | T |
* +->+---+->+---+->+---+->+---+--+
* | |
* +------------------------------+
*---------------------------------------------------------------------------
*/
/*---------------------------------------------------------------------------
* Adds a thread to a list of threads using "insert last". Uses the "l"
* links.
*---------------------------------------------------------------------------
*/
static void add_to_list_l(struct thread_entry **list,
struct thread_entry *thread)
{
struct thread_entry *l = *list;
if (l == NULL)
{
/* Insert into unoccupied list */
thread->l.prev = thread;
thread->l.next = thread;
*list = thread;
return;
}
/* Insert last */
thread->l.prev = l->l.prev;
thread->l.next = l;
l->l.prev->l.next = thread;
l->l.prev = thread;
}
/*---------------------------------------------------------------------------
* Removes a thread from a list of threads. Uses the "l" links.
*---------------------------------------------------------------------------
*/
static void remove_from_list_l(struct thread_entry **list,
struct thread_entry *thread)
{
struct thread_entry *prev, *next;
next = thread->l.next;
if (thread == next)
{
/* The only item */
*list = NULL;
return;
}
if (thread == *list)
{
/* List becomes next item */
*list = next;
}
prev = thread->l.prev;
/* Fix links to jump over the removed entry. */
next->l.prev = prev;
prev->l.next = next;
}
/*---------------------------------------------------------------------------
* Timeout list structure - circular reverse (to make "remove item" O(1)),
* NULL-terminated forward (to ease the far more common forward traversal):
* +------------------------------+
* | |
* +--+---+<-+---+<-+---+<-+---+<-+
* Head->| T | | T | | T | | T |
* +---+->+---+->+---+->+---+-X
*---------------------------------------------------------------------------
*/
/*---------------------------------------------------------------------------
* Add a thread from the core's timout list by linking the pointers in its
* tmo structure.
*---------------------------------------------------------------------------
*/
static void add_to_list_tmo(struct thread_entry *thread)
{
struct thread_entry *tmo = cores[IF_COP_CORE(thread->core)].timeout;
THREAD_ASSERT(thread->tmo.prev == NULL,
"add_to_list_tmo->already listed", thread);
thread->tmo.next = NULL;
if (tmo == NULL)
{
/* Insert into unoccupied list */
thread->tmo.prev = thread;
cores[IF_COP_CORE(thread->core)].timeout = thread;
return;
}
/* Insert Last */
thread->tmo.prev = tmo->tmo.prev;
tmo->tmo.prev->tmo.next = thread;
tmo->tmo.prev = thread;
}
/*---------------------------------------------------------------------------
* Remove a thread from the core's timout list by unlinking the pointers in
* its tmo structure. Sets thread->tmo.prev to NULL to indicate the timeout
* is cancelled.
*---------------------------------------------------------------------------
*/
static void remove_from_list_tmo(struct thread_entry *thread)
{
struct thread_entry **list = &cores[IF_COP_CORE(thread->core)].timeout;
struct thread_entry *prev = thread->tmo.prev;
struct thread_entry *next = thread->tmo.next;
THREAD_ASSERT(prev != NULL, "remove_from_list_tmo->not listed", thread);
if (next != NULL)
next->tmo.prev = prev;
if (thread == *list)
{
/* List becomes next item and empty if next == NULL */
*list = next;
/* Mark as unlisted */
thread->tmo.prev = NULL;
}
else
{
if (next == NULL)
(*list)->tmo.prev = prev;
prev->tmo.next = next;
/* Mark as unlisted */
thread->tmo.prev = NULL;
}
}
#ifdef HAVE_PRIORITY_SCHEDULING
/*---------------------------------------------------------------------------
* Priority distribution structure (one category for each possible priority):
*
* +----+----+----+ ... +-----+
* hist: | F0 | F1 | F2 | | F31 |
* +----+----+----+ ... +-----+
* mask: | b0 | b1 | b2 | | b31 |
* +----+----+----+ ... +-----+
*
* F = count of threads at priority category n (frequency)
* b = bitmask of non-zero priority categories (occupancy)
*
* / if H[n] != 0 : 1
* b[n] = |
* \ else : 0
*
*---------------------------------------------------------------------------
* Basic priority inheritance priotocol (PIP):
*
* Mn = mutex n, Tn = thread n
*
* A lower priority thread inherits the priority of the highest priority
* thread blocked waiting for it to complete an action (such as release a
* mutex or respond to a message via queue_send):
*
* 1) T2->M1->T1
*
* T1 owns M1, T2 is waiting for M1 to realease M1. If T2 has a higher
* priority than T1 then T1 inherits the priority of T2.
*
* 2) T3
* \/
* T2->M1->T1
*
* Situation is like 1) but T2 and T3 are both queued waiting for M1 and so
* T1 inherits the higher of T2 and T3.
*
* 3) T3->M2->T2->M1->T1
*
* T1 owns M1, T2 owns M2. If T3 has a higher priority than both T1 and T2,
* then T1 inherits the priority of T3 through T2.
*
* Blocking chains can grow arbitrarily complex (though it's best that they
* not form at all very often :) and build-up from these units.
*---------------------------------------------------------------------------
*/
/*---------------------------------------------------------------------------
* Increment frequency at category "priority"
*---------------------------------------------------------------------------
*/
static inline unsigned int prio_add_entry(
struct priority_distribution *pd, int priority)
{
unsigned int count = ++pd->hist[priority];
if (count == 1)
priobit_set_bit(&pd->mask, priority);
return count;
}
/*---------------------------------------------------------------------------
* Decrement frequency at category "priority"
*---------------------------------------------------------------------------
*/
static inline unsigned int prio_subtract_entry(
struct priority_distribution *pd, int priority)
{
unsigned int count = --pd->hist[priority];
if (count == 0)
priobit_clear_bit(&pd->mask, priority);
return count;
}
/*---------------------------------------------------------------------------
* Remove from one category and add to another
*---------------------------------------------------------------------------
*/
static inline void prio_move_entry(
struct priority_distribution *pd, int from, int to)
{
if (--pd->hist[from] == 0)
priobit_clear_bit(&pd->mask, from);
if (++pd->hist[to] == 1)
priobit_set_bit(&pd->mask, to);
}
#endif /* HAVE_PRIORITY_SCHEDULING */
/*---------------------------------------------------------------------------
* Move a thread back to a running state on its core.
