96cfe329a6
This method, while far from perfect, is able to make use of real-time battery usage information and updates frequently in fine-grained increments. This should make time estimates a lot more useful than they previously were. Change-Id: I66c6daba88210f60a27e239fbbcc56869be3b878
1025 lines
28 KiB
C
1025 lines
28 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2002 by Heikki Hannikainen, Uwe Freese
|
|
* Revisions copyright (C) 2005 by Gerald Van Baren
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "kernel.h"
|
|
#include "thread.h"
|
|
#include "debug.h"
|
|
#include "adc.h"
|
|
#include "string.h"
|
|
#include "storage.h"
|
|
#include "power.h"
|
|
#include "audio.h"
|
|
#include "usb.h"
|
|
#include "powermgmt.h"
|
|
#include "backlight.h"
|
|
#include "lcd.h"
|
|
#include "rtc.h"
|
|
#if CONFIG_TUNER
|
|
#include "fmradio.h"
|
|
#endif
|
|
#include "sound.h"
|
|
#include "font.h"
|
|
#include "logf.h"
|
|
#ifdef HAVE_REMOTE_LCD
|
|
#include "lcd-remote.h"
|
|
#endif
|
|
#if (CONFIG_PLATFORM & PLATFORM_HOSTED)
|
|
#include <time.h>
|
|
#endif
|
|
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2)) \
|
|
&& !defined (SIMULATOR)
|
|
#include "pcf50606.h"
|
|
#endif
|
|
|
|
static int last_sent_battery_level = 100;
|
|
static void set_sleep_timer(int seconds);
|
|
|
|
static bool sleeptimer_active = false;
|
|
static long sleeptimer_endtick;
|
|
/* Whether an active sleep timer should be restarted when a key is pressed */
|
|
static bool sleeptimer_key_restarts = false;
|
|
/* The number of seconds the sleep timer was last set to */
|
|
static unsigned int sleeptimer_duration = 0;
|
|
|
|
#if CONFIG_CHARGING
|
|
/* State of the charger input as seen by the power thread */
|
|
enum charger_input_state_type charger_input_state;
|
|
/* Power inputs as seen by the power thread */
|
|
unsigned int power_thread_inputs;
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
/* Charging state (mode) as seen by the power thread */
|
|
enum charge_state_type charge_state = DISCHARGING;
|
|
#endif
|
|
#endif /* CONFIG_CHARGING */
|
|
|
|
static int shutdown_timeout = 0;
|
|
|
|
void handle_auto_poweroff(void);
|
|
static int poweroff_timeout = 0;
|
|
static long last_event_tick = 0;
|
|
|
|
#if BATTERY_CAPACITY_INC > 0
|
|
static int battery_capacity = BATTERY_CAPACITY_DEFAULT;
|
|
#else
|
|
# define battery_capacity BATTERY_CAPACITY_DEFAULT
|
|
#endif
|
|
|
|
#if BATTERY_TYPES_COUNT > 1
|
|
static int battery_type = 0;
|
|
#else
|
|
#define battery_type 0
|
|
#endif
|
|
|
|
/* Power history: power_history[0] is the newest sample */
|
|
unsigned short power_history[POWER_HISTORY_LEN] = {0};
|
|
|
|
#if (CONFIG_CPU == JZ4732) || (CONFIG_CPU == JZ4760B) || \
|
|
(CONFIG_CPU == X1000) || (CONFIG_PLATFORM & PLATFORM_HOSTED)
|
|
static char power_stack[DEFAULT_STACK_SIZE];
|
|
#else
|
|
static char power_stack[DEFAULT_STACK_SIZE/2];
|
|
#endif
|
|
static const char power_thread_name[] = "power";
|
|
|
|
/* Time estimation requires 64 bit math so don't use it in the bootloader.
