f40bfc9267
Change-Id: Id7f4717d51ed02d67cb9f9cb3c0ada4a81843f97 Reviewed-on: http://gerrit.rockbox.org/137 Reviewed-by: Nils Wallménius <nils@rockbox.org> Tested-by: Nils Wallménius <nils@rockbox.org>
1148 lines
36 KiB
C
1148 lines
36 KiB
C
/*
|
|
* ALAC (Apple Lossless Audio Codec) decoder
|
|
* Copyright (c) 2005 David Hammerton
|
|
* All rights reserved.
|
|
*
|
|
* This is the actual decoder.
|
|
*
|
|
* http://crazney.net/programs/itunes/alac.html
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person
|
|
* obtaining a copy of this software and associated documentation
|
|
* files (the "Software"), to deal in the Software without
|
|
* restriction, including without limitation the rights to use,
|
|
* copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "codeclib.h"
|
|
#include "decomp.h"
|
|
|
|
#define SIGNEXTEND24(val) (((signed)val<<8)>>8)
|
|
|
|
static int16_t predictor_coef_table[32] IBSS_ATTR;
|
|
static int16_t predictor_coef_table_a[32] IBSS_ATTR;
|
|
static int16_t predictor_coef_table_b[32] IBSS_ATTR;
|
|
|
|
|
|
/* Endian/aligment safe functions - only used in alac_set_info() */
|
|
static uint32_t get_uint32be(unsigned char* p)
|
|
{
|
|
return((p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]);
|
|
}
|
|
|
|
static uint16_t get_uint16be(unsigned char* p)
|
|
{
|
|
return((p[0]<<8) | p[1]);
|
|
}
|
|
|
|
void alac_set_info(alac_file *alac, char *inputbuffer)
|
|
{
|
|
unsigned char* ptr = (unsigned char*)inputbuffer;
|
|
ptr += 4; /* size */
|
|
ptr += 4; /* frma */
|
|
ptr += 4; /* alac */
|
|
ptr += 4; /* size */
|
|
ptr += 4; /* alac */
|
|
|
|
ptr += 4; /* 0 ? */
|
|
|
|
alac->setinfo_max_samples_per_frame = get_uint32be(ptr); /* buffer size / 2 ? */
|
|
ptr += 4;
|
|
alac->setinfo_7a = *ptr++;
|
|
alac->setinfo_sample_size = *ptr++;
|
|
alac->setinfo_rice_historymult = *ptr++;
|
|
alac->setinfo_rice_initialhistory = *ptr++;
|
|
alac->setinfo_rice_kmodifier = *ptr++;
|
|
alac->setinfo_7f = *ptr++;
|
|
ptr += 1;
|
|
alac->setinfo_80 = get_uint16be(ptr);
|
|
ptr += 2;
|
|
alac->setinfo_82 = get_uint32be(ptr);
|
|
ptr += 4;
|
|
alac->setinfo_86 = get_uint32be(ptr);
|
|
ptr += 4;
|
|
alac->setinfo_8a_rate = get_uint32be(ptr);
|
|
ptr += 4;
|
|
}
|
|
|
|
/* stream reading */
|
|
|
|
/* supports reading 1 to 16 bits, in big endian format */
|
|
static inline uint32_t readbits_16(alac_file *alac, int bits)
|
|
{
|
|
uint32_t result;
|
|
int new_accumulator;
|
|
|
|
result = (alac->input_buffer[0] << 16) |
|
|
(alac->input_buffer[1] << 8) |
|
|
(alac->input_buffer[2]);
|
|
|
|
/* shift left by the number of bits we've already read,
|
|
* so that the top 'n' bits of the 24 bits we read will
|
|
* be the return bits */
|
|
result = result << alac->input_buffer_bitaccumulator;
|
|
|
|
result = result & 0x00ffffff;
|
|
|
|
/* and then only want the top 'n' bits from that, where
|
|
* n is 'bits' */
|
|
result = result >> (24 - bits);
|
|
|
|
new_accumulator = (alac->input_buffer_bitaccumulator + bits);
|
|
|
|
/* increase the buffer pointer if we've read over n bytes. */
|
|
alac->input_buffer += (new_accumulator >> 3);
|
|
|
|
/* and the remainder goes back into the bit accumulator */
|
|
alac->input_buffer_bitaccumulator = (new_accumulator & 7);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* supports reading 1 to 32 bits, in big endian format */
|
|
static inline uint32_t readbits(alac_file *alac, int bits)
|
|
{
|
|
int32_t result = 0;
|
|
|
|
if (bits > 16)
|
|
{
|
|
bits -= 16;
|
|
result = readbits_16(alac, 16) << bits;
|
|
}
|
|
|
|
result |= readbits_16(alac, bits);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* reads a single bit */
|
|
static inline int readbit(alac_file *alac)
|
|
{
|
|
int result;
|
|
int new_accumulator;
|
|
|
|
result = alac->input_buffer[0];
|
|
|
|
result = result << alac->input_buffer_bitaccumulator;
|
|
|
|
result = result >> 7 & 1;
|
|
|
|
new_accumulator = (alac->input_buffer_bitaccumulator + 1);
|
|
|
|
alac->input_buffer += (new_accumulator / 8);
|
|
|
|
alac->input_buffer_bitaccumulator = (new_accumulator % 8);
|
|
|
|
return result;
|
|
}
|
|
|
|
static inline void unreadbits(alac_file *alac, int bits)
|
|
{
|
|
int new_accumulator = (alac->input_buffer_bitaccumulator - bits);
|
|
|
|
alac->input_buffer += (new_accumulator >> 3);
|
|
|
|
alac->input_buffer_bitaccumulator = (new_accumulator & 7);
|
|
if (alac->input_buffer_bitaccumulator < 0)
|
|
alac->input_buffer_bitaccumulator *= -1;
|
|
}
|
|
|
|
#define count_leading_zeros(x) bs_generic(x, BS_CLZ|BS_SHORT)
|
|
|
|
#define RICE_THRESHOLD 8 // maximum number of bits for a rice prefix.
