rockbox/apps/codecs/libgme/nsf_emu.c

921 lines
24 KiB
C

// Game_Music_Emu 0.6-pre. http://www.slack.net/~ant/
#include "nsf_emu.h"
#include "multi_buffer.h"
#include "blargg_endian.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
const char gme_wrong_file_type [] = "Wrong file type for this emulator";
// number of frames until play interrupts init
int const initial_play_delay = 7; // KikiKaikai needed this to work
int const bank_size = 0x1000;
int const rom_addr = 0x8000;
static void clear_track_vars( struct Nsf_Emu* this )
{
this->current_track = -1;
track_stop( &this->track_filter );
}
static int pcm_read( void* emu, int addr )
{
return *Cpu_get_code( &((struct Nsf_Emu*) emu)->cpu, addr );
}
void Nsf_init( struct Nsf_Emu* this )
{
this->sample_rate = 0;
this->mute_mask_ = 0;
this->tempo = (int)(FP_ONE_TEMPO);
this->gain = (int)(FP_ONE_GAIN);
// defaults
this->tfilter = *track_get_setup( &this->track_filter );
this->tfilter.max_initial = 2;
this->tfilter.lookahead = 6;
this->track_filter.silence_ignored_ = false;
// Set sound gain
Sound_set_gain( this, (int)(FP_ONE_GAIN*1.2) );
// Init rom
Rom_init( &this->rom, bank_size );
// Init & clear nsfe info
Info_init( &this->info );
Info_unload( &this->info ); // TODO: extremely hacky!
Cpu_init( &this->cpu );
Apu_init( &this->apu );
Apu_dmc_reader( &this->apu, pcm_read, this );
// Unload
this->voice_count = 0;
memset( this->voice_types, 0, sizeof this->voice_types );
clear_track_vars( this );
}
// Setup
static void append_voices( struct Nsf_Emu* this, int const types [], int count )
{
assert( this->voice_count + count < max_voices );
int i;
for ( i = 0; i < count; i++ ) {
this->voice_types [this->voice_count + i] = types [i];
}
this->voice_count += count;
}
static blargg_err_t init_sound( struct Nsf_Emu* this )
{
/* if ( header_.chip_flags & ~(fds_flag | namco_flag | vrc6_flag | fme7_flag) )
warning( "Uses unsupported audio expansion hardware" ); **/
{
static int const types [apu_osc_count] = {
wave_type+1, wave_type+2, mixed_type+1, noise_type+0, mixed_type+1
};
append_voices( this, types, apu_osc_count );
}
int adjusted_gain = (this->gain * 4) / 3;
#ifdef NSF_EMU_APU_ONLY
{
if ( this->header_.chip_flags )
set_warning( "Uses unsupported audio expansion hardware" );
}
#else
{
if ( vrc6_enabled( this ) )
{
Vrc6_init( &this->vrc6 );
adjusted_gain = (adjusted_gain*3) / 4;
static int const types [vrc6_osc_count] = {
wave_type+3, wave_type+4, wave_type+5,
};
append_voices( this, types, vrc6_osc_count );
}
if ( fme7_enabled( this ) )
{
Fme7_init( &this->fme7 );
adjusted_gain = (adjusted_gain*3) / 4;
static int const types [fme7_osc_count] = {
wave_type+3, wave_type+4, wave_type+5,
};
append_voices( this, types, fme7_osc_count );
}
if ( mmc5_enabled( this ) )
{
Mmc5_init( &this->mmc5 );
adjusted_gain = (adjusted_gain*3) / 4;