|
|
* Also we need to be able to measure current, and not have a better time
|
|
* estimate source available. */
|
|
#define HAVE_TIME_ESTIMATION \
|
|
(!defined(BOOTLOADER) && !(CONFIG_BATTERY_MEASURE & TIME_MEASURE) && \
|
|
(defined(CURRENT_NORMAL) || (CONFIG_BATTERY_MEASURE & CURRENT_MEASURE)))
|
|
|
|
#if !(CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE)
|
|
int _battery_level(void) { return -1; }
|
|
#endif
|
|
static int percent_now; /* Cached to avoid polling too often */
|
|
|
|
#if !(CONFIG_BATTERY_MEASURE & TIME_MEASURE)
|
|
int _battery_time(void) { return -1; }
|
|
#else
|
|
static int time_now; /* Cached to avoid polling too often */
|
|
#endif
|
|
|
|
#if HAVE_TIME_ESTIMATION
|
|
static int time_now; /* reported time in minutes */
|
|
static int64_t time_cnt; /* reported time in seconds */
|
|
static int64_t time_err; /* error... it's complicated */
|
|
#endif
|
|
|
|
#if !(CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE)
|
|
int _battery_voltage(void) { return -1; }
|
|
#else
|
|
/* Data for the digital exponential filter */
|
|
static int voltage_avg, voltage_now;
|
|
#endif
|
|
|
|
#if !(CONFIG_BATTERY_MEASURE & CURRENT_MEASURE)
|
|
int _battery_current(void) { return -1; }
|
|
#else
|
|
static int current_avg, current_now;
|
|
#endif
|
|
|
|
/* The battery level can be obtained in two ways. If the target reports
|
|
* voltage, the battery level can be estminated using percent_to_volt_*
|
|
* curves. If the target can report the percentage directly, then that
|
|
* will be used instead of voltage-based estimation. */
|
|
int battery_level(void)
|
|
{
|
|
#ifdef HAVE_BATTERY_SWITCH
|
|
if ((power_input_status() & POWER_INPUT_BATTERY) == 0)
|
|
return -1;
|
|
#endif
|
|
|
|
return percent_now;
|
|
}
|
|
|
|
/* The time remaining to full charge/discharge can be provided by the
|
|
* target if it has an accurate way of doing this. Otherwise, if the
|
|
* target defines a valid battery capacity and can report the charging
|
|
* and discharging current, the time remaining will be estimated based
|
|
* on the battery level and the actual current usage. */
|
|
int battery_time(void)
|
|
{
|
|
#if (CONFIG_BATTERY_MEASURE & TIME_MEASURE) || HAVE_TIME_ESTIMATION
|
|
return time_now;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/* Battery voltage should always be reported if available, but it is
|
|
* optional if the the target reports battery percentage directly. */
|
|
int battery_voltage(void)
|
|
{
|
|
#if CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE
|
|
return voltage_now;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/* Battery current can be estimated if the target defines CURRENT_NORMAL
|
|
* as the number of milliamps usually consumed by the device in a normal
|
|
* state. The target can also define other CURRENT_* values to estimate
|
|
* the power consumed by the backlight, remote display, SPDIF, etc. */
|
|
int battery_current(void)
|
|
{
|
|
#if CONFIG_BATTERY_MEASURE & CURRENT_MEASURE
|
|
return current_now;
|
|
#elif defined(CURRENT_NORMAL)
|
|
int current = CURRENT_NORMAL;
|
|
|
|
#ifndef BOOTLOADER
|
|
if (usb_inserted()
|
|
#ifdef HAVE_USB_POWER
|
|
#if (CURRENT_USB < CURRENT_NORMAL)
|
|
|| usb_powered_only()
|
|
#else
|
|
&& !usb_powered_only()
|
|
#endif
|
|
#endif
|
|
) {
|
|
current = CURRENT_USB;
|
|
}
|
|
|
|
#if defined(HAVE_BACKLIGHT) && defined(CURRENT_BACKLIGHT)
|
|
if (backlight_get_current_timeout() == 0) /* LED always on */
|
|
current += CURRENT_BACKLIGHT;
|
|
#endif
|
|
|
|
#if defined(HAVE_RECORDING) && defined(CURRENT_RECORD)
|
|
if (audio_status() & AUDIO_STATUS_RECORD)
|
|
current += CURRENT_RECORD;
|
|
#endif
|
|
|
|
#if defined(HAVE_SPDIF_POWER) && defined(CURRENT_SPDIF_OUT)
|
|
if (spdif_powered())
|
|
current += CURRENT_SPDIF_OUT;
|
|
#endif
|
|
|
|
#if defined(HAVE_REMOTE_LCD) && defined(CURRENT_REMOTE)
|
|
if (remote_detect())
|
|
current += CURRENT_REMOTE;
|
|
#endif
|
|
|
|
#if defined(HAVE_ATA_POWER_OFF) && defined(CURRENT_ATA)
|
|
if (ide_powered())
|
|
current += CURRENT_ATA;
|
|
#endif
|
|
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
/* While charging we must report the charging current. */
|
|
if (charging_state()) {
|
|
current = CURRENT_MAX_CHG - current;
|
|
current = MIN(current, 1);
|
|
}
|
|
#endif
|
|
|
|
#endif /* BOOTLOADER */
|
|
|
|
return current;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/* Initialize the battery voltage/current filters. This is called
|
|
* once by the power thread before entering the main polling loop. */
|
|
static void average_init(void)
|
|
{
|
|
#if CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE
|
|
voltage_now = _battery_voltage() + 15;
|
|
|
|
/* The battery voltage is usually a little lower directly after
|
|
turning on, because the disk was used heavily. Raise it by 5% */
|
|
#ifdef HAVE_DISK_STORAGE
|
|
#if CONFIG_CHARGING
|
|
if(!charger_inserted())
|
|
#endif
|
|
{
|
|
voltage_now += (percent_to_volt_discharge[battery_type][6] -
|
|
percent_to_volt_discharge[battery_type][5]) / 2;
|
|
}
|
|
#endif /* HAVE_DISK_STORAGE */
|
|
|
|
voltage_avg = voltage_now * BATT_AVE_SAMPLES;
|
|
#endif /* CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE */
|
|
|
|
#if CONFIG_BATTERY_MEASURE & CURRENT_MEASURE
|
|
current_now = _battery_current();
|
|
current_avg = current_now * BATT_CURRENT_AVE_SAMPLES;
|
|
#endif
|
|
}
|
|
|
|
/* Sample the battery voltage/current and update the filters.