*---------------------------------------------------------------------------
*/
static void core_schedule_wakeup(struct thread_entry *thread)
{
const unsigned int core = IF_COP_CORE(thread->core);
RTR_LOCK(core);
thread->state = STATE_RUNNING;
add_to_list_l(&cores[core].running, thread);
rtr_add_entry(core, thread->priority);
RTR_UNLOCK(core);
#if NUM_CORES > 1
if (core != CURRENT_CORE)
core_wake(core);
#endif
}
#ifdef HAVE_PRIORITY_SCHEDULING
/*---------------------------------------------------------------------------
* Change the priority and rtr entry for a running thread
*---------------------------------------------------------------------------
*/
static inline void set_running_thread_priority(
struct thread_entry *thread, int priority)
{
const unsigned int core = IF_COP_CORE(thread->core);
RTR_LOCK(core);
rtr_move_entry(core, thread->priority, priority);
thread->priority = priority;
RTR_UNLOCK(core);
}
/*---------------------------------------------------------------------------
* Finds the highest priority thread in a list of threads. If the list is
* empty, the PRIORITY_IDLE is returned.
*
* It is possible to use the struct priority_distribution within an object
* instead of scanning the remaining threads in the list but as a compromise,
* the resulting per-object memory overhead is saved at a slight speed
* penalty under high contention.
*---------------------------------------------------------------------------
*/
static int find_highest_priority_in_list_l(
struct thread_entry * const thread)
{
if (LIKELY(thread != NULL))
{
/* Go though list until the ending up at the initial thread */
int highest_priority = thread->priority;
struct thread_entry *curr = thread;
do
{
int priority = curr->priority;
if (priority < highest_priority)
highest_priority = priority;
curr = curr->l.next;
}
while (curr != thread);
return highest_priority;
}
return PRIORITY_IDLE;
}
/*---------------------------------------------------------------------------
* Register priority with blocking system and bubble it down the chain if
* any until we reach the end or something is already equal or higher.
*
* NOTE: A simultaneous circular wait could spin deadlock on multiprocessor
* targets but that same action also guarantees a circular block anyway and
* those are prevented, right? :-)
*---------------------------------------------------------------------------
*/
static void inherit_priority(
struct blocker * const blocker0, struct blocker *bl,
struct thread_entry *blt, int newblpr)
{
int oldblpr = bl->priority;
while (1)
{
if (blt == NULL)
{
/* Multiple owners */
struct blocker_splay *blsplay = (struct blocker_splay *)bl;
/* Recurse down the all the branches of this; it's the only way.
We might meet the same queue several times if more than one of
these threads is waiting the same queue. That isn't a problem
for us since we early-terminate, just notable. */
FOR_EACH_BITARRAY_SET_BIT(&blsplay->mask, slotnum)
{
bl->priority = oldblpr; /* To see the change each time */
blt = &threads[slotnum];
LOCK_THREAD(blt);
inherit_priority(blocker0, bl, blt, newblpr);
}
corelock_unlock(&blsplay->cl);
return;
}
bl->priority = newblpr;
/* Update blocker thread inheritance record */
if (newblpr < PRIORITY_IDLE)
prio_add_entry(&blt->pdist, newblpr);
if (oldblpr < PRIORITY_IDLE)
prio_subtract_entry(&blt->pdist, oldblpr);
int oldpr = blt->priority;
int newpr = priobit_ffs(&blt->pdist.mask);
if (newpr == oldpr)
break; /* No blocker thread priority change */
if (blt->state == STATE_RUNNING)
{
set_running_thread_priority(blt, newpr);
break; /* Running: last in chain */
}
/* Blocker is blocked */
blt->priority = newpr;
bl = blt->blocker;
if (LIKELY(bl == NULL))
break; /* Block doesn't support PIP */
if (UNLIKELY(bl == blocker0))
break; /* Full circle - deadlock! */
/* Blocker becomes current thread and the process repeats */
struct thread_entry **bqp = blt->bqp;
struct thread_entry *t = blt;
blt = lock_blocker_thread(bl);
UNLOCK_THREAD(t);
/* Adjust this wait queue */
oldblpr = bl->priority;
if (newpr <= oldblpr)
newblpr = newpr;
else if (oldpr <= oldblpr)
newblpr = find_highest_priority_in_list_l(*bqp);
if (newblpr == oldblpr)
break; /* Queue priority not changing */
}
UNLOCK_THREAD(blt);
}
/*---------------------------------------------------------------------------
* Quick-disinherit of priority elevation. 'thread' must be a running thread.
*---------------------------------------------------------------------------
*/
static void priority_disinherit_internal(struct thread_entry *thread,
int blpr)
{
if (blpr < PRIORITY_IDLE &&
prio_subtract_entry(&thread->pdist, blpr) == 0 &&
blpr <= thread->priority)
{
int priority = priobit_ffs(&thread->pdist.mask);
if (priority != thread->priority)
set_running_thread_priority(thread, priority);
}
}
void priority_disinherit(struct thread_entry *thread, struct blocker *bl)
{
LOCK_THREAD(thread);
priority_disinherit_internal(thread, bl->priority);
UNLOCK_THREAD(thread);
}
/*---------------------------------------------------------------------------
* Transfer ownership from a single owner to a multi-owner splay from a wait
* queue
*---------------------------------------------------------------------------
*/
static void wakeup_thread_queue_multi_transfer(struct thread_entry *thread)
{
/* All threads will have the same blocker and queue; only we are changing
it now */
struct thread_entry **bqp = thread->bqp;
struct blocker_splay *blsplay = (struct blocker_splay *)thread->blocker;
struct thread_entry *blt = blsplay->blocker.thread;
/* The first thread is already locked and is assumed tagged "multi" */
int count = 1;
struct thread_entry *temp_queue = NULL;
/* 'thread' is locked on entry */
while (1)
{
LOCK_THREAD(blt);
remove_from_list_l(bqp, thread);
thread->blocker = NULL;
struct thread_entry *tnext = *bqp;
if (tnext == NULL || tnext->retval == 0)
break;
add_to_list_l(&temp_queue, thread);
UNLOCK_THREAD(thread);
UNLOCK_THREAD(blt);
count++;
thread = tnext;
LOCK_THREAD(thread);
}
int blpr = blsplay->blocker.priority;
priority_disinherit_internal(blt, blpr);
/* Locking order reverses here since the threads are no longer on the
queue side */
if (count > 1)
{
add_to_list_l(&temp_queue, thread);
UNLOCK_THREAD(thread);
corelock_lock(&blsplay->cl);
blpr = find_highest_priority_in_list_l(*bqp);
blsplay->blocker.thread = NULL;
thread = temp_queue;
LOCK_THREAD(thread);
}
else
{
/* Becomes a simple, direct transfer */
if (thread->priority <= blpr)
blpr = find_highest_priority_in_list_l(*bqp);
blsplay->blocker.thread = thread;
}
blsplay->blocker.priority = blpr;
while (1)
{
unsigned int slotnum = THREAD_ID_SLOT(thread->id);
threadbit_set_bit(&blsplay->mask, slotnum);
if (blpr < PRIORITY_IDLE)
{
prio_add_entry(&thread->pdist, blpr);
if (blpr < thread->priority)
thread->priority = blpr;
}
if (count > 1)
remove_from_list_l(&temp_queue, thread);
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
thread = temp_queue;
if (thread == NULL)
break;
LOCK_THREAD(thread);
}
UNLOCK_THREAD(blt);
if (count > 1)
{
corelock_unlock(&blsplay->cl);
}
blt->retval = count;
}
/*---------------------------------------------------------------------------
* Transfer ownership to a thread waiting for an objects and transfer
* inherited priority boost from other waiters. This algorithm knows that
* blocking chains may only unblock from the very end.