static int const types [mmc5_osc_count] = {
wave_type+3, wave_type+4, mixed_type+2
};
append_voices( this, types, mmc5_osc_count );
}
if ( fds_enabled( this ) )
{
Fds_init( &this->fds );
adjusted_gain = (adjusted_gain*3) / 4;
static int const types [fds_osc_count] = {
wave_type+0
};
append_voices( this, types, fds_osc_count );
}
if ( namco_enabled( this ) )
{
Namco_init( &this->namco );
adjusted_gain = (adjusted_gain*3) / 4;
static int const types [namco_osc_count] = {
wave_type+3, wave_type+4, wave_type+5, wave_type+ 6,
wave_type+7, wave_type+8, wave_type+9, wave_type+10,
};
append_voices( this, types, namco_osc_count );
}
#ifndef NSF_EMU_NO_VRC7
if ( vrc7_enabled( this ) )
{
Vrc7_init( &this->vrc7 );
Vrc7_set_rate( &this->vrc7, this->sample_rate );
adjusted_gain = (adjusted_gain*3) / 4;
static int const types [vrc7_osc_count] = {
wave_type+3, wave_type+4, wave_type+5, wave_type+6,
wave_type+7, wave_type+8
};
append_voices( this, types, vrc7_osc_count );
}
if ( vrc7_enabled( this ) ) Vrc7_volume( &this->vrc7, adjusted_gain );
#endif
if ( namco_enabled( this ) ) Namco_volume( &this->namco, adjusted_gain );
if ( vrc6_enabled( this ) ) Vrc6_volume( &this->vrc6, adjusted_gain );
if ( fme7_enabled( this ) ) Fme7_volume( &this->fme7, adjusted_gain );
if ( mmc5_enabled( this ) ) Apu_volume( &this->mmc5.apu, adjusted_gain );
if ( fds_enabled( this ) ) Fds_volume( &this->fds, adjusted_gain );
}
#endif
if ( adjusted_gain > this->gain )
adjusted_gain = this->gain;
Apu_volume( &this->apu, adjusted_gain );
return 0;
}
// Header stuff
static bool valid_tag( struct header_t* this )
{
return 0 == memcmp( this->tag, "NESM\x1A", 5 );
}
// True if file supports only PAL speed
static bool pal_only( struct header_t* this )
{
return (this->speed_flags & 3) == 1;
}
static int clock_rate( struct header_t* this )
{
return pal_only( this ) ? (int)1662607.125 : (int)1789772.727272727;
}
static int play_period( struct header_t* this )
{
// NTSC
int clocks = 29780;
int value = 0x411A;
byte const* rate_ptr = this->ntsc_speed;
// PAL
if ( pal_only( this ) )
{
clocks = 33247;
value = 0x4E20;
rate_ptr = this->pal_speed;
}
// Default rate
int rate = get_le16( rate_ptr );
if ( rate == 0 )
rate = value;
// Custom rate
if ( rate != value )
clocks = (int) ((1LL * rate * clock_rate( this )) / 1000000);
return clocks;
}
// Gets address, given pointer to it in file header. If zero, returns rom_addr.
addr_t get_addr( byte const in [] )
{
addr_t addr = get_le16( in );
if ( addr == 0 )
addr = rom_addr;
return addr;
}
static blargg_err_t check_nsf_header( struct header_t* h )
{
if ( !valid_tag( h ) )
return gme_wrong_file_type;
return 0;
}
blargg_err_t Nsf_load_mem( struct Nsf_Emu* this, void* data, long size )
{
// Unload
Info_unload( &this->info ); // TODO: extremely hacky!