|
|
|
|
static inline int32_t entropy_decode_value(alac_file* alac,
|
|
int readsamplesize,
|
|
int k) ICODE_ATTR_ALAC;
|
|
static inline int32_t entropy_decode_value(alac_file* alac,
|
|
int readsamplesize,
|
|
int k)
|
|
{
|
|
int32_t x = 0; // decoded value
|
|
|
|
// read x, number of 1s before 0 represent the rice value.
|
|
while (x <= RICE_THRESHOLD && readbit(alac))
|
|
{
|
|
x++;
|
|
}
|
|
|
|
if (x > RICE_THRESHOLD)
|
|
{
|
|
// read the number from the bit stream (raw value)
|
|
int32_t value;
|
|
|
|
value = readbits(alac, readsamplesize);
|
|
|
|
/* mask value to readsamplesize size */
|
|
if (readsamplesize != 32)
|
|
value &= (((uint32_t)0xffffffff) >> (32 - readsamplesize));
|
|
|
|
x = value;
|
|
}
|
|
else
|
|
{
|
|
if (k != 1)
|
|
{
|
|
int extrabits = readbits(alac, k);
|
|
|
|
// x = x * (2^k - 1)
|
|
x = (x << k) - x;
|
|
|
|
if (extrabits > 1)
|
|
x += extrabits - 1;
|
|
else
|
|
unreadbits(alac, 1);
|
|
}
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
static void entropy_rice_decode(alac_file* alac,
|
|
int32_t* output_buffer,
|
|
int output_size,
|
|
int readsamplesize,
|
|
int rice_initialhistory,
|
|
int rice_kmodifier,
|
|
int rice_historymult,
|
|
int rice_kmodifier_mask) ICODE_ATTR_ALAC;
|
|
static void entropy_rice_decode(alac_file* alac,
|
|
int32_t* output_buffer,
|
|
int output_size,
|
|
int readsamplesize,
|
|
int rice_initialhistory,
|
|
int rice_kmodifier,
|
|
int rice_historymult,
|
|
int rice_kmodifier_mask)
|
|
{
|
|
int output_count;
|
|
int history = rice_initialhistory;
|
|
int sign_modifier = 0;
|
|
|
|
for (output_count = 0; output_count < output_size; output_count++)
|
|
{
|
|
int32_t decoded_value;
|
|
int32_t final_value;
|
|
int32_t k;
|
|
|
|
k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3);
|
|
|
|
if (k < 0) k += rice_kmodifier;
|
|
else k = rice_kmodifier;
|
|
|
|
decoded_value = entropy_decode_value(alac, readsamplesize, k);
|
|
|
|
decoded_value += sign_modifier;
|
|
final_value = (decoded_value + 1) / 2; // inc by 1 and shift out sign bit
|
|
if (decoded_value & 1) // the sign is stored in the low bit
|
|
final_value *= -1;
|
|
|
|
output_buffer[output_count] = final_value;
|
|
|
|
sign_modifier = 0;
|
|
|
|
// update history
|
|
history += (decoded_value * rice_historymult)
|
|
- ((history * rice_historymult) >> 9);
|
|
|
|
if (decoded_value > 0xFFFF)
|
|
history = 0xFFFF;
|
|
|
|
// special case, for compressed blocks of 0
|
|
if ((history < 128) && (output_count + 1 < output_size))
|
|
{
|
|
int32_t block_size;
|
|
|
|
sign_modifier = 1;
|
|
|
|
k = count_leading_zeros(history) + ((history + 16) / 64) - 24;
|
|
|
|
// note: block_size is always 16bit
|
|
block_size = entropy_decode_value(alac, 16, k) & rice_kmodifier_mask;
|
|
|
|
// got block_size 0s
|
|
if (block_size > 0)
|
|
{
|
|
memset(&output_buffer[output_count + 1], 0,
|
|
block_size * sizeof(*output_buffer));
|
|
output_count += block_size;
|
|
}
|
|
|
|
if (block_size > 0xFFFF)
|
|
sign_modifier = 0;
|
|
|
|
history = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))
|
|
|
|
#define SIGN_ONLY(v) \
|
|
((v < 0) ? (-1) : \
|
|
((v > 0) ? (1) : \
|
|
(0)))
|
|
|
|
static void predictor_decompress_fir_adapt(int32_t *error_buffer,
|
|
int32_t *buffer_out,
|
|
int output_size,
|
|
int readsamplesize,
|
|
int16_t *predictor_coef_table,
|
|
int predictor_coef_num,
|
|
int predictor_quantitization) ICODE_ATTR_ALAC;