*
* Only the owning thread itself may call this and so the assumption that
* it is the running thread is made.
*---------------------------------------------------------------------------
*/
static void wakeup_thread_transfer(struct thread_entry *thread)
{
/* Waking thread inherits priority boost from object owner (blt) */
struct blocker *bl = thread->blocker;
struct thread_entry *blt = bl->thread;
THREAD_ASSERT(cores[CURRENT_CORE].running == blt,
"UPPT->wrong thread", cores[CURRENT_CORE].running);
LOCK_THREAD(blt);
struct thread_entry **bqp = thread->bqp;
remove_from_list_l(bqp, thread);
thread->blocker = NULL;
int blpr = bl->priority;
/* Remove the object's boost from the owning thread */
if (prio_subtract_entry(&blt->pdist, blpr) == 0 && blpr <= blt->priority)
{
/* No more threads at this priority are waiting and the old level is
* at least the thread level */
int priority = priobit_ffs(&blt->pdist.mask);
if (priority != blt->priority)
set_running_thread_priority(blt, priority);
}
struct thread_entry *tnext = *bqp;
if (LIKELY(tnext == NULL))
{
/* Expected shortcut - no more waiters */
blpr = PRIORITY_IDLE;
}
else
{
/* If lowering, we need to scan threads remaining in queue */
int priority = thread->priority;
if (priority <= blpr)
blpr = find_highest_priority_in_list_l(tnext);
if (prio_add_entry(&thread->pdist, blpr) == 1 && blpr < priority)
thread->priority = blpr; /* Raise new owner */
}
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
bl->thread = thread; /* This thread pwns */
bl->priority = blpr; /* Save highest blocked priority */
UNLOCK_THREAD(blt);
}
/*---------------------------------------------------------------------------
* Readjust priorities when waking a thread blocked waiting for another
* in essence "releasing" the thread's effect on the object owner. Can be
* performed from any context.
*---------------------------------------------------------------------------
*/
static void wakeup_thread_release(struct thread_entry *thread)
{
struct blocker *bl = thread->blocker;
struct thread_entry *blt = lock_blocker_thread(bl);
struct thread_entry **bqp = thread->bqp;
remove_from_list_l(bqp, thread);
thread->blocker = NULL;
/* Off to see the wizard... */
core_schedule_wakeup(thread);
if (thread->priority > bl->priority)
{
/* Queue priority won't change */
UNLOCK_THREAD(thread);
unlock_blocker_thread(bl);
return;
}
UNLOCK_THREAD(thread);
int newblpr = find_highest_priority_in_list_l(*bqp);
if (newblpr == bl->priority)
{
/* Blocker priority won't change */
unlock_blocker_thread(bl);
return;
}
inherit_priority(bl, bl, blt, newblpr);
}
#endif /* HAVE_PRIORITY_SCHEDULING */
/*---------------------------------------------------------------------------
* Explicitly wakeup a thread on a blocking queue. Only effects threads of
* STATE_BLOCKED and STATE_BLOCKED_W_TMO.
*
* This code should be considered a critical section by the caller meaning
* that the object's corelock should be held.
*
* INTERNAL: Intended for use by kernel objects and not for programs.
*---------------------------------------------------------------------------
*/
unsigned int wakeup_thread_(struct thread_entry **list
IF_PRIO(, enum wakeup_thread_protocol proto))
{
struct thread_entry *thread = *list;
/* Check if there is a blocked thread at all. */
if (*list == NULL)
return THREAD_NONE;
LOCK_THREAD(thread);
/* Determine thread's current state. */
switch (thread->state)
{
case STATE_BLOCKED:
case STATE_BLOCKED_W_TMO:
#ifdef HAVE_PRIORITY_SCHEDULING
/* Threads with PIP blockers cannot specify "WAKEUP_DEFAULT" */
if (thread->blocker != NULL)
{
static void (* const funcs[])(struct thread_entry *thread)
ICONST_ATTR =
{
[WAKEUP_DEFAULT] = NULL,
[WAKEUP_TRANSFER] = wakeup_thread_transfer,
[WAKEUP_RELEASE] = wakeup_thread_release,
[WAKEUP_TRANSFER_MULTI] = wakeup_thread_queue_multi_transfer,
};
/* Call the specified unblocking PIP (does the rest) */
funcs[proto](thread);
}
else
#endif /* HAVE_PRIORITY_SCHEDULING */
{
/* No PIP - just boost the thread by aging */
#ifdef HAVE_PRIORITY_SCHEDULING
IF_NO_SKIP_YIELD( if (thread->skip_count != -1) )
thread->skip_count = thread->priority;
#endif /* HAVE_PRIORITY_SCHEDULING */
remove_from_list_l(list, thread);
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
}
return should_switch_tasks();
/* Nothing to do. State is not blocked. */
default:
#if THREAD_EXTRA_CHECKS
THREAD_PANICF("wakeup_thread->block invalid", thread);
case STATE_RUNNING:
case STATE_KILLED:
#endif
UNLOCK_THREAD(thread);
return THREAD_NONE;
}
}
/*---------------------------------------------------------------------------
* Check the core's timeout list when at least one thread is due to wake.