|
|
* Updated once every POWER_THREAD_STEP_TICKS. */
|
|
static void average_step(bool low_battery)
|
|
{
|
|
#if CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE
|
|
int millivolts = _battery_voltage();
|
|
if(low_battery) {
|
|
voltage_now = (millivolts + voltage_now + 1) / 2;
|
|
voltage_avg += voltage_now - voltage_avg / BATT_AVE_SAMPLES;
|
|
} else {
|
|
voltage_avg += millivolts - voltage_avg / BATT_AVE_SAMPLES;
|
|
voltage_now = voltage_avg / BATT_AVE_SAMPLES;
|
|
}
|
|
#else
|
|
(void)low_battery;
|
|
#endif
|
|
|
|
#if CONFIG_BATTERY_MEASURE & CURRENT_MEASURE
|
|
current_avg += _battery_current() - current_avg / BATT_CURRENT_AVE_SAMPLES;
|
|
current_now = current_avg / BATT_CURRENT_AVE_SAMPLES;
|
|
#endif
|
|
}
|
|
|
|
/* Send system battery level update events on reaching certain significant
|
|
* levels. This is called by battery_status_update() and does not have to
|
|
* be called separately. */
|
|
static void send_battery_level_event(int percent)
|
|
{
|
|
static const int levels[] = { 5, 15, 30, 50, 0 };
|
|
const int *level = levels;
|
|
|
|
while (*level)
|
|
{
|
|
if (percent <= *level && last_sent_battery_level > *level) {
|
|
last_sent_battery_level = *level;
|
|
queue_broadcast(SYS_BATTERY_UPDATE, last_sent_battery_level);
|
|
break;
|
|
}
|
|
|
|
level++;
|
|
}
|
|
}
|
|
|
|
#if !(CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE) && \
|
|
(CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE)
|
|
/* Look into the percent_to_volt_* table and estimate the battery level. */
|
|
static int voltage_to_percent(int voltage, const short* table)
|
|
{
|
|
if (voltage <= table[0]) {
|
|
return 0;
|
|
}
|
|
else if (voltage >= table[10]) {
|
|
return 100;
|
|
}
|
|
else {
|
|
/* search nearest value */
|
|
int i = 0;
|
|
|
|
while (i < 10 && table[i+1] < voltage)
|
|
i++;
|
|
|
|
/* interpolate linear between the smaller and greater value */
|
|
/* Tens digit, 10% per entry, ones digit: interpolated */
|
|
return i*10 + (voltage - table[i])*10 / (table[i+1] - table[i]);
|
|
}
|
|
}
|
|
|
|
/* Convert voltage to a battery level percentage using the appropriate
|
|
* percent_to_volt_* lookup table. */
|
|
static int voltage_to_battery_level(int millivolts)
|
|
{
|
|
int level;
|
|
|
|
if (millivolts < 0)
|
|
return -1;
|
|
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
if (charging_state()) {
|
|
/* battery level is defined to be < 100% until charging is finished */
|
|
level = voltage_to_percent(millivolts, percent_to_volt_charge);
|
|
if (level > 99)
|
|
level = 99;
|
|
}
|
|
else
|
|
#endif /* CONFIG_CHARGING >= CHARGING_MONITOR */
|
|
{
|
|
/* DISCHARGING or error state */
|
|
level = voltage_to_percent(millivolts, percent_to_volt_discharge[battery_type]);
|
|
}
|
|
|
|
return level;
|
|
}
|
|
#endif
|
|
|
|
/* Update battery percentage and time remaining information.