|
|
static void predictor_decompress_fir_adapt(int32_t *error_buffer,
|
|
int32_t *buffer_out,
|
|
int output_size,
|
|
int readsamplesize,
|
|
int16_t *predictor_coef_table,
|
|
int predictor_coef_num,
|
|
int predictor_quantitization)
|
|
{
|
|
int i;
|
|
|
|
/* first sample always copies */
|
|
*buffer_out = *error_buffer;
|
|
|
|
if (!predictor_coef_num)
|
|
{
|
|
if (output_size <= 1) return;
|
|
memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
|
|
return;
|
|
}
|
|
|
|
if (predictor_coef_num == 0x1f) /* 11111 - max value of predictor_coef_num */
|
|
{ /* second-best case scenario for fir decompression,
|
|
* error describes a small difference from the previous sample only
|
|
*/
|
|
if (output_size <= 1) return;
|
|
for (i = 0; i < output_size - 1; i++)
|
|
{
|
|
int32_t prev_value;
|
|
int32_t error_value;
|
|
|
|
prev_value = buffer_out[i];
|
|
error_value = error_buffer[i+1];
|
|
buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* read warm-up samples */
|
|
if (predictor_coef_num > 0)
|
|
{
|
|
int i;
|
|
for (i = 0; i < predictor_coef_num; i++)
|
|
{
|
|
int32_t val;
|
|
|
|
val = buffer_out[i] + error_buffer[i+1];
|
|
|
|
val = SIGN_EXTENDED32(val, readsamplesize);
|
|
|
|
buffer_out[i+1] = val;
|
|
}
|
|
}
|
|
|
|
/* 4 and 8 are very common cases (the only ones i've seen).
|
|
|
|
The following code is an initial attempt to unroll and optimise
|
|
these two cases by the Rockbox project. More work is needed.
|
|
*/
|
|
|
|
/* optimised case: 4 */
|
|
if (predictor_coef_num == 4)
|
|
{
|
|
for (i = 4 + 1; i < output_size; i++)
|
|
{
|
|
int sum = 0;
|
|
int outval;
|
|
int error_val = error_buffer[i];
|
|
|
|
sum = (buffer_out[4] - buffer_out[0]) * predictor_coef_table[0]
|
|
+ (buffer_out[3] - buffer_out[0]) * predictor_coef_table[1]
|
|
+ (buffer_out[2] - buffer_out[0]) * predictor_coef_table[2]
|
|
+ (buffer_out[1] - buffer_out[0]) * predictor_coef_table[3];
|
|
|
|
outval = (1 << (predictor_quantitization-1)) + sum;
|
|
outval = outval >> predictor_quantitization;
|
|
outval = outval + buffer_out[0] + error_val;
|
|
outval = SIGN_EXTENDED32(outval, readsamplesize);
|
|
|
|
buffer_out[4+1] = outval;
|
|
|
|
if (error_val > 0)
|
|
{
|
|
int predictor_num = 4 - 1;
|
|
|
|
while (predictor_num >= 0 && error_val > 0)
|
|
{
|
|
int val = buffer_out[0] - buffer_out[4 - predictor_num];
|
|
|
|
if (val!=0) {
|
|
if (val < 0) {
|
|
predictor_coef_table[predictor_num]++;
|
|
val=-val;
|
|
} else {
|
|
predictor_coef_table[predictor_num]--;
|
|
}
|
|
error_val -= ((val >> predictor_quantitization) * (4 - predictor_num));
|
|
}
|
|
predictor_num--;
|
|
}
|
|
}
|
|
else if (error_val < 0)
|
|
{
|
|
int predictor_num = 4 - 1;
|
|
|
|
while (predictor_num >= 0 && error_val < 0)
|
|
{
|
|
int val = buffer_out[0] - buffer_out[4 - predictor_num];
|
|
|
|
if (val != 0) {
|
|
if (val > 0) {
|
|
predictor_coef_table[predictor_num]++;
|
|
val=-val; /* neg value */
|
|
} else {
|
|
predictor_coef_table[predictor_num]--;
|
|
}
|
|
error_val -= ((val >> predictor_quantitization) * (4 - predictor_num));
|
|
}
|
|
predictor_num--;
|
|
}
|
|
}
|
|
|
|
buffer_out++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* optimised case: 8 */
|
|
if (predictor_coef_num == 8)
|
|
{
|
|
for (i = 8 + 1;
|
|
i < output_size;
|
|
i++)
|
|
{
|
|
int sum;
|
|
int outval;
|
|
int error_val = error_buffer[i];
|
|
|
|