* Filtering for the condition is done before making the call. Resets the
* tick when the next check will occur.
*---------------------------------------------------------------------------
*/
void check_tmo_threads(void)
{
const unsigned int core = CURRENT_CORE;
const long tick = current_tick; /* snapshot the current tick */
long next_tmo_check = tick + 60*HZ; /* minimum duration: once/minute */
struct thread_entry *next = cores[core].timeout;
/* If there are no processes waiting for a timeout, just keep the check
tick from falling into the past. */
/* Break the loop once we have walked through the list of all
* sleeping processes or have removed them all. */
while (next != NULL)
{
/* Check sleeping threads. Allow interrupts between checks. */
enable_irq();
struct thread_entry *curr = next;
next = curr->tmo.next;
/* Lock thread slot against explicit wakeup */
disable_irq();
LOCK_THREAD(curr);
unsigned state = curr->state;
if (state < TIMEOUT_STATE_FIRST)
{
/* Cleanup threads no longer on a timeout but still on the
* list. */
remove_from_list_tmo(curr);
}
else if (LIKELY(TIME_BEFORE(tick, curr->tmo_tick)))
{
/* Timeout still pending - this will be the usual case */
if (TIME_BEFORE(curr->tmo_tick, next_tmo_check))
{
/* Earliest timeout found so far - move the next check up
to its time */
next_tmo_check = curr->tmo_tick;
}
}
else
{
/* Sleep timeout has been reached so bring the thread back to
* life again. */
if (state == STATE_BLOCKED_W_TMO)
{
#ifdef HAVE_CORELOCK_OBJECT
/* Lock the waiting thread's kernel object */
struct corelock *ocl = curr->obj_cl;
if (UNLIKELY(corelock_try_lock(ocl) == 0))
{
/* Need to retry in the correct order though the need is
* unlikely */
UNLOCK_THREAD(curr);
corelock_lock(ocl);
LOCK_THREAD(curr);
if (UNLIKELY(curr->state != STATE_BLOCKED_W_TMO))
{
/* Thread was woken or removed explicitely while slot
* was unlocked */
corelock_unlock(ocl);
remove_from_list_tmo(curr);
UNLOCK_THREAD(curr);
continue;
}
}
#endif /* NUM_CORES */
#ifdef HAVE_WAKEUP_EXT_CB
if (curr->wakeup_ext_cb != NULL)
curr->wakeup_ext_cb(curr);
#endif
#ifdef HAVE_PRIORITY_SCHEDULING
if (curr->blocker != NULL)
wakeup_thread_release(curr);
else
#endif
remove_from_list_l(curr->bqp, curr);
corelock_unlock(ocl);
}
/* else state == STATE_SLEEPING */
remove_from_list_tmo(curr);
RTR_LOCK(core);
curr->state = STATE_RUNNING;
add_to_list_l(&cores[core].running, curr);
rtr_add_entry(core, curr->priority);
RTR_UNLOCK(core);
}
UNLOCK_THREAD(curr);
}
cores[core].next_tmo_check = next_tmo_check;
}
/*---------------------------------------------------------------------------
* Performs operations that must be done before blocking a thread but after
* the state is saved.
*---------------------------------------------------------------------------
*/
#if NUM_CORES > 1
static inline void run_blocking_ops(
unsigned int core, struct thread_entry *thread)
{
struct thread_blk_ops *ops = &cores[core].blk_ops;
const unsigned flags = ops->flags;
if (LIKELY(flags == TBOP_CLEAR))
return;
switch (flags)
{
case TBOP_SWITCH_CORE:
core_switch_blk_op(core, thread);
/* Fall-through */
case TBOP_UNLOCK_CORELOCK:
corelock_unlock(ops->cl_p);
break;
}
ops->flags = TBOP_CLEAR;
}
#endif /* NUM_CORES > 1 */
#ifdef RB_PROFILE
void profile_thread(void)
{
profstart(cores[CURRENT_CORE].running - threads);
}
#endif
/*---------------------------------------------------------------------------
* Prepares a thread to block on an object's list and/or for a specified
* duration - expects object and slot to be appropriately locked if needed
* and interrupts to be masked.
*---------------------------------------------------------------------------
*/
static inline void block_thread_on_l(struct thread_entry *thread,
unsigned state)
{
/* If inlined, unreachable branches will be pruned with no size penalty
because state is passed as a constant parameter. */
const unsigned int core = IF_COP_CORE(thread->core);
/* Remove the thread from the list of running threads. */
RTR_LOCK(core);
remove_from_list_l(&cores[core].running, thread);
rtr_subtract_entry(core, thread->priority);
RTR_UNLOCK(core);
/* Add a timeout to the block if not infinite */
switch (state)
{
case STATE_BLOCKED:
case STATE_BLOCKED_W_TMO:
/* Put the thread into a new list of inactive threads. */
add_to_list_l(thread->bqp, thread);
if (state == STATE_BLOCKED)
break;
/* Fall-through */
case STATE_SLEEPING:
/* If this thread times out sooner than any other thread, update
next_tmo_check to its timeout */
if (TIME_BEFORE(thread->tmo_tick, cores[core].next_tmo_check))
{
cores[core].next_tmo_check = thread->tmo_tick;
}
if (thread->tmo.prev == NULL)
{
add_to_list_tmo(thread);
}
/* else thread was never removed from list - just keep it there */
break;
}
/* Remember the the next thread about to block. */
cores[core].block_task = thread;
/* Report new state. */
thread->state = state;
}
/*---------------------------------------------------------------------------
* Switch thread in round robin fashion for any given priority. Any thread
* that removed itself from the running list first must specify itself in
* the paramter.
*
* INTERNAL: Intended for use by kernel and not for programs.