|
|
*
|
|
* This will be called by the power thread after polling new battery data.
|
|
* It must also be called if the battery type or capacity changes.
|
|
*/
|
|
static void battery_status_update(void)
|
|
{
|
|
#if CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE
|
|
int level = _battery_level();
|
|
#elif CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE
|
|
int level = voltage_to_battery_level(voltage_now);
|
|
#else
|
|
/* This should be a compile time error? */
|
|
int level = -1;
|
|
#endif
|
|
|
|
#if CONFIG_BATTERY_MEASURE & TIME_MEASURE
|
|
time_now = _battery_time();
|
|
#elif HAVE_TIME_ESTIMATION
|
|
/* TODO: This is essentially a bad version of coloumb counting,
|
|
* so in theory using coloumb counters when they are available
|
|
* should provide a more accurate result. Also note that this
|
|
* is hard-coded with a HZ/2 update rate to simplify arithmetic. */
|
|
|
|
int current = battery_current();
|
|
int resolution = battery_capacity * 36;
|
|
|
|
int time_est;
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
if (charging_state())
|
|
time_est = (100 - level) * battery_capacity * 36 / current;
|
|
else
|
|
#endif
|
|
time_est = level * battery_capacity * 36 / current;
|
|
|
|
/* The first term nudges the counter toward the estimate.
|
|
* The second term decrements the counter due to elapsed time. */
|
|
time_err += current * (time_est - time_cnt);
|
|
time_err -= resolution;
|
|
|
|
/* Arbitrary cutoff to ensure we don't get too far out
|
|
* of sync. Seems to work well on synthetic tests. */
|
|
if(time_err > resolution * 12 ||
|
|
time_err < -resolution * 13) {
|
|
time_cnt = time_est;
|
|
time_err = 0;
|
|
}
|
|
|
|
/* Convert the error into a time and adjust the counter. */
|
|
int64_t adjustment = time_err / (2 * resolution);
|
|
time_cnt += adjustment;
|
|
time_err -= adjustment * (2 * resolution);
|
|
|
|
/* Update the reported time based on the counter. */
|
|
time_now = (time_cnt + 30) / 60;
|
|
#endif
|
|
|
|
percent_now = level;
|
|
send_battery_level_event(level);
|
|
}
|
|
|
|
void battery_read_info(int *voltage, int *level)
|
|
{
|
|
int millivolts = _battery_voltage();
|
|
|
|
if (voltage)
|
|
*voltage = millivolts;
|
|
|
|
if (level) {
|
|
#if (CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE)
|
|
*level = _battery_level();
|
|
#elif (CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE)
|
|
*level = voltage_to_battery_level(millivolts);
|
|
#else
|
|
*level = -1;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if BATTERY_TYPES_COUNT > 1
|
|
void set_battery_type(int type)
|
|
{
|
|
if(type < 0 || type > BATTERY_TYPES_COUNT)
|
|
type = 0;
|
|
|
|
if (type != battery_type) {
|
|
battery_type = type;
|
|
battery_status_update(); /* recalculate the battery status */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if BATTERY_CAPACITY_INC > 0
|
|
void set_battery_capacity(int capacity)
|
|
{
|
|
if (capacity > BATTERY_CAPACITY_MAX)
|
|
capacity = BATTERY_CAPACITY_MAX;
|
|
if (capacity < BATTERY_CAPACITY_MIN)
|
|
capacity = BATTERY_CAPACITY_MIN;
|
|
|
|
if (capacity != battery_capacity) {
|
|
battery_capacity = capacity;
|
|
battery_status_update(); /* recalculate the battery status */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int get_battery_capacity(void)
|
|
{
|
|
return battery_capacity;
|
|
}
|
|
|
|
/* Tells if the battery level is safe for disk writes */
|
|
bool battery_level_safe(void)
|
|
{
|
|
#if defined(NO_LOW_BATTERY_SHUTDOWN)
|
|
return true;
|
|
#elif CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE
|
|
return percent_now > 0;
|
|
#elif defined(HAVE_BATTERY_SWITCH)
|
|
/* Cannot rely upon the battery reading to be valid and the
|
|
* device could be powered externally. */
|
|
return input_millivolts() > battery_level_dangerous[battery_type];
|
|
#else
|
|
return voltage_now > battery_level_dangerous[battery_type];
|
|
#endif
|
|
}
|
|
|
|
/* Check to see whether or not we've received an alarm in the last second */
|
|
#ifdef HAVE_RTC_ALARM
|
|
static void power_thread_rtc_process(void)
|
|
{
|
|
if (rtc_check_alarm_flag())
|
|
rtc_enable_alarm(false);
|
|
}
|
|
#endif
|
|
|
|
/* switch off unit if battery level is too low for reliable operation */
|
|
bool query_force_shutdown(void)
|
|
{
|
|
#if defined(NO_LOW_BATTERY_SHUTDOWN)
|
|
return false;
|
|
#elif CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE
|
|
return percent_now == 0;
|
|
#elif defined(HAVE_BATTERY_SWITCH)
|
|
/* Cannot rely upon the battery reading to be valid and the
|
|
* device could be powered externally. */
|
|
return input_millivolts() < battery_level_shutoff[battery_type];
|
|
#else
|
|
return voltage_now < battery_level_shutoff[battery_type];
|
|
#endif
|
|
}
|
|
|
|
#if defined(HAVE_BATTERY_SWITCH) || defined(HAVE_RESET_BATTERY_FILTER)
|
|
/*
|
|
* Reset the battery voltage filter to a new value and update the
|
|
* status.