sum = (buffer_out[8] - buffer_out[0]) * predictor_coef_table[0]
|
|
+ (buffer_out[7] - buffer_out[0]) * predictor_coef_table[1]
|
|
+ (buffer_out[6] - buffer_out[0]) * predictor_coef_table[2]
|
|
+ (buffer_out[5] - buffer_out[0]) * predictor_coef_table[3]
|
|
+ (buffer_out[4] - buffer_out[0]) * predictor_coef_table[4]
|
|
+ (buffer_out[3] - buffer_out[0]) * predictor_coef_table[5]
|
|
+ (buffer_out[2] - buffer_out[0]) * predictor_coef_table[6]
|
|
+ (buffer_out[1] - buffer_out[0]) * predictor_coef_table[7];
|
|
|
|
outval = (1 << (predictor_quantitization-1)) + sum;
|
|
outval = outval >> predictor_quantitization;
|
|
outval = outval + buffer_out[0] + error_val;
|
|
outval = SIGN_EXTENDED32(outval, readsamplesize);
|
|
|
|
buffer_out[8+1] = outval;
|
|
|
|
if (error_val > 0)
|
|
{
|
|
int predictor_num = 8 - 1;
|
|
|
|
while (predictor_num >= 0 && error_val > 0)
|
|
{
|
|
int val = buffer_out[0] - buffer_out[8 - predictor_num];
|
|
|
|
if (val!=0) {
|
|
if (val < 0) {
|
|
predictor_coef_table[predictor_num]++;
|
|
val=-val;
|
|
} else {
|
|
predictor_coef_table[predictor_num]--;
|
|
}
|
|
error_val -= ((val >> predictor_quantitization) * (8 - predictor_num));
|
|
}
|
|
predictor_num--;
|
|
}
|
|
}
|
|
else if (error_val < 0)
|
|
{
|
|
int predictor_num = 8 - 1;
|
|
|
|
while (predictor_num >= 0 && error_val < 0)
|
|
{
|
|
int val = buffer_out[0] - buffer_out[8 - predictor_num];
|
|
if (val != 0) {
|
|
if (val > 0) {
|
|
predictor_coef_table[predictor_num]++;
|
|
val=-val; /* neg value */
|
|
} else {
|
|
predictor_coef_table[predictor_num]--;
|
|
}
|
|
error_val -= ((val >> predictor_quantitization) * (8 - predictor_num));
|
|
}
|
|
predictor_num--;
|
|
}
|
|
}
|
|
|
|
buffer_out++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* general case */
|
|
if (predictor_coef_num > 0)
|
|
{
|
|
for (i = predictor_coef_num + 1;
|
|
i < output_size;
|
|
i++)
|
|
{
|
|
int j;
|
|
int sum = 0;
|
|
int outval;
|
|
int error_val = error_buffer[i];
|
|
|
|
for (j = 0; j < predictor_coef_num; j++)
|
|
{
|
|
sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
|
|
predictor_coef_table[j];
|
|
}
|
|
|
|
outval = (1 << (predictor_quantitization-1)) + sum;
|
|
outval = outval >> predictor_quantitization;
|
|
outval = outval + buffer_out[0] + error_val;
|
|
outval = SIGN_EXTENDED32(outval, readsamplesize);
|
|
|
|
buffer_out[predictor_coef_num+1] = outval;
|
|
|
|
if (error_val > 0)
|
|
{
|
|
int predictor_num = predictor_coef_num - 1;
|
|
|
|
while (predictor_num >= 0 && error_val > 0)
|
|
{
|
|
int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
|
|
int sign = SIGN_ONLY(val);
|
|
|
|
predictor_coef_table[predictor_num] -= sign;
|
|
|
|
val *= sign; /* absolute value */
|
|
|
|
error_val -= ((val >> predictor_quantitization) *
|
|
(predictor_coef_num - predictor_num));
|
|
|
|
predictor_num--;
|
|
}
|
|
}
|
|
else if (error_val < 0)
|
|
{
|
|
int predictor_num = predictor_coef_num - 1;
|
|
|
|
while (predictor_num >= 0 && error_val < 0)
|
|
{
|
|
int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
|
|
int sign = - SIGN_ONLY(val);
|
|
|
|
predictor_coef_table[predictor_num] -= sign;
|
|
|
|
val *= sign; /* neg value */
|
|
|
|
error_val -= ((val >> predictor_quantitization) *
|
|
(predictor_coef_num - predictor_num));
|
|
|
|
predictor_num--;
|
|
}
|
|
}
|
|
|
|
buffer_out++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void deinterlace_16(int32_t* buffer0,
|
|