*---------------------------------------------------------------------------
*/
void switch_thread(void)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *block = cores[core].block_task;
struct thread_entry *thread = cores[core].running;
/* Get context to save - next thread to run is unknown until all wakeups
* are evaluated */
if (block != NULL)
{
cores[core].block_task = NULL;
#if NUM_CORES > 1
if (UNLIKELY(thread == block))
{
/* This was the last thread running and another core woke us before
* reaching here. Force next thread selection to give tmo threads or
* other threads woken before this block a first chance. */
block = NULL;
}
else
#endif
{
/* Blocking task is the old one */
thread = block;
}
}
#ifdef RB_PROFILE
#ifdef CPU_COLDFIRE
_profile_thread_stopped(thread->id & THREAD_ID_SLOT_MASK);
#else
profile_thread_stopped(thread->id & THREAD_ID_SLOT_MASK);
#endif
#endif
/* Begin task switching by saving our current context so that we can
* restore the state of the current thread later to the point prior
* to this call. */
thread_store_context(thread);
#ifdef DEBUG
/* Check core_ctx buflib integrity */
core_check_valid();
#endif
/* Check if the current thread stack is overflown */
if (UNLIKELY(thread->stack[0] != DEADBEEF) && thread->stack_size > 0)
thread_stkov(thread);
#if NUM_CORES > 1
/* Run any blocking operations requested before switching/sleeping */
run_blocking_ops(core, thread);
#endif
#ifdef HAVE_PRIORITY_SCHEDULING
IF_NO_SKIP_YIELD( if (thread->skip_count != -1) )
/* Reset the value of thread's skip count */
thread->skip_count = 0;
#endif
for (;;)
{
/* If there are threads on a timeout and the earliest wakeup is due,
* check the list and wake any threads that need to start running
* again. */
if (!TIME_BEFORE(current_tick, cores[core].next_tmo_check))
{
check_tmo_threads();
}
disable_irq();
RTR_LOCK(core);
thread = cores[core].running;
if (UNLIKELY(thread == NULL))
{
/* Enter sleep mode to reduce power usage - woken up on interrupt
* or wakeup request from another core - expected to enable
* interrupts. */
RTR_UNLOCK(core);
core_sleep(IF_COP(core));
}
else
{
#ifdef HAVE_PRIORITY_SCHEDULING
/* Select the new task based on priorities and the last time a
* process got CPU time relative to the highest priority runnable
* task. */
int max = priobit_ffs(&cores[core].rtr.mask);
if (block == NULL)
{
/* Not switching on a block, tentatively select next thread */
thread = thread->l.next;
}
for (;;)
{
int priority = thread->priority;
int diff;
/* This ridiculously simple method of aging seems to work
* suspiciously well. It does tend to reward CPU hogs (under
* yielding) but that's generally not desirable at all. On
* the plus side, it, relatively to other threads, penalizes
* excess yielding which is good if some high priority thread
* is performing no useful work such as polling for a device
* to be ready. Of course, aging is only employed when higher
* and lower priority threads are runnable. The highest
* priority runnable thread(s) are never skipped unless a
* lower-priority process has aged sufficiently. Priorities
* of REALTIME class are run strictly according to priority
* thus are not subject to switchout due to lower-priority
* processes aging; they must give up the processor by going
* off the run list. */
if (LIKELY(priority <= max) ||
IF_NO_SKIP_YIELD( thread->skip_count == -1 || )
(priority > PRIORITY_REALTIME &&
(diff = priority - max,
++thread->skip_count > diff*diff)))
{
cores[core].running = thread;
break;
}
thread = thread->l.next;
}
#else
/* Without priority use a simple FCFS algorithm */
if (block == NULL)
{
/* Not switching on a block, select next thread */
thread = thread->l.next;
cores[core].running = thread;
}
#endif /* HAVE_PRIORITY_SCHEDULING */
RTR_UNLOCK(core);
enable_irq();
break;
}
}
/* And finally give control to the next thread. */
thread_load_context(thread);
#ifdef RB_PROFILE
profile_thread_started(thread->id & THREAD_ID_SLOT_MASK);
#endif
}
/*---------------------------------------------------------------------------
* Sleeps a thread for at least a specified number of ticks with zero being
* a wait until the next tick.
*
* INTERNAL: Intended for use by kernel and not for programs.
*---------------------------------------------------------------------------
*/
void sleep_thread(int ticks)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
LOCK_THREAD(current);
/* Set our timeout, remove from run list and join timeout list. */
current->tmo_tick = current_tick + MAX(ticks, 0) + 1;
block_thread_on_l(current, STATE_SLEEPING);
UNLOCK_THREAD(current);
}
/*---------------------------------------------------------------------------
* Block a thread on a blocking queue for explicit wakeup. If timeout is
* negative, the block is infinite.
*
* INTERNAL: Intended for use by kernel objects and not for programs.
*---------------------------------------------------------------------------
*/
void block_thread(struct thread_entry *current, int timeout)
{
LOCK_THREAD(current);
struct blocker *bl = NULL;
#ifdef HAVE_PRIORITY_SCHEDULING
bl = current->blocker;
struct thread_entry *blt = bl ? lock_blocker_thread(bl) : NULL;
#endif /* HAVE_PRIORITY_SCHEDULING */
if (LIKELY(timeout < 0))
{
/* Block until explicitly woken */
block_thread_on_l(current, STATE_BLOCKED);
}
else
{
/* Set the state to blocked with the specified timeout */
current->tmo_tick = current_tick + timeout;
block_thread_on_l(current, STATE_BLOCKED_W_TMO);
}
if (bl == NULL)
{
UNLOCK_THREAD(current);
return;
}
#ifdef HAVE_PRIORITY_SCHEDULING
int newblpr = current->priority;
UNLOCK_THREAD(current);
if (newblpr >= bl->priority)
{
unlock_blocker_thread(bl);
return; /* Queue priority won't change */
}
inherit_priority(bl, bl, blt, newblpr);
#endif /* HAVE_PRIORITY_SCHEDULING */
}
/*---------------------------------------------------------------------------
* Assign the thread slot a new ID. Version is 0x00000100..0xffffff00.