this->m3u.size = 0;
this->voice_count = 0;
clear_track_vars( this );
assert( offsetof (struct header_t,unused [4]) == header_size );
if ( !memcmp( data, "NESM\x1A", 5 ) ) {
Nsf_disable_playlist( this, true );
RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, 0 ) );
return Nsf_post_load( this );
}
blargg_err_t err = Info_load( &this->info, data, size, this );
Nsf_disable_playlist( this, false );
return err;
}
blargg_err_t Nsf_post_load( struct Nsf_Emu* this )
{
RETURN_ERR( check_nsf_header( &this->header ) );
/* if ( header_.vers != 1 )
warning( "Unknown file version" ); */
// set up data
addr_t load_addr = get_addr( this->header.load_addr );
/* if ( load_addr < (fds_enabled() ? sram_addr : rom_addr) )
warning( "Load address is too low" ); */
Rom_set_addr( &this->rom, load_addr % this->rom.bank_size );
/* if ( header_.vers != 1 )
warning( "Unknown file version" ); */
set_play_period( this, play_period( &this->header ) );
// sound and memory
blargg_err_t err = init_sound( this );
if ( err )
return err;
// Set track_count
this->track_count = this->header.track_count;
// Change clock rate & setup buffer
this->clock_rate__ = clock_rate( &this->header );
Buffer_clock_rate( &this->stereo_buf, this->clock_rate__ );
RETURN_ERR( Buffer_set_channel_count( &this->stereo_buf, this->voice_count, this->voice_types ) );
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
// Post load
Sound_set_tempo( this, this->tempo );
Sound_mute_voices( this, this->mute_mask_ );
return 0;
}
void Nsf_disable_playlist( struct Nsf_Emu* this, bool b )
{
Info_disable_playlist( &this->info, b );
this->track_count = this->info.track_count;
}
void Nsf_clear_playlist( struct Nsf_Emu* this )
{
Nsf_disable_playlist( this, true );
}
void write_bank( struct Nsf_Emu* this, int bank, int data )
{
// Find bank in ROM
int offset = mask_addr( data * this->rom.bank_size, this->rom.mask );
/* if ( offset >= rom.size() )
warning( "invalid bank" ); */
void const* rom_data = Rom_at_addr( &this->rom, offset );
#ifndef NSF_EMU_APU_ONLY
if ( bank < bank_count - fds_banks && fds_enabled( this ) )
{
// TODO: FDS bank switching is kind of hacky, might need to
// treat ROM as RAM so changes won't get lost when switching.
byte* out = sram( this );
if ( bank >= fds_banks )
{
out = fdsram( this );
bank -= fds_banks;
}
memcpy( &out [bank * this->rom.bank_size], rom_data, this->rom.bank_size );
return;
}
#endif
if ( bank >= fds_banks )
Cpu_map_code( &this->cpu, (bank + 6) * this->rom.bank_size, this->rom.bank_size, rom_data, false );
}
static void map_memory( struct Nsf_Emu* this )
{
// Map standard things
Cpu_reset( &this->cpu, unmapped_code( this ) );
Cpu_map_code( &this->cpu, 0, 0x2000, this->low_ram, low_ram_size ); // mirrored four times
Cpu_map_code( &this->cpu, sram_addr, sram_size, sram( this ), 0 );
// Determine initial banks
byte banks [bank_count];
static byte const zero_banks [sizeof this->header.banks] = { 0 };
if ( memcmp( this->header.banks, zero_banks, sizeof zero_banks ) )
{
banks [0] = this->header.banks [6];
banks [1] = this->header.banks [7];
memcpy( banks + fds_banks, this->header.banks, sizeof this->header.banks );
}
else
{
// No initial banks, so assign them based on load_addr
int i, first_bank = (get_addr( this->header.load_addr ) - sram_addr) / this->rom.bank_size;
unsigned total_banks = this->rom.size / this->rom.bank_size;