int32_t* buffer1,
|
|
int numsamples,
|
|
uint8_t interlacing_shift,
|
|
uint8_t interlacing_leftweight) ICODE_ATTR_ALAC;
|
|
static void deinterlace_16(int32_t* buffer0,
|
|
int32_t* buffer1,
|
|
int numsamples,
|
|
uint8_t interlacing_shift,
|
|
uint8_t interlacing_leftweight)
|
|
{
|
|
int i;
|
|
if (numsamples <= 0) return;
|
|
|
|
/* weighted interlacing */
|
|
if (interlacing_leftweight)
|
|
{
|
|
for (i = 0; i < numsamples; i++)
|
|
{
|
|
int32_t difference, midright;
|
|
|
|
midright = buffer0[i];
|
|
difference = buffer1[i];
|
|
|
|
buffer0[i] = ((midright - ((difference * interlacing_leftweight)
|
|
>> interlacing_shift)) + difference) << SCALE16;
|
|
buffer1[i] = (midright - ((difference * interlacing_leftweight)
|
|
>> interlacing_shift)) << SCALE16;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* otherwise basic interlacing took place */
|
|
for (i = 0; i < numsamples; i++)
|
|
{
|
|
buffer0[i] = buffer0[i] << SCALE16;
|
|
buffer1[i] = buffer1[i] << SCALE16;
|
|
}
|
|
}
|
|
|
|
static void deinterlace_24(int32_t *buffer0, int32_t *buffer1,
|
|
int uncompressed_bytes,
|
|
int32_t *uncompressed_bytes_buffer0,
|
|
int32_t *uncompressed_bytes_buffer1,
|
|
int numsamples,
|
|
uint8_t interlacing_shift,
|
|
uint8_t interlacing_leftweight) ICODE_ATTR_ALAC;
|
|
static void deinterlace_24(int32_t *buffer0, int32_t *buffer1,
|
|
int uncompressed_bytes,
|
|
int32_t *uncompressed_bytes_buffer0,
|
|
int32_t *uncompressed_bytes_buffer1,
|
|
int numsamples,
|
|
uint8_t interlacing_shift,
|
|
uint8_t interlacing_leftweight)
|
|
{
|
|
int i;
|
|
if (numsamples <= 0) return;
|
|
|
|
/* weighted interlacing */
|
|
if (interlacing_leftweight)
|
|
{
|
|
for (i = 0; i < numsamples; i++)
|
|
{
|
|
int32_t difference, midright;
|
|
|
|
midright = buffer0[i];
|
|
difference = buffer1[i];
|
|
|
|
buffer0[i] = ((midright - ((difference * interlacing_leftweight)
|
|
>> interlacing_shift)) + difference) << SCALE24;
|
|
buffer1[i] = (midright - ((difference * interlacing_leftweight)
|
|
>> interlacing_shift)) << SCALE24;
|
|
|
|
if (uncompressed_bytes)
|
|
{
|
|
uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
|
|
buffer0[i] <<= (uncompressed_bytes * 8);
|
|
buffer1[i] <<= (uncompressed_bytes * 8);
|
|
|
|
buffer0[i] |= uncompressed_bytes_buffer0[i] & mask;
|
|
buffer1[i] |= uncompressed_bytes_buffer1[i] & mask;
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* otherwise basic interlacing took place */
|
|
for (i = 0; i < numsamples; i++)
|
|
{
|
|
if (uncompressed_bytes)
|
|
{
|
|
uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
|
|
buffer0[i] <<= (uncompressed_bytes * 8);
|
|
buffer1[i] <<= (uncompressed_bytes * 8);
|
|
|
|
buffer0[i] |= uncompressed_bytes_buffer0[i] & mask;
|
|
buffer1[i] |= uncompressed_bytes_buffer1[i] & mask;
|
|
}
|
|
|
|
buffer0[i] = buffer0[i] << SCALE24;
|
|
buffer1[i] = buffer1[i] << SCALE24;
|
|
}
|
|
|
|
}
|
|
|
|
static inline int decode_frame_mono(
|
|
alac_file *alac,
|
|
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE],
|
|
void (*yield)(void))
|
|
{
|
|
int hassize;
|
|
int isnotcompressed;
|
|
int readsamplesize;
|
|
int infosamplesize = alac->setinfo_sample_size;
|
|
int outputsamples = alac->setinfo_max_samples_per_frame;
|
|
|
|
int uncompressed_bytes;
|
|
int ricemodifier;
|
|
|
|
|
|
/* 2^result = something to do with output waiting.
|
|
* perhaps matters if we read > 1 frame in a pass?