*---------------------------------------------------------------------------
*/
static void new_thread_id(unsigned int slot_num,
struct thread_entry *thread)
{
unsigned int version =
(thread->id + (1u << THREAD_ID_VERSION_SHIFT))
& THREAD_ID_VERSION_MASK;
/* If wrapped to 0, make it 1 */
if (version == 0)
version = 1u << THREAD_ID_VERSION_SHIFT;
thread->id = version | (slot_num & THREAD_ID_SLOT_MASK);
}
/*---------------------------------------------------------------------------
* Find an empty thread slot or MAXTHREADS if none found. The slot returned
* will be locked on multicore.
*---------------------------------------------------------------------------
*/
static struct thread_entry * find_empty_thread_slot(void)
{
/* Any slot could be on an interrupt-accessible list */
IF_COP( int oldlevel = disable_irq_save(); )
struct thread_entry *thread = NULL;
int n;
for (n = 0; n < MAXTHREADS; n++)
{
/* Obtain current slot state - lock it on multicore */
struct thread_entry *t = &threads[n];
LOCK_THREAD(t);
if (t->state == STATE_KILLED)
{
/* Slot is empty - leave it locked and caller will unlock */
thread = t;
break;
}
/* Finished examining slot - no longer busy - unlock on multicore */
UNLOCK_THREAD(t);
}
IF_COP( restore_irq(oldlevel); ) /* Reenable interrups - this slot is
not accesible to them yet */
return thread;
}
/*---------------------------------------------------------------------------
* Return the thread_entry pointer for a thread_id. Return the current
* thread if the ID is (unsigned int)-1 (alias for current).
*---------------------------------------------------------------------------
*/
struct thread_entry * thread_id_entry(unsigned int thread_id)
{
return &threads[thread_id & THREAD_ID_SLOT_MASK];
}
/*---------------------------------------------------------------------------
* Return the thread id of the calling thread
* --------------------------------------------------------------------------
*/
unsigned int thread_self(void)
{
return cores[CURRENT_CORE].running->id;
}
/*---------------------------------------------------------------------------
* Return the thread entry of the calling thread.
*
* INTERNAL: Intended for use by kernel and not for programs.
*---------------------------------------------------------------------------
*/
struct thread_entry* thread_self_entry(void)
{
return cores[CURRENT_CORE].running;
}
/*---------------------------------------------------------------------------
* Place the current core in idle mode - woken up on interrupt or wake
* request from another core.
*---------------------------------------------------------------------------
*/
void core_idle(void)
{
IF_COP( const unsigned int core = CURRENT_CORE; )
disable_irq();
core_sleep(IF_COP(core));
}
/*---------------------------------------------------------------------------
* Create a thread. If using a dual core architecture, specify which core to
* start the thread on.
*
* Return ID if context area could be allocated, else NULL.
*---------------------------------------------------------------------------
*/
unsigned int create_thread(void (*function)(void),
void* stack, size_t stack_size,
unsigned flags, const char *name
IF_PRIO(, int priority)
IF_COP(, unsigned int core))
{
unsigned int i;
unsigned int stack_words;
uintptr_t stackptr, stackend;
struct thread_entry *thread;
unsigned state;
int oldlevel;
thread = find_empty_thread_slot();
if (thread == NULL)
{
return 0;
}
oldlevel = disable_irq_save();
/* Munge the stack to make it easy to spot stack overflows */
stackptr = ALIGN_UP((uintptr_t)stack, sizeof (uintptr_t));
stackend = ALIGN_DOWN((uintptr_t)stack + stack_size, sizeof (uintptr_t));
stack_size = stackend - stackptr;
stack_words = stack_size / sizeof (uintptr_t);
for (i = 0; i < stack_words; i++)
{
((uintptr_t *)stackptr)[i] = DEADBEEF;
}
/* Store interesting information */
thread->name = name;
thread->stack = (uintptr_t *)stackptr;
thread->stack_size = stack_size;
thread->queue = NULL;
#ifdef HAVE_WAKEUP_EXT_CB
thread->wakeup_ext_cb = NULL;
#endif
#ifdef HAVE_SCHEDULER_BOOSTCTRL
thread->cpu_boost = 0;
#endif
#ifdef HAVE_PRIORITY_SCHEDULING
memset(&thread->pdist, 0, sizeof(thread->pdist));
thread->blocker = NULL;
thread->base_priority = priority;
thread->priority = priority;
thread->skip_count = priority;
prio_add_entry(&thread->pdist, priority);
#endif
#ifdef HAVE_IO_PRIORITY
/* Default to high (foreground) priority */
thread->io_priority = IO_PRIORITY_IMMEDIATE;
#endif
#if NUM_CORES > 1
thread->core = core;
/* Writeback stack munging or anything else before starting */
if (core != CURRENT_CORE)
{
commit_dcache();
}
#endif
/* Thread is not on any timeout list but be a bit paranoid */
thread->tmo.prev = NULL;
state = (flags & CREATE_THREAD_FROZEN) ?
STATE_FROZEN : STATE_RUNNING;
thread->context.sp = (typeof (thread->context.sp))stackend;
/* Load the thread's context structure with needed startup information */
THREAD_STARTUP_INIT(core, thread, function);
thread->state = state;
i = thread->id; /* Snapshot while locked */
if (state == STATE_RUNNING)
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
restore_irq(oldlevel);
return i;
}
#ifdef HAVE_SCHEDULER_BOOSTCTRL
/*---------------------------------------------------------------------------
* Change the boost state of a thread boosting or unboosting the CPU
* as required.
*---------------------------------------------------------------------------
*/
static inline void boost_thread(struct thread_entry *thread, bool boost)
{
if ((thread->cpu_boost != 0) != boost)
{
thread->cpu_boost = boost;
cpu_boost(boost);
}
}
void trigger_cpu_boost(void)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
boost_thread(current, true);
}
void cancel_cpu_boost(void)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
boost_thread(current, false);
}
#endif /* HAVE_SCHEDULER_BOOSTCTRL */
/*---------------------------------------------------------------------------
* Block the current thread until another thread terminates. A thread may
* wait on itself to terminate which prevents it from running again and it
* will need to be killed externally.
* Parameter is the ID as returned from create_thread().
