rockbox/firmware/target/arm/imx233/emi-imx233.c
Amaury Pouly 5aa19f3eeb imx233: implement emi frequency scaling (disabled by default)
CPU frequency scaling is basically useless without scaling the
memory frequency. On the i.MX233, the EMI (external memory
interface) and DRAM blocks are responsable for the DDR settings.
This commits implements emi frequency scaling. Only some settings
are implemented and the timings values only apply to mDDR
(extracted from Sigmatel linux port) and have been checked to
work on the Fuze+ and Zen X-Fi2/3. This feature is still disabled
by default but I expected some battery life savings by boosting
higher to 454MHz and unboosting lower to 64MHz.
Note that changing the emi frequency is particularly tricky and
to avoid writing it entirely in assembly we rely on the compiler
to not use the stack except in the prolog and epilog (because
it's in dram which is disabled when doing the change) and to put
constant pools in iram which should always be true if the
compiler isn't completely dumb and since the code itself is put
in iram. If this proves to be insufficient, one can always switch
the stack to the irq stack since interrupts are disabled during
the change.

Change-Id: If6ef5357f7ff091130ca1063e48536c6028f23ba
2013-01-10 00:51:35 +00:00

186 lines
7.4 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2013 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "emi-imx233.h"
#include "clkctrl-imx233.h"
struct emi_reg_t
{
int index;
uint32_t value;
};
/* hardcode all the register values for the different settings. This is ugly
* but I don't understand what they mean and it's faster this way so...
* Recall that everything should be put in iram !
* Make sure the last value is written to register 40. */
/* Values extracted from Sigmatel linux port (GPL) */
/** mDDR value */
static struct emi_reg_t settings_24M[15] ICONST_ATTR =
{
{4, 0x01000101}, {7, 0x01000101}, {12, 0x02010002}, {13, 0x06060a02},
{15, 0x01030000}, {17, 0x2d000102}, {18, 0x20200000}, {19, 0x027f1414},
{20, 0x01021608}, {21, 0x00000002}, {26, 0x000000b3}, {32, 0x00030687},
{33, 0x00000003}, {34, 0x000012c1}, {40, 0x00010000}
};
static struct emi_reg_t settings_48M[15] ICONST_ATTR =
{
{4, 0x01000101}, {7, 0x01000101}, {13, 0x06060a02}, {12, 0x02010002},
{15, 0x02040000}, {17, 0x2d000104}, {18, 0x1f1f0000}, {19, 0x027f0a0a},
{20, 0x01021608}, {21, 0x00000004}, {26, 0x0000016f}, {32, 0x00060d17},
{33, 0x00000006}, {34, 0x00002582}, {40, 0x00020000}
};
static struct emi_reg_t settings_60M[15] ICONST_ATTR =
{
{4, 0x01000101}, {7, 0x01000101}, {12, 0x02020002}, {13, 0x06060a02},
{15, 0x02040000}, {17, 0x2d000005}, {18, 0x1f1f0000}, {19, 0x027f0a0a},
{20, 0x02040a10}, {21, 0x00000006}, {26, 0x000001cc}, {32, 0x00081060},
{33, 0x00000008}, {34, 0x00002ee5}, {40, 0x00020000}
};
static struct emi_reg_t settings_80M[15] ICONST_ATTR __attribute__((alias("settings_60M")));
static struct emi_reg_t settings_96M[15] ICONST_ATTR =
{
{4, 0x00000101}, {7, 0x01000001}, {12, 0x02020002}, {13, 0x06070a02},
{15, 0x03050000}, {17, 0x2d000808}, {18, 0x1f1f0000}, {19, 0x020c1010},
{20, 0x0305101c}, {21, 0x00000007}, {26, 0x000002e6}, {32, 0x000c1a3b},
{33, 0x0000000c}, {34, 0x00004b0d}, {40, 0x00030000}
};
static struct emi_reg_t settings_120M[15] ICONST_ATTR =
{
{4, 0x00000101}, {7, 0x01000001}, {12, 0x02020002}, {13, 0x06070a02},
{15, 0x03050000}, {17, 0x2300080a}, {18, 0x1f1f0000}, {19, 0x020c1010},
{20, 0x0306101c}, {21, 0x00000009}, {26, 0x000003a1}, {32, 0x000f20ca},
{33, 0x0000000f}, {34, 0x00005dca}, {40, 0x00040000}
};
static struct emi_reg_t settings_133M[15] ICONST_ATTR =
{
{4, 0x00000101}, {7, 0x01000001}, {12, 0x02020002}, {13, 0x06070a02},