|
|
*/
|
|
readbits(alac, 4);
|
|
|
|
readbits(alac, 12); /* unknown, skip 12 bits */
|
|
|
|
hassize = readbits(alac, 1); /* the output sample size is stored soon */
|
|
|
|
/* number of bytes in the (compressed) stream that are not compressed */
|
|
uncompressed_bytes = readbits(alac, 2);
|
|
|
|
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
|
|
|
|
if (hassize)
|
|
{
|
|
/* now read the number of samples,
|
|
* as a 32bit integer */
|
|
outputsamples = readbits(alac, 32);
|
|
}
|
|
|
|
readsamplesize = infosamplesize - (uncompressed_bytes * 8);
|
|
|
|
if (!isnotcompressed)
|
|
{ /* so it is compressed */
|
|
int predictor_coef_num;
|
|
int prediction_type;
|
|
int prediction_quantitization;
|
|
int i;
|
|
|
|
/* skip 16 bits, not sure what they are. seem to be used in
|
|
* two channel case */
|
|
readbits(alac, 8);
|
|
readbits(alac, 8);
|
|
|
|
prediction_type = readbits(alac, 4);
|
|
prediction_quantitization = readbits(alac, 4);
|
|
|
|
ricemodifier = readbits(alac, 3);
|
|
predictor_coef_num = readbits(alac, 5);
|
|
|
|
/* read the predictor table */
|
|
for (i = 0; i < predictor_coef_num; i++)
|
|
{
|
|
predictor_coef_table[i] = (int16_t)readbits(alac, 16);
|
|
}
|
|
|
|
if (uncompressed_bytes)
|
|
{
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
outputbuffer[0][i] = readbits(alac, uncompressed_bytes * 8);
|
|
outputbuffer[1][i] = outputbuffer[0][i];
|
|
}
|
|
}
|
|
|
|
yield();
|
|
|
|
entropy_rice_decode(alac,
|
|
outputbuffer[0],
|
|
outputsamples,
|
|
readsamplesize,
|
|
alac->setinfo_rice_initialhistory,
|
|
alac->setinfo_rice_kmodifier,
|
|
ricemodifier * alac->setinfo_rice_historymult / 4,
|
|
(1 << alac->setinfo_rice_kmodifier) - 1);
|
|
|
|
yield();
|
|
|
|
if (prediction_type == 0)
|
|
{ /* adaptive fir */
|
|
predictor_decompress_fir_adapt(outputbuffer[0],
|
|
outputbuffer[0],
|
|
outputsamples,
|
|
readsamplesize,
|
|
predictor_coef_table,
|
|
predictor_coef_num,
|
|
prediction_quantitization);
|
|
}
|
|
else
|
|
{
|
|
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type);
|
|
/* i think the only other prediction type (or perhaps this is just a
|
|
* boolean?) runs adaptive fir twice.. like:
|
|
* predictor_decompress_fir_adapt(predictor_error, tempout, ...)
|
|
* predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
|
|
* little strange..
|
|
*/
|
|
}
|
|
|
|
}
|
|
else
|
|
{ /* not compressed, easy case */
|
|
if (infosamplesize <= 16)
|
|
{
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
int32_t audiobits = readbits(alac, infosamplesize);
|
|
|
|
audiobits = SIGN_EXTENDED32(audiobits, infosamplesize);
|
|
|
|
outputbuffer[0][i] = audiobits;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
int32_t audiobits;
|
|
|
|
audiobits = readbits(alac, 16);
|
|
/* special case of sign extension..
|
|
* as we'll be ORing the low 16bits into this */
|
|
audiobits = audiobits << (infosamplesize - 16);
|
|
audiobits |= readbits(alac, infosamplesize - 16);
|
|
audiobits = SIGNEXTEND24(audiobits);
|
|
|
|
outputbuffer[0][i] = audiobits;
|
|
}
|
|
}
|
|
uncompressed_bytes = 0; // always 0 for uncompressed
|
|
}
|
|
|
|
yield();
|
|
|
|
switch(infosamplesize)
|
|
{
|
|
case 16:
|
|
{
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
/* Output mono data as stereo */
|
|
outputbuffer[0][i] = outputbuffer[0][i] << SCALE16;
|
|
outputbuffer[1][i] = outputbuffer[0][i];
|
|
}
|
|
break;
|
|
}
|
|
case 24:
|
|
{
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
int32_t sample = outputbuffer[0][i];
|
|
|
|
if (uncompressed_bytes)
|
|
{
|
|
uint32_t mask;
|
|
sample = sample << (uncompressed_bytes * 8);
|
|
mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
|
|
sample |= outputbuffer[0][i] & mask;
|
|
}
|
|
|
|
outputbuffer[0][i] = sample << SCALE24;
|
|
outputbuffer[1][i] = outputbuffer[0][i];
|
|
}
|
|
break;
|
|
}
|
|
case 20:
|
|
case 32:
|
|
//fprintf(stderr, "FIXME: unimplemented sample size %i\n", infosamplesize);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return outputsamples;
|
|
}
|
|
|
|
static inline int decode_frame_stereo(
|
|
alac_file *alac,
|
|
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE],
|
|
void (*yield)(void))
|
|
{
|
|
int hassize;
|
|
int isnotcompressed;
|
|
int readsamplesize;
|
|
int infosamplesize = alac->setinfo_sample_size;
|
|
int outputsamples = alac->setinfo_max_samples_per_frame;
|
|
int uncompressed_bytes;
|
|
|
|
uint8_t interlacing_shift;
|
|
uint8_t interlacing_leftweight;
|
|
|
|
/* 2^result = something to do with output waiting.