|
|
*/
|
|
void reset_battery_filter(int millivolts)
|
|
{
|
|
voltage_avg = millivolts * BATT_AVE_SAMPLES;
|
|
voltage_now = millivolts;
|
|
#if CONFIG_BATTERY_MEASURE & CURRENT_MEASURE
|
|
/* current would probably be inaccurate too */
|
|
current_now = _battery_current();
|
|
current_avg = current_now * BATT_CURRENT_AVE_SAMPLES;
|
|
#endif
|
|
battery_status_update();
|
|
}
|
|
#endif /* HAVE_BATTERY_SWITCH */
|
|
|
|
/** Generic charging algorithms for common charging types **/
|
|
#if CONFIG_CHARGING == 0 || CONFIG_CHARGING == CHARGING_SIMPLE
|
|
static inline void powermgmt_init_target(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static inline void charging_algorithm_step(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static inline void charging_algorithm_close(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
#elif CONFIG_CHARGING == CHARGING_MONITOR
|
|
/*
|
|
* Monitor CHARGING/DISCHARGING state.
|
|
*/
|
|
static inline void powermgmt_init_target(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static inline void charging_algorithm_step(void)
|
|
{
|
|
switch (charger_input_state)
|
|
{
|
|
case CHARGER_PLUGGED:
|
|
case CHARGER:
|
|
if (charging_state()) {
|
|
charge_state = CHARGING;
|
|
break;
|
|
}
|
|
/* Fallthrough */
|
|
case CHARGER_UNPLUGGED:
|
|
case NO_CHARGER:
|
|
charge_state = DISCHARGING;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void charging_algorithm_close(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
#endif /* CONFIG_CHARGING == * */
|
|
|
|
#if CONFIG_CHARGING
|
|
/* Shortcut function calls - compatibility, simplicity. */
|
|
|
|
/* Returns true if any power input is capable of charging. */
|
|
bool charger_inserted(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
unsigned int data = power_thread_inputs;
|
|
#else
|
|
unsigned int data = power_input_status();
|
|
#endif
|
|
return data & POWER_INPUT_CHARGER;
|
|
}
|
|
|
|
/* Returns true if any power input is connected - charging-capable
|
|
* or not. */
|
|
bool power_input_present(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
unsigned int data = power_thread_inputs;
|
|
#else
|
|
unsigned int data = power_input_status();
|
|
#endif
|
|
return data & POWER_INPUT;
|
|
}
|
|
|
|
/*
|
|
* Detect charger inserted. Return true if the state is transistional.
|
|
*/
|
|
static inline bool detect_charger(unsigned int pwr)
|
|
{
|
|
/*
|
|
* Detect charger plugged/unplugged transitions. On a plugged or
|
|
* unplugged event, we return immediately, run once through the main
|
|
* loop (including the subroutines), and end up back here where we
|
|
* transition to the appropriate steady state charger on/off state.