*---------------------------------------------------------------------------
*/
void thread_wait(unsigned int thread_id)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
struct thread_entry *thread = thread_id_entry(thread_id);
/* Lock thread-as-waitable-object lock */
corelock_lock(&thread->waiter_cl);
/* Be sure it hasn't been killed yet */
if (thread->id == thread_id && thread->state != STATE_KILLED)
{
IF_COP( current->obj_cl = &thread->waiter_cl; )
current->bqp = &thread->queue;
disable_irq();
block_thread(current, TIMEOUT_BLOCK);
corelock_unlock(&thread->waiter_cl);
switch_thread();
return;
}
corelock_unlock(&thread->waiter_cl);
}
/*---------------------------------------------------------------------------
* Exit the current thread. The Right Way to Do Things (TM).
*---------------------------------------------------------------------------
*/
/* This is done to foil optimizations that may require the current stack,
* such as optimizing subexpressions that put variables on the stack that
* get used after switching stacks. */
#if NUM_CORES > 1
/* Called by ASM stub */
static void thread_final_exit_do(struct thread_entry *current)
#else
/* No special procedure is required before calling */
static inline void thread_final_exit(struct thread_entry *current)
#endif
{
/* At this point, this thread isn't using resources allocated for
* execution except the slot itself. */
/* Signal this thread */
thread_queue_wake(&current->queue);
corelock_unlock(&current->waiter_cl);
switch_thread();
/* This should never and must never be reached - if it is, the
* state is corrupted */
THREAD_PANICF("thread_exit->K:*R", current);
while (1);
}
void thread_exit(void)
{
register struct thread_entry * current = cores[CURRENT_CORE].running;
/* Cancel CPU boost if any */
cancel_cpu_boost();
disable_irq();
corelock_lock(&current->waiter_cl);
LOCK_THREAD(current);
#ifdef HAVE_PRIORITY_SCHEDULING
/* Only one bit in the mask should be set with a frequency on 1 which
* represents the thread's own base priority otherwise threads are waiting
* on an abandoned object */
if (priobit_popcount(&current->pdist.mask) != 1 ||
current->pdist.hist[priobit_ffs(&current->pdist.mask)] > 1)
thread_panicf("abandon ship!", current);
#endif /* HAVE_PRIORITY_SCHEDULING */
if (current->tmo.prev != NULL)
{
/* Cancel pending timeout list removal */
remove_from_list_tmo(current);
}
/* Switch tasks and never return */
block_thread_on_l(current, STATE_KILLED);
/* Slot must be unusable until thread is really gone */
UNLOCK_THREAD_AT_TASK_SWITCH(current);
/* Update ID for this slot */
new_thread_id(current->id, current);
current->name = NULL;
/* Do final cleanup and remove the thread */
thread_final_exit(current);
}
#ifdef HAVE_PRIORITY_SCHEDULING
/*---------------------------------------------------------------------------
* Sets the thread's relative base priority for the core it runs on. Any
* needed inheritance changes also may happen.
*---------------------------------------------------------------------------
*/
int thread_set_priority(unsigned int thread_id, int priority)
{
if (priority < HIGHEST_PRIORITY || priority > LOWEST_PRIORITY)
return -1; /* Invalid priority argument */
int old_base_priority = -1;
struct thread_entry *thread = thread_id_entry(thread_id);
/* Thread could be on any list and therefore on an interrupt accessible
one - disable interrupts */
const int oldlevel = disable_irq_save();
LOCK_THREAD(thread);
if (thread->id != thread_id || thread->state == STATE_KILLED)
goto done; /* Invalid thread */
old_base_priority = thread->base_priority;
if (priority == old_base_priority)
goto done; /* No base priority change */
thread->base_priority = priority;
/* Adjust the thread's priority influence on itself */
prio_move_entry(&thread->pdist, old_base_priority, priority);
int old_priority = thread->priority;
int new_priority = priobit_ffs(&thread->pdist.mask);
if (old_priority == new_priority)
goto done; /* No running priority change */
if (thread->state == STATE_RUNNING)
{
/* This thread is running - just change location on the run queue.
Also sets thread->priority. */
set_running_thread_priority(thread, new_priority);
goto done;
}
/* Thread is blocked */
struct blocker *bl = thread->blocker;
if (bl == NULL)
{
thread->priority = new_priority;
goto done; /* End of transitive blocks */
}
struct thread_entry *blt = lock_blocker_thread(bl);
struct thread_entry **bqp = thread->bqp;
thread->priority = new_priority;
UNLOCK_THREAD(thread);
thread = NULL;
int oldblpr = bl->priority;
int newblpr = oldblpr;
if (new_priority < oldblpr)
newblpr = new_priority;
else if (old_priority <= oldblpr)
newblpr = find_highest_priority_in_list_l(*bqp);
if (newblpr == oldblpr)
{
unlock_blocker_thread(bl);
goto done;
}
inherit_priority(bl, bl, blt, newblpr);
done:
if (thread)
UNLOCK_THREAD(thread);
restore_irq(oldlevel);
return old_base_priority;
}
/*---------------------------------------------------------------------------
* Returns the current base priority for a thread.
*---------------------------------------------------------------------------
*/
int thread_get_priority(unsigned int thread_id)
{
struct thread_entry *thread = thread_id_entry(thread_id);
int base_priority = thread->base_priority;
/* Simply check without locking slot. It may or may not be valid by the
* time the function returns anyway. If all tests pass, it is the
* correct value for when it was valid. */
if (thread->id != thread_id || thread->state == STATE_KILLED)
base_priority = -1;
return base_priority;
}
#endif /* HAVE_PRIORITY_SCHEDULING */
#ifdef HAVE_IO_PRIORITY
int thread_get_io_priority(unsigned int thread_id)
{
struct thread_entry *thread = thread_id_entry(thread_id);
return thread->io_priority;
}
void thread_set_io_priority(unsigned int thread_id,int io_priority)
{
struct thread_entry *thread = thread_id_entry(thread_id);
thread->io_priority = io_priority;
}
#endif
/*---------------------------------------------------------------------------
* Starts a frozen thread - similar semantics to wakeup_thread except that
* the thread is on no scheduler or wakeup queue at all. It exists simply by
* virtue of the slot having a state of STATE_FROZEN.
*---------------------------------------------------------------------------
*/
void thread_thaw(unsigned int thread_id)
{
struct thread_entry *thread = thread_id_entry(thread_id);
int oldlevel = disable_irq_save();
LOCK_THREAD(thread);
/* If thread is the current one, it cannot be frozen, therefore
* there is no need to check that. */
if (thread->id == thread_id && thread->state == STATE_FROZEN)
core_schedule_wakeup(thread);
UNLOCK_THREAD(thread);
restore_irq(oldlevel);
}
#if NUM_CORES > 1
/*---------------------------------------------------------------------------
* Switch the processor that the currently executing thread runs on.