for ( i = bank_count; --i >= 0; )
{
int bank = i - first_bank;
if ( (unsigned) bank >= total_banks )
bank = 0;
banks [i] = bank;
}
}
// Map banks
int i;
for ( i = (fds_enabled( this ) ? 0 : fds_banks); i < bank_count; ++i )
write_bank( this, i, banks [i] );
// Map FDS RAM
if ( fds_enabled( this ) )
Cpu_map_code( &this->cpu, rom_addr, fdsram_size, fdsram( this ), 0 );
}
static void set_voice( struct Nsf_Emu* this, int i, struct Blip_Buffer* buf, struct Blip_Buffer* left, struct Blip_Buffer* right)
{
#if defined(ROCKBOX)
(void) left;
(void) right;
#endif
if ( i < apu_osc_count )
{
Apu_osc_output( &this->apu, i, buf );
return;
}
i -= apu_osc_count;
#ifndef NSF_EMU_APU_ONLY
{
if ( vrc6_enabled( this ) && (i -= vrc6_osc_count) < 0 )
{
Vrc6_osc_output( &this->vrc6, i + vrc6_osc_count, buf );
return;
}
if ( fme7_enabled( this ) && (i -= fme7_osc_count) < 0 )
{
Fme7_osc_output( &this->fme7, i + fme7_osc_count, buf );
return;
}
if ( mmc5_enabled( this ) && (i -= mmc5_osc_count) < 0 )
{
Mmc5_set_output( &this->mmc5, i + mmc5_osc_count, buf );
return;
}
if ( fds_enabled( this ) && (i -= fds_osc_count) < 0 )
{
Fds_set_output( &this->fds, i + fds_osc_count, buf );
return;
}
if ( namco_enabled( this ) && (i -= namco_osc_count) < 0 )
{
Namco_osc_output( &this->namco, i + namco_osc_count, buf );
return;
}
#ifndef NSF_EMU_NO_VRC7
if ( vrc7_enabled( this ) && (i -= vrc7_osc_count) < 0 )
{
Vrc7_set_output( &this->vrc7, i + vrc7_osc_count, buf );
return;
}
#endif
}
#endif
}
// Emulation
// Music Emu
blargg_err_t Nsf_set_sample_rate( struct Nsf_Emu* this, int rate )
{
require( !this->sample_rate ); // sample rate can't be changed once set
Buffer_init( &this->stereo_buf );
RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) );
// Set bass frequency
Buffer_bass_freq( &this->stereo_buf, 80 );
this->sample_rate = rate;
RETURN_ERR( track_init( &this->track_filter, this ) );
this->tfilter.max_silence = 6 * stereo * this->sample_rate;
return 0;
}
void Sound_mute_voice( struct Nsf_Emu* this, int index, bool mute )
{
require( (unsigned) index < (unsigned) this->voice_count );
int bit = 1 << index;
int mask = this->mute_mask_ | bit;
if ( !mute )
mask ^= bit;
Sound_mute_voices( this, mask );
}
void Sound_mute_voices( struct Nsf_Emu* this, int mask )
{
require( this->sample_rate ); // sample rate must be set first
this->mute_mask_ = mask;
int i;
for ( i = this->voice_count; i--; )
{
if ( mask & (1 << i) )
{
set_voice( this, i, 0, 0, 0 );
}
else
{
struct channel_t ch = Buffer_channel( &this->stereo_buf, i );
assert( (ch.center && ch.left && ch.right) ||
(!ch.center && !ch.left && !ch.right) ); // all or nothing
set_voice( this, i, ch.center, ch.left, ch.right );
}
}
}
void Sound_set_tempo( struct Nsf_Emu* this, int t )
{
require( this->sample_rate ); // sample rate must be set first
int const min = (int)(FP_ONE_TEMPO*0.02);
int const max = (int)(FP_ONE_TEMPO*4.00);
if ( t < min ) t = min;
if ( t > max ) t = max;
this->tempo = t;
set_play_period( this, (int) ((play_period( &this->header ) * FP_ONE_TEMPO) / t) );
Apu_set_tempo( &this->apu, t );
#ifndef NSF_EMU_APU_ONLY
if ( fds_enabled( this ) )
Fds_set_tempo( &this->fds, t );
#endif
}
static inline void push_byte( struct Nsf_Emu* this, int b )
{
this->low_ram [0x100 + this->cpu.r.sp--] = b;
}
// Jumps to routine, given pointer to address in file header. Pushes idle_addr
// as return address, NOT old PC.