|
|
*/
|
|
if (pwr & POWER_INPUT_CHARGER) {
|
|
switch (charger_input_state)
|
|
{
|
|
case NO_CHARGER:
|
|
case CHARGER_UNPLUGGED:
|
|
charger_input_state = CHARGER_PLUGGED;
|
|
break;
|
|
|
|
case CHARGER_PLUGGED:
|
|
queue_broadcast(SYS_CHARGER_CONNECTED, 0);
|
|
last_sent_battery_level = 0;
|
|
charger_input_state = CHARGER;
|
|
break;
|
|
|
|
case CHARGER:
|
|
/* Steady state */
|
|
return false;
|
|
}
|
|
}
|
|
else { /* charger not inserted */
|
|
switch (charger_input_state)
|
|
{
|
|
case NO_CHARGER:
|
|
/* Steady state */
|
|
return false;
|
|
|
|
case CHARGER_UNPLUGGED:
|
|
queue_broadcast(SYS_CHARGER_DISCONNECTED, 0);
|
|
last_sent_battery_level = 100;
|
|
charger_input_state = NO_CHARGER;
|
|
break;
|
|
|
|
case CHARGER_PLUGGED:
|
|
case CHARGER:
|
|
charger_input_state = CHARGER_UNPLUGGED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Transitional state */
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_CHARGING */
|
|
|
|
#if CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE
|
|
static int power_hist_item(void)
|
|
{
|
|
return voltage_now;
|
|
}
|
|
#else
|
|
static int power_hist_item(void)
|
|
{
|
|
return percent_now;
|
|
}
|
|
#endif
|
|
|
|
static void collect_power_history(void)
|
|
{
|
|
/* rotate the power history */
|
|
memmove(&power_history[1], &power_history[0],
|
|
sizeof(power_history) - sizeof(power_history[0]));
|
|
power_history[0] = power_hist_item();
|
|
}
|
|
|
|
/*
|
|
* Monitor the presence of a charger and perform critical frequent steps
|
|
* such as running the battery voltage filter.
|
|
*/
|
|
static inline void power_thread_step(void)
|
|
{
|
|
/* If the power off timeout expires, the main thread has failed
|
|
to shut down the system, and we need to force a power off */
|
|
if (shutdown_timeout) {
|
|
shutdown_timeout -= POWER_THREAD_STEP_TICKS;
|
|
|
|
if (shutdown_timeout <= 0)
|
|
power_off();
|
|
}
|
|
|
|
#ifdef HAVE_RTC_ALARM
|
|
power_thread_rtc_process();
|
|
#endif
|
|
|
|
/*
|
|
* Do a digital exponential filter. We don't sample the battery if
|
|
* the disk is spinning unless we are in USB mode (the disk will most
|
|
* likely always be spinning in USB mode) or charging.
|
|
*/
|
|
if (!storage_disk_is_active() || usb_inserted()
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
|| charger_input_state == CHARGER
|
|
#endif
|
|
) {
|
|
average_step(false);
|
|
battery_status_update();
|
|
}
|
|
else if (percent_now < 8) {
|
|
average_step(true);
|
|
battery_status_update();
|
|
|
|
/*
|
|
* If battery is low, observe voltage during disk activity.
|
|
* Shut down if voltage drops below shutoff level and we are not
|
|
* using NiMH or Alkaline batteries.
|
|
*/
|
|
if (!shutdown_timeout && query_force_shutdown()) {
|
|
sys_poweroff();
|
|
}
|
|
}
|
|
} /* power_thread_step */
|
|
|
|
static void power_thread(void)
|
|
{
|
|
long next_power_hist;
|
|
|
|
/* Delay reading the first battery level */
|
|
#ifdef MROBE_100
|
|
while (_battery_voltage() > 4200) /* gives false readings initially */
|
|
{
|
|
#elif defined(DX50) || defined(DX90)
|
|
while (_battery_voltage() < 1) /* can give false readings initially */
|
|
{
|
|
#elif defined(EROS_QN) || defined(FIIO_M3K) || defined(SHANLING_Q1)
|
|
|
|
/* wait until the first battery read is ready */
|
|
while (_battery_voltage() <= 0)
|
|
{
|
|
#else
|
|
{
|
|
#endif
|
|
sleep(HZ/100);
|
|
}
|
|
|
|
#if CONFIG_CHARGING
|
|
/* Initialize power input status before calling other routines. */
|
|