|
|
* perhaps matters if we read > 1 frame in a pass?
|
|
*/
|
|
readbits(alac, 4);
|
|
|
|
readbits(alac, 12); /* unknown, skip 12 bits */
|
|
|
|
hassize = readbits(alac, 1); /* the output sample size is stored soon */
|
|
|
|
/* the number of bytes in the (compressed) stream that are not compressed */
|
|
uncompressed_bytes = readbits(alac, 2);
|
|
|
|
isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
|
|
|
|
if (hassize)
|
|
{
|
|
/* now read the number of samples,
|
|
* as a 32bit integer */
|
|
outputsamples = readbits(alac, 32);
|
|
}
|
|
|
|
readsamplesize = infosamplesize - (uncompressed_bytes * 8) + 1;
|
|
|
|
yield();
|
|
if (!isnotcompressed)
|
|
{ /* compressed */
|
|
int predictor_coef_num_a;
|
|
int prediction_type_a;
|
|
int prediction_quantitization_a;
|
|
int ricemodifier_a;
|
|
|
|
int predictor_coef_num_b;
|
|
int prediction_type_b;
|
|
int prediction_quantitization_b;
|
|
int ricemodifier_b;
|
|
|
|
int i;
|
|
|
|
interlacing_shift = readbits(alac, 8);
|
|
interlacing_leftweight = readbits(alac, 8);
|
|
|
|
/******** channel 1 ***********/
|
|
prediction_type_a = readbits(alac, 4);
|
|
prediction_quantitization_a = readbits(alac, 4);
|
|
|
|
ricemodifier_a = readbits(alac, 3);
|
|
predictor_coef_num_a = readbits(alac, 5);
|
|
|
|
/* read the predictor table */
|
|
for (i = 0; i < predictor_coef_num_a; i++)
|
|
{
|
|
predictor_coef_table_a[i] = (int16_t)readbits(alac, 16);
|
|
}
|
|
|
|
/******** channel 2 *********/
|
|
prediction_type_b = readbits(alac, 4);
|
|
prediction_quantitization_b = readbits(alac, 4);
|
|
|
|
ricemodifier_b = readbits(alac, 3);
|
|
predictor_coef_num_b = readbits(alac, 5);
|
|
|
|
/* read the predictor table */
|
|
for (i = 0; i < predictor_coef_num_b; i++)
|
|
{
|
|
predictor_coef_table_b[i] = (int16_t)readbits(alac, 16);
|
|
}
|
|
|
|
/*********************/
|
|
if (uncompressed_bytes)
|
|
{ /* see mono case */
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
outputbuffer[0][i] = readbits(alac, uncompressed_bytes * 8);
|
|
outputbuffer[1][i] = readbits(alac, uncompressed_bytes * 8);
|
|
}
|
|
}
|
|
|
|
yield();
|
|
/* channel 1 */
|
|
entropy_rice_decode(alac,
|
|
outputbuffer[0],
|
|
outputsamples,
|
|
readsamplesize,
|
|
alac->setinfo_rice_initialhistory,
|
|
alac->setinfo_rice_kmodifier,
|
|
ricemodifier_a * alac->setinfo_rice_historymult / 4,
|
|
(1 << alac->setinfo_rice_kmodifier) - 1);
|
|
|
|
yield();
|
|
if (prediction_type_a == 0)
|
|
{ /* adaptive fir */
|
|
predictor_decompress_fir_adapt(outputbuffer[0],
|
|
outputbuffer[0],
|
|
outputsamples,
|
|
readsamplesize,
|
|
predictor_coef_table_a,
|
|
predictor_coef_num_a,
|
|
prediction_quantitization_a);
|
|
}
|
|
else
|
|
{ /* see mono case */
|
|
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_a);
|
|
}
|
|
|
|
yield();
|
|
|
|
/* channel 2 */
|
|
entropy_rice_decode(alac,
|
|
outputbuffer[1],
|
|
outputsamples,
|
|
readsamplesize,
|
|
alac->setinfo_rice_initialhistory,
|
|
alac->setinfo_rice_kmodifier,
|
|
ricemodifier_b * alac->setinfo_rice_historymult / 4,
|
|
(1 << alac->setinfo_rice_kmodifier) - 1);
|
|
|
|
yield();
|
|
if (prediction_type_b == 0)
|
|
{ /* adaptive fir */
|
|
predictor_decompress_fir_adapt(outputbuffer[1],
|
|
outputbuffer[1],
|
|
outputsamples,
|
|
readsamplesize,
|
|
predictor_coef_table_b,
|
|
predictor_coef_num_b,