static void jsr_then_stop( struct Nsf_Emu* this, byte const addr [] )
{
this->cpu.r.pc = get_addr( addr );
push_byte( this, (idle_addr - 1) >> 8 );
push_byte( this, (idle_addr - 1) );
}
int cpu_read( struct Nsf_Emu* this, addr_t addr )
{
#ifndef NSF_EMU_APU_ONLY
{
if ( namco_enabled( this ) && addr == namco_data_reg_addr )
return Namco_read_data( &this->namco );
if ( fds_enabled( this ) && (unsigned) (addr - fds_io_addr) < fds_io_size )
return Fds_read( &this->fds, Cpu_time( &this->cpu ), addr );
if ( mmc5_enabled( this ) ) {
int i = addr - 0x5C00;
if ( (unsigned) i < mmc5_exram_size )
return this->mmc5.exram [i];
int m = addr - 0x5205;
if ( (unsigned) m < 2 )
return (this->mmc5_mul [0] * this->mmc5_mul [1]) >> (m * 8) & 0xFF;
}
}
#endif
/* Unmapped read */
return addr >> 8;
}
void cpu_write( struct Nsf_Emu* this, addr_t addr, int data )
{
#ifndef NSF_EMU_APU_ONLY
{
if ( fds_enabled( this) && (unsigned) (addr - fds_io_addr) < fds_io_size )
{
Fds_write( &this->fds, Cpu_time( &this->cpu ), addr, data );
return;
}
if ( namco_enabled( this) )
{
if ( addr == namco_addr_reg_addr )
{
Namco_write_addr( &this->namco, data );
return;
}
if ( addr == namco_data_reg_addr )
{
Namco_write_data( &this->namco, Cpu_time( &this->cpu ), data );
return;
}
}
if ( vrc6_enabled( this) )
{
int reg = addr & (vrc6_addr_step - 1);
int osc = (unsigned) (addr - vrc6_base_addr) / vrc6_addr_step;
if ( (unsigned) osc < vrc6_osc_count && (unsigned) reg < vrc6_reg_count )
{
Vrc6_write_osc( &this->vrc6, Cpu_time( &this->cpu ), osc, reg, data );
return;
}
}
if ( fme7_enabled( this) && addr >= fme7_latch_addr )
{
switch ( addr & fme7_addr_mask )
{
case fme7_latch_addr:
Fme7_write_latch( &this->fme7, data );
return;
case fme7_data_addr:
Fme7_write_data( &this->fme7, Cpu_time( &this->cpu ), data );
return;
}
}
if ( mmc5_enabled( this) )
{
if ( (unsigned) (addr - mmc5_regs_addr) < mmc5_regs_size )
{
Mmc5_write_register( &this->mmc5, Cpu_time( &this->cpu ), addr, data );
return;
}
int m = addr - 0x5205;
if ( (unsigned) m < 2 )
{
this->mmc5_mul [m] = data;
return;
}
int i = addr - 0x5C00;
if ( (unsigned) i < mmc5_exram_size )
{
this->mmc5.exram [i] = data;
return;
}
}
#ifndef NSF_EMU_NO_VRC7
if ( vrc7_enabled( this) )
{
if ( addr == 0x9010 )
{
Vrc7_write_reg( &this->vrc7, data );
return;
}
if ( (unsigned) (addr - 0x9028) <= 0x08 )
{
Vrc7_write_data( &this->vrc7, Cpu_time( &this->cpu ), data );
return;
}
}
#endif
}
#endif
// Unmapped_write
}
blargg_err_t Nsf_start_track( struct Nsf_Emu* this, int track )
{
clear_track_vars( this );
// Remap track if playlist available
if ( this->m3u.size > 0 ) {
struct entry_t* e = &this->m3u.entries[track];
track = e->track;
}
else track = Info_remap_track( &this->info, track );
this->current_track = track;
Buffer_clear( &this->stereo_buf );
#ifndef NSF_EMU_APU_ONLY
if ( mmc5_enabled( this ) )
{
this->mmc5_mul [0] = 0;
this->mmc5_mul [1] = 0;
memset( this->mmc5.exram, 0, mmc5_exram_size );
}
if ( fds_enabled( this ) ) Fds_reset( &this->fds );
if ( namco_enabled( this ) ) Namco_reset( &this->namco );
if ( vrc6_enabled( this ) ) Vrc6_reset( &this->vrc6 );