*---------------------------------------------------------------------------
*/
unsigned int switch_core(unsigned int new_core)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *current = cores[core].running;
if (core == new_core)
{
/* No change - just return same core */
return core;
}
disable_irq();
LOCK_THREAD(current);
/* Get us off the running list for the current core */
RTR_LOCK(core);
remove_from_list_l(&cores[core].running, current);
rtr_subtract_entry(core, current->priority);
RTR_UNLOCK(core);
/* Stash return value (old core) in a safe place */
current->retval = core;
/* If a timeout hadn't yet been cleaned-up it must be removed now or
* the other core will likely attempt a removal from the wrong list! */
if (current->tmo.prev != NULL)
{
remove_from_list_tmo(current);
}
/* Change the core number for this thread slot */
current->core = new_core;
/* Do not use core_schedule_wakeup here since this will result in
* the thread starting to run on the other core before being finished on
* this one. Delay the list unlock to keep the other core stuck
* until this thread is ready. */
RTR_LOCK(new_core);
rtr_add_entry(new_core, current->priority);
add_to_list_l(&cores[new_core].running, current);
/* Make a callback into device-specific code, unlock the wakeup list so
* that execution may resume on the new core, unlock our slot and finally
* restore the interrupt level */
cores[core].blk_ops.flags = TBOP_SWITCH_CORE;
cores[core].blk_ops.cl_p = &cores[new_core].rtr_cl;
cores[core].block_task = current;
UNLOCK_THREAD(current);
/* Alert other core to activity */
core_wake(new_core);
/* Do the stack switching, cache_maintenence and switch_thread call -
requires native code */
switch_thread_core(core, current);
/* Finally return the old core to caller */
return current->retval;
}
#endif /* NUM_CORES > 1 */
/*---------------------------------------------------------------------------
* Initialize threading API. This assumes interrupts are not yet enabled. On
* multicore setups, no core is allowed to proceed until create_thread calls
* are safe to perform.
*---------------------------------------------------------------------------
*/
void INIT_ATTR init_threads(void)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *thread;
if (core == CPU)
{
/* Initialize core locks and IDs in all slots */
int n;
for (n = 0; n < MAXTHREADS; n++)
{
thread = &threads[n];
corelock_init(&thread->waiter_cl);
corelock_init(&thread->slot_cl);
thread->id = THREAD_ID_INIT(n);
}
}
/* CPU will initialize first and then sleep */
thread = find_empty_thread_slot();
if (thread == NULL)
{
/* WTF? There really must be a slot available at this stage.
* This can fail if, for example, .bss isn't zero'ed out by the loader
* or threads is in the wrong section. */
THREAD_PANICF("init_threads->no slot", NULL);
}
/* Initialize initially non-zero members of core */
cores[core].next_tmo_check = current_tick; /* Something not in the past */
/* Initialize initially non-zero members of slot */
UNLOCK_THREAD(thread); /* No sync worries yet */
thread->name = main_thread_name;
thread->state = STATE_RUNNING;
IF_COP( thread->core = core; )
#ifdef HAVE_PRIORITY_SCHEDULING
corelock_init(&cores[core].rtr_cl);
thread->base_priority = PRIORITY_USER_INTERFACE;
prio_add_entry(&thread->pdist, PRIORITY_USER_INTERFACE);
thread->priority = PRIORITY_USER_INTERFACE;
rtr_add_entry(core, PRIORITY_USER_INTERFACE);
#endif
add_to_list_l(&cores[core].running, thread);
if (core == CPU)
{
thread->stack = stackbegin;
thread->stack_size = (uintptr_t)stackend - (uintptr_t)stackbegin;
#if NUM_CORES > 1 /* This code path will not be run on single core targets */
/* Wait for other processors to finish their inits since create_thread
* isn't safe to call until the kernel inits are done. The first
* threads created in the system must of course be created by CPU.
* Another possible approach is to initialize all cores and slots
* for each core by CPU, let the remainder proceed in parallel and
* signal CPU when all are finished. */
core_thread_init(CPU);
}
else
{
/* Initial stack is the idle stack */
thread->stack = idle_stacks[core];
thread->stack_size = IDLE_STACK_SIZE;
/* After last processor completes, it should signal all others to
* proceed or may signal the next and call thread_exit(). The last one
* to finish will signal CPU. */
core_thread_init(core);
/* Other cores do not have a main thread - go idle inside switch_thread
* until a thread can run on the core. */
thread_exit();
#endif /* NUM_CORES */
}
#ifdef INIT_MAIN_THREAD
init_main_thread(&thread->context);
#endif
}
/* Unless otherwise defined, do nothing */
#ifndef YIELD_KERNEL_HOOK
#define YIELD_KERNEL_HOOK() false
#endif
#ifndef SLEEP_KERNEL_HOOK
#define SLEEP_KERNEL_HOOK(ticks) false
#endif
/*---------------------------------------------------------------------------
* Suspends a thread's execution for at least the specified number of ticks.
*
* May result in CPU core entering wait-for-interrupt mode if no other thread
* may be scheduled.
*
* NOTE: sleep(0) sleeps until the end of the current tick
* sleep(n) that doesn't result in rescheduling:
* n <= ticks suspended < n + 1
* n to n+1 is a lower bound. Other factors may affect the actual time
* a thread is suspended before it runs again.
*---------------------------------------------------------------------------
*/
unsigned sleep(unsigned ticks)
{
/* In certain situations, certain bootloaders in particular, a normal
* threading call is inappropriate. */
if (SLEEP_KERNEL_HOOK(ticks))
return 0; /* Handled */
disable_irq();
sleep_thread(ticks);
switch_thread();
return 0;
}
/*---------------------------------------------------------------------------
* Elects another thread to run or, if no other thread may be made ready to
* run, immediately returns control back to the calling thread.
*---------------------------------------------------------------------------
*/
void yield(void)
{
/* In certain situations, certain bootloaders in particular, a normal
* threading call is inappropriate. */
if (YIELD_KERNEL_HOOK())
return; /* handled */
switch_thread();
}