power_thread_inputs = power_input_status();
|
|
#endif
|
|
|
|
/* call target specific init now */
|
|
powermgmt_init_target();
|
|
/* initialize voltage averaging (if available) */
|
|
average_init();
|
|
/* get initial battery level value (in %) */
|
|
battery_status_update();
|
|
/* get some initial data for the power curve */
|
|
collect_power_history();
|
|
|
|
next_power_hist = current_tick + HZ*60;
|
|
|
|
while (1)
|
|
{
|
|
#if CONFIG_CHARGING
|
|
unsigned int pwr = power_input_status();
|
|
#ifdef HAVE_BATTERY_SWITCH
|
|
if ((pwr ^ power_thread_inputs) & POWER_INPUT_BATTERY) {
|
|
sleep(HZ/10);
|
|
reset_battery_filter(_battery_voltage());
|
|
}
|
|
#endif
|
|
power_thread_inputs = pwr;
|
|
|
|
if (!detect_charger(pwr))
|
|
#endif /* CONFIG_CHARGING */
|
|
{
|
|
/* Steady state */
|
|
sleep(POWER_THREAD_STEP_TICKS);
|
|
|
|
/* Do common power tasks */
|
|
power_thread_step();
|
|
}
|
|
|
|
/* Perform target tasks */
|
|
charging_algorithm_step();
|
|
|
|
/* check if some idle or sleep timer wears off */
|
|
handle_auto_poweroff();
|
|
|
|
if (TIME_AFTER(current_tick, next_power_hist)) {
|
|
/* increment to ensure there is a record for every minute
|
|
* rather than go forward from the current tick */
|
|
next_power_hist += HZ*60;
|
|
collect_power_history();
|
|
}
|
|
}
|
|
} /* power_thread */
|
|
|
|
void powermgmt_init(void)
|
|
{
|
|
create_thread(power_thread, power_stack, sizeof(power_stack), 0,
|
|
power_thread_name IF_PRIO(, PRIORITY_SYSTEM)
|
|
IF_COP(, CPU));
|
|
}
|
|
|
|
/* Various hardware housekeeping tasks relating to shutting down the player */
|
|
void shutdown_hw(void)
|
|
{
|
|
charging_algorithm_close();
|
|
audio_stop();
|
|
|
|
if (battery_level_safe()) { /* do not save on critical battery */
|
|
font_unload_all();
|
|
|
|
/* Commit pending writes if needed. Even though we don't do write caching,
|
|
things like flash translation layers may need this to commit scattered
|
|
pages to their final locations. So far only used for iPod Nano 2G. */
|
|
#ifdef HAVE_STORAGE_FLUSH
|
|
storage_flush();
|
|
#endif
|
|
|
|
if (storage_disk_is_active())
|
|
storage_spindown(1);
|
|
}
|
|
|
|
audiohw_close();
|
|
|
|
/* If HD is still active we try to wait for spindown, otherwise the
|
|
shutdown_timeout in power_thread_step will force a power off */
|
|
while (storage_disk_is_active())
|
|
sleep(HZ/10);
|
|
|
|
#ifndef HAVE_LCD_COLOR
|
|
lcd_set_contrast(0);
|
|
#endif
|
|
#ifdef HAVE_REMOTE_LCD
|
|
lcd_remote_set_contrast(0);
|
|
#endif
|
|
#ifdef HAVE_LCD_SHUTDOWN
|
|
lcd_shutdown();
|
|
#endif
|
|
|
|
/* Small delay to make sure all HW gets time to flush. Especially
|
|
eeprom chips are quite slow and might be still writing the last
|
|
byte. */
|
|
sleep(HZ/4);
|
|
power_off();
|
|
}
|
|
|
|
void set_poweroff_timeout(int timeout)
|
|
{
|
|
poweroff_timeout = timeout;
|
|
}
|
|
|
|
void reset_poweroff_timer(void)
|
|
{
|
|
last_event_tick = current_tick;
|
|
if (sleeptimer_active && sleeptimer_key_restarts)
|
|
set_sleep_timer(sleeptimer_duration);
|
|
}
|
|
|
|
void sys_poweroff(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
logf("sys_poweroff()");
|
|
/* If the main thread fails to shut down the system, we will force a
|
|
power off after an 20 second timeout - 28 seconds if recording */
|
|
if (shutdown_timeout == 0) {
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2)) && !defined(SIMULATOR)
|
|
pcf50606_reset_timeout(); /* Reset timer on first attempt only */
|
|
#endif
|
|
#ifdef HAVE_RECORDING
|
|