if ( fme7_enabled( this ) ) Fme7_reset( &this->fme7 );
if ( mmc5_enabled( this ) ) Apu_reset( &this->mmc5.apu, false, 0 );
#ifndef NSF_EMU_NO_VRC7
if ( vrc7_enabled( this ) ) Vrc7_reset( &this->vrc7 );
#endif
#endif
int speed_flags = 0;
#ifdef NSF_EMU_EXTRA_FLAGS
speed_flags = this->header.speed_flags;
#endif
Apu_reset( &this->apu, pal_only( &this->header ), (speed_flags & 0x20) ? 0x3F : 0 );
Apu_write_register( &this->apu, 0, 0x4015, 0x0F );
Apu_write_register( &this->apu, 0, 0x4017, (speed_flags & 0x10) ? 0x80 : 0 );
memset( unmapped_code( this ), halt_opcode, unmapped_size );
memset( this->low_ram, 0, low_ram_size );
memset( sram( this ), 0, sram_size );
map_memory( this );
// Arrange time of first call to play routine
this->play_extra = 0;
this->next_play = this->play_period;
this->play_delay = initial_play_delay;
this->saved_state.pc = idle_addr;
// Setup for call to init routine
this->cpu.r.a = track;
this->cpu.r.x = pal_only( &this->header );
this->cpu.r.sp = 0xFF;
jsr_then_stop( this, this->header.init_addr );
/* if ( this->cpu.r.pc < get_addr( header.load_addr ) )
warning( "Init address < load address" ); */
// convert filter times to samples
struct setup_t s = this->tfilter;
s.max_initial *= this->sample_rate * stereo;
#ifdef GME_DISABLE_SILENCE_LOOKAHEAD
s.lookahead = 1;
#endif
track_setup( &this->track_filter, &s );
return track_start( &this->track_filter );
}
void run_once( struct Nsf_Emu* this, nes_time_t end )
{
// Emulate until next play call if possible
if ( run_cpu_until( this, min( this->next_play, end ) ) )
{
// Halt instruction encountered
if ( this->cpu.r.pc != idle_addr )
{
// special_event( "illegal instruction" );
Cpu_set_time( &this->cpu, this->cpu.end_time );
return;
}
// Init/play routine returned
this->play_delay = 1; // play can now be called regularly
if ( this->saved_state.pc == idle_addr )
{
// nothing to run
nes_time_t t = this->cpu.end_time;
if ( Cpu_time( &this->cpu ) < t )
Cpu_set_time( &this->cpu, t );
}
else
{
// continue init routine that was interrupted by play routine
this->cpu.r = this->saved_state;
this->saved_state.pc = idle_addr;
}
}
if ( Cpu_time( &this->cpu ) >= this->next_play )
{
// Calculate time of next call to play routine
this->play_extra ^= 1; // extra clock every other call
this->next_play += this->play_period + this->play_extra;
// Call routine if ready
if ( this->play_delay && !--this->play_delay )
{
// Save state if init routine is still running
if ( this->cpu.r.pc != idle_addr )
{
check( this->saved_state.pc == idle_addr );
this->saved_state = this->cpu.r;
// special_event( "play called during init" );
}
jsr_then_stop( this, this->header.play_addr );
}
}
}
void run_until( struct Nsf_Emu* this, nes_time_t end )
{
while ( Cpu_time( &this->cpu ) < end )
run_once( this, end );
}
static void end_frame( struct Nsf_Emu* this, nes_time_t end )
{
if ( Cpu_time( &this->cpu ) < end )
run_until( this, end );
Cpu_adjust_time( &this->cpu, -end );
// Localize to new time frame
this->next_play -= end;
check( this->next_play >= 0 );
if ( this->next_play < 0 )
this->next_play = 0;
Apu_end_frame( &this->apu, end );