{15, 0x03050000}, {17, 0x2000080a}, {18, 0x1f1f0000}, {19, 0x020c1010},
{20, 0x0306101c}, {21, 0x0000000a}, {26, 0x00000408}, {32, 0x0010245f},
{33, 0x00000010}, {34, 0x00006808}, {40, 0x00040000}
};
static struct emi_reg_t settings_155M[15] ICONST_ATTR __attribute__((alias("settings_133M")));
static void set_frequency(unsigned long freq) ICODE_ATTR;
static void set_frequency(unsigned long freq)
{
/* Set divider and clear clkgate. Do byte access to register to avoid bothering
* with other PFDs */
switch(freq)
{
case IMX233_EMIFREQ_151_MHz:
/* clk_emi@ref_emi/3*18/19 */
HW_CLKCTRL_FRAC_EMI = 19;
__FIELD_SET(HW_CLKCTRL_EMI, DIV_EMI, 3);
/* ref_emi@480 MHz
* clk_emi@151.58 MHz */
break;
case IMX233_EMIFREQ_130_MHz:
/* clk_emi@ref_emi/2*18/33 */
HW_CLKCTRL_FRAC_EMI = 33;
__FIELD_SET(HW_CLKCTRL_EMI, DIV_EMI, 2);
/* ref_emi@480 MHz
* clk_emi@130.91 MHz */
break;
case IMX233_EMIFREQ_64_MHz:
default:
/* clk_emi@ref_emi/5*18/27 */
HW_CLKCTRL_FRAC_EMI = 27;
__FIELD_SET(HW_CLKCTRL_EMI, DIV_EMI, 5);
/* ref_emi@480 MHz
* clk_emi@64 MHz */
break;
}
}
void imx233_emi_set_frequency(unsigned long freq) ICODE_ATTR;
void imx233_emi_set_frequency(unsigned long freq)
{
/** FIXME we rely on the compiler to NOT use the stack here because it's
* in iram ! If it's not smart enough, one can switch the switch to use
* the irq stack since we are running interrupts disable here ! */
/** BUG for freq<=24 MHz we must keep bypass mode since we run on xtal
* we this setting is unused by our code so ignore this bug for now */
/** WARNING DANGER
* Changing the EMI frequency is complicated because it requires to
* completely shutdown the external memory interface. We must make sure
* that this code and all the data it uses in in iram and that no access to
* the sdram will be made during the change. Care must be taken w.r.t to
* the cache also. */
/** FIXME assume that auto-slow is disabled here since that could put some
* clock below the minimum value and we want to spend as less time as
* possible in this state anyway. */
/* first disable all interrupts */
int oldstatus = disable_interrupt_save(IRQ_FIQ_STATUS);
/* flush the cache */
commit_discard_idcache();
/* put DRAM into self-refresh mode */
HW_DRAM_CTL08 |= HW_DRAM_CTL08__SREFRESH;
/* wait for DRAM to be halted */
while(!(HW_EMI_STAT & HW_EMI_STAT__DRAM_HALTED));
/* load timings */
struct emi_reg_t *regs;
if(freq <= 24000) regs = settings_24M;
else if(freq <= 48000) regs = settings_48M;
else if(freq <= 60000) regs = settings_60M;
else if(freq <= 80000) regs = settings_80M;
else if(freq <= 96000) regs = settings_96M;
else if(freq <= 120000) regs = settings_120M;
else if(freq <= 133000) regs = settings_133M;
else regs = settings_155M;
do
HW_DRAM_CTLxx(regs->index) = regs->value;
while((regs++)->index != 40);
/* switch emi to xtal */
__REG_SET(HW_CLKCTRL_CLKSEQ) = HW_CLKCTRL_CLKSEQ__BYPASS_EMI;
/* wait for transition */
while(HW_CLKCTRL_EMI & HW_CLKCTRL_EMI__BUSY_REF_XTAL);
/* put emi dll into reset mode */
__REG_SET(HW_EMI_CTRL) = HW_EMI_CTRL__DLL_RESET | HW_EMI_CTRL__DLL_SHIFT_RESET;
/* load the new frequency dividers */
set_frequency(freq);
/* switch emi back to pll */
__REG_CLR(HW_CLKCTRL_CLKSEQ) = HW_CLKCTRL_CLKSEQ__BYPASS_EMI;
/* wait for transition */
while(HW_CLKCTRL_EMI & HW_CLKCTRL_EMI__BUSY_REF_EMI);
/* allow emi dll to lock again */
__REG_CLR(HW_EMI_CTRL) = HW_EMI_CTRL__DLL_RESET | HW_EMI_CTRL__DLL_SHIFT_RESET;
/* wait for lock */
while(!(HW_DRAM_CTL04 & HW_DRAM_CTL04__DLLLOCKREG));
/* get DRAM out of self-refresh mode */
HW_DRAM_CTL08 &= ~HW_DRAM_CTL08__SREFRESH;
/* wait for DRAM to be to run again */
while(HW_EMI_STAT & HW_EMI_STAT__DRAM_HALTED);
restore_interrupt(oldstatus);
}