if (audio_status() & AUDIO_STATUS_RECORD)
|
|
shutdown_timeout += HZ*8;
|
|
#endif
|
|
#ifdef IPOD_NANO2G
|
|
/* The FTL alone may take half a minute to shut down cleanly. */
|
|
shutdown_timeout += HZ*60;
|
|
#else
|
|
shutdown_timeout += HZ*20;
|
|
#endif
|
|
}
|
|
|
|
queue_broadcast(SYS_POWEROFF, 0);
|
|
#endif /* BOOTLOADER */
|
|
}
|
|
|
|
void cancel_shutdown(void)
|
|
{
|
|
logf("cancel_shutdown()");
|
|
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2)) && !defined(SIMULATOR)
|
|
/* TODO: Move some things to target/ tree */
|
|
if (shutdown_timeout)
|
|
pcf50606_reset_timeout();
|
|
#endif
|
|
|
|
shutdown_timeout = 0;
|
|
}
|
|
|
|
void set_sleeptimer_duration(int minutes)
|
|
{
|
|
set_sleep_timer(minutes * 60);
|
|
}
|
|
|
|
static void set_sleep_timer(int seconds)
|
|
{
|
|
if (seconds) {
|
|
sleeptimer_active = true;
|
|
sleeptimer_endtick = current_tick + seconds * HZ;
|
|
}
|
|
else {
|
|
sleeptimer_active = false;
|
|
sleeptimer_endtick = 0;
|
|
}
|
|
sleeptimer_duration = seconds;
|
|
}
|
|
|
|
int get_sleep_timer(void)
|
|
{
|
|
if (sleeptimer_active && (sleeptimer_endtick >= current_tick))
|
|
return (sleeptimer_endtick - current_tick) / HZ;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void set_keypress_restarts_sleep_timer(bool enable)
|
|
{
|
|
sleeptimer_key_restarts = enable;
|
|
}
|
|
|
|
#ifndef BOOTLOADER
|
|
static void handle_sleep_timer(void)
|
|
{
|
|
if (!sleeptimer_active)
|
|
return;
|
|
|
|
/* Handle sleeptimer */
|
|
if (TIME_AFTER(current_tick, sleeptimer_endtick)) {
|
|
if (usb_inserted()
|
|
#if CONFIG_CHARGING && !defined(HAVE_POWEROFF_WHILE_CHARGING)
|
|
|| charger_input_state != NO_CHARGER
|
|
#endif
|
|
) {
|
|
DEBUGF("Sleep timer timeout. Stopping...\n");
|
|
audio_pause();
|
|
set_sleep_timer(0);
|
|
backlight_off(); /* Nighty, nighty... */
|
|
}
|
|
else {
|
|
DEBUGF("Sleep timer timeout. Shutting off...\n");
|
|
sys_poweroff();
|
|
}
|
|
}
|
|
}
|
|
#endif /* BOOTLOADER */
|
|
|
|
/*
|
|
* We shut off in the following cases:
|
|
* 1) The unit is idle, not playing music
|
|
* 2) The unit is playing music, but is paused
|
|
* 3) The battery level has reached shutdown limit
|
|
*
|
|
* We do not shut off in the following cases:
|
|
* 1) The USB is connected
|
|
* 2) The charger is connected
|
|
* 3) We are recording, or recording with pause
|
|
* 4) The radio is playing
|
|
*/
|
|
void handle_auto_poweroff(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
long timeout = poweroff_timeout*60*HZ;
|
|
int audio_stat = audio_status();
|
|
long tick = current_tick;
|
|
|
|
/*
|
|
* Inhibit shutdown as long as the charger is plugged in. If it is
|
|
* unplugged, wait for a timeout period and then shut down.
|
|
*/
|
|
if (audio_stat == AUDIO_STATUS_PLAY
|
|
#if CONFIG_CHARGING
|
|
|| charger_input_state == CHARGER
|
|
#endif
|
|
) {
|
|
last_event_tick = current_tick;
|
|
}
|
|
|
|
if (!shutdown_timeout && query_force_shutdown()) {
|
|
backlight_on();
|
|
sys_poweroff();
|
|
}
|
|
|
|
if (timeout &&
|
|
#if CONFIG_TUNER
|
|
!(get_radio_status() & FMRADIO_PLAYING) &&
|
|
#endif
|
|
!usb_inserted() &&
|
|
(audio_stat == 0 ||
|
|
(audio_stat == (AUDIO_STATUS_PLAY | AUDIO_STATUS_PAUSE) &&
|
|
!sleeptimer_active))) {
|
|
|
|
if (TIME_AFTER(tick, last_event_tick + timeout)
|
|
#if !(CONFIG_PLATFORM & PLATFORM_HOSTED)
|
|
&& TIME_AFTER(tick, storage_last_disk_activity() + timeout)
|
|
#endif
|
|
) {
|
|
sys_poweroff();
|
|
}
|
|
} else
|
|
handle_sleep_timer();
|
|
#endif
|
|
}
|