|
|
prediction_quantitization_b);
|
|
}
|
|
else
|
|
{
|
|
//fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_b);
|
|
}
|
|
}
|
|
else
|
|
{ /* not compressed, easy case */
|
|
if (infosamplesize <= 16)
|
|
{
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
int32_t audiobits_a, audiobits_b;
|
|
|
|
audiobits_a = readbits(alac, infosamplesize);
|
|
audiobits_b = readbits(alac, infosamplesize);
|
|
|
|
audiobits_a = SIGN_EXTENDED32(audiobits_a, infosamplesize);
|
|
audiobits_b = SIGN_EXTENDED32(audiobits_b, infosamplesize);
|
|
|
|
outputbuffer[0][i] = audiobits_a;
|
|
outputbuffer[1][i] = audiobits_b;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for (i = 0; i < outputsamples; i++)
|
|
{
|
|
int32_t audiobits_a, audiobits_b;
|
|
|
|
audiobits_a = readbits(alac, 16);
|
|
audiobits_a = audiobits_a << (infosamplesize - 16);
|
|
audiobits_a |= readbits(alac, infosamplesize - 16);
|
|
audiobits_a = SIGNEXTEND24(audiobits_a);
|
|
|
|
audiobits_b = readbits(alac, 16);
|
|
audiobits_b = audiobits_b << (infosamplesize - 16);
|
|
audiobits_b |= readbits(alac, infosamplesize - 16);
|
|
audiobits_b = SIGNEXTEND24(audiobits_b);
|
|
|
|
outputbuffer[0][i] = audiobits_a;
|
|
outputbuffer[1][i] = audiobits_b;
|
|
}
|
|
}
|
|
uncompressed_bytes = 0; // always 0 for uncompressed
|
|
interlacing_shift = 0;
|
|
interlacing_leftweight = 0;
|
|
}
|
|
|
|
yield();
|
|
|
|
switch(infosamplesize)
|
|
{
|
|
case 16:
|
|
{
|
|
deinterlace_16(outputbuffer[0],
|
|
outputbuffer[1],
|
|
outputsamples,
|
|
interlacing_shift,
|
|
interlacing_leftweight);
|
|
break;
|
|
}
|
|
case 24:
|
|
{
|
|
deinterlace_24(outputbuffer[0],
|
|
outputbuffer[1],
|
|
uncompressed_bytes,
|
|
outputbuffer[0],
|
|
outputbuffer[1],
|
|
outputsamples,
|
|
interlacing_shift,
|
|
interlacing_leftweight);
|
|
break;
|
|
}
|
|
case 20:
|
|
case 32:
|
|
//fprintf(stderr, "FIXME: unimplemented sample size %i\n", infosamplesize);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return outputsamples;
|
|
}
|
|
|
|
int alac_decode_frame(alac_file *alac,
|
|
unsigned char *inbuffer,
|
|
int32_t outputbuffer[ALAC_MAX_CHANNELS][ALAC_BLOCKSIZE],
|
|
void (*yield)(void))
|
|
{
|
|
int channels;
|
|
int outputsamples;
|
|
unsigned char *input_buffer_start;
|
|
|
|
/* setup the stream */
|
|
alac->input_buffer = inbuffer;
|
|
alac->input_buffer_bitaccumulator = 0;
|
|
|
|
/* save to gather byte consumption */
|
|
input_buffer_start = alac->input_buffer;
|
|
|
|
channels = readbits(alac, 3);
|
|
|
|
/* TODO: The mono and stereo functions should be combined. */
|
|
switch(channels)
|
|
{
|
|
case 0: /* 1 channel */
|
|
outputsamples=decode_frame_mono(alac,outputbuffer,yield);
|
|
break;
|
|
case 1: /* 2 channels */
|
|
outputsamples=decode_frame_stereo(alac,outputbuffer,yield);
|
|
break;
|
|
default: /* Unsupported */
|
|
return -1;
|
|
}
|
|
|
|
/* calculate consumed bytes */
|
|
alac->bytes_consumed = (int)(alac->input_buffer - input_buffer_start);
|
|
alac->bytes_consumed += (alac->input_buffer_bitaccumulator>5) ? 2 : 1;
|
|
|
|
return outputsamples;
|
|
}
|
|
|
|
/* rockbox: not used
|
|
void create_alac(int samplesize, int numchannels, alac_file* alac)
|
|
{
|
|
alac->samplesize = samplesize;
|
|
alac->numchannels = numchannels;
|
|
alac->bytespersample = (samplesize / 8) * numchannels;
|
|
} */
|