#ifndef NSF_EMU_APU_ONLY
if ( fds_enabled( this ) ) Fds_end_frame( &this->fds, end );
if ( fme7_enabled( this ) ) Fme7_end_frame( &this->fme7, end );
if ( mmc5_enabled( this ) ) Apu_end_frame( &this->mmc5.apu, end );
if ( namco_enabled( this ) ) Namco_end_frame( &this->namco, end );
if ( vrc6_enabled( this ) ) Vrc6_end_frame( &this->vrc6, end );
#ifndef NSF_EMU_NO_VRC7
if ( vrc7_enabled( this ) ) Vrc7_end_frame( &this->vrc7, end );
#endif
#endif
}
// Tell/Seek
static int msec_to_samples( int msec, int sample_rate )
{
int sec = msec / 1000;
msec -= sec * 1000;
return (sec * sample_rate + msec * sample_rate / 1000) * stereo;
}
int Track_tell( struct Nsf_Emu* this )
{
int rate = this->sample_rate * stereo;
int sec = track_sample_count( &this->track_filter ) / rate;
return sec * 1000 + (track_sample_count( &this->track_filter ) - sec * rate) * 1000 / rate;
}
blargg_err_t Track_seek( struct Nsf_Emu* this, int msec )
{
int time = msec_to_samples( msec, this->sample_rate );
if ( time < track_sample_count( &this->track_filter ) )
RETURN_ERR( Nsf_start_track( this, this->current_track ) );
return Track_skip( this, time - track_sample_count( &this->track_filter ) );
}
blargg_err_t Track_skip( struct Nsf_Emu* this, int count )
{
require( this->current_track >= 0 ); // start_track() must have been called already
return track_skip( &this->track_filter, count );
}
blargg_err_t skip_( void *emu, int count )
{
struct Nsf_Emu* this = (struct Nsf_Emu*) emu;
// for long skip, mute sound
const int threshold = 32768;
if ( count > threshold )
{
int saved_mute = this->mute_mask_;
Sound_mute_voices( this, ~0 );
int n = count - threshold/2;
n &= ~(2048-1); // round to multiple of 2048
count -= n;
RETURN_ERR( skippy_( &this->track_filter, n ) );
Sound_mute_voices( this, saved_mute );
}
return skippy_( &this->track_filter, count );
}
// Fading
void Track_set_fade( struct Nsf_Emu* this, int start_msec, int length_msec )
{
track_set_fade( &this->track_filter, msec_to_samples( start_msec, this->sample_rate ),
length_msec * this->sample_rate / (1000 / stereo) );
}
blargg_err_t Nsf_play( struct Nsf_Emu* this, int out_count, sample_t* out )
{
require( this->current_track >= 0 );
require( out_count % stereo == 0 );
return track_play( &this->track_filter, out_count, out );
}
blargg_err_t play_( void* emu, int count, sample_t* out )
{
struct Nsf_Emu* this = (struct Nsf_Emu*) emu;
int remain = count;
while ( remain )
{
Buffer_disable_immediate_removal( &this->stereo_buf );
remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain );
if ( remain )
{
if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) )
{
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
}
int msec = Buffer_length( &this->stereo_buf );
blip_time_t clocks_emulated = msec * this->clock_rate__ / 1000 - 100;
RETURN_ERR( run_clocks( this, &clocks_emulated, msec ) );
assert( clocks_emulated );
Buffer_end_frame( &this->stereo_buf, clocks_emulated );
}
}
return 0;
}
blargg_err_t run_clocks( struct Nsf_Emu* this, blip_time_t* duration, int msec )
{
#if defined(ROCKBOX)
(void) msec;
#endif
end_frame( this, *duration );
return 0;
}