rockbox/firmware/target/arm/sandisk/sansa-e200/lcd-e200.c
Barry Wardell 8b061252c4 Replace some inl/outl with register #define's instead. Also tidy up pp5020.h so that it's in increasing address order.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@12574 a1c6a512-1295-4272-9138-f99709370657
2007-03-03 17:25:20 +00:00

412 lines
11 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Rockbox driver for Sansa e200 LCDs
*
* Based on reverse engineering done my MrH
*
* Copyright (c) 2006 Daniel Ankers
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "lcd.h"
#include "system.h"
#define LCD_DATA_IN_GPIO GPIOB_INPUT_VAL
#define LCD_DATA_IN_PIN 6
#define LCD_DATA_OUT_GPIO GPIOB_OUTPUT_VAL
#define LCD_DATA_OUT_PIN 7
#define LCD_CLOCK_GPIO GPIOB_OUTPUT_VAL
#define LCD_CLOCK_PIN 5
#define LCD_CS_GPIO GPIOD_OUTPUT_VAL
#define LCD_CS_PIN 6
#define LCD_REG_0 (*(volatile unsigned long *)(0xc2000000))
#define LCD_REG_1 (*(volatile unsigned long *)(0xc2000004))
#define LCD_REG_2 (*(volatile unsigned long *)(0xc2000008))
#define LCD_REG_3 (*(volatile unsigned long *)(0xc200000c))
#define LCD_REG_4 (*(volatile unsigned long *)(0xc2000010))
#define LCD_REG_5 (*(volatile unsigned long *)(0xc2000014))
#define LCD_REG_6 (*(volatile unsigned long *)(0xc2000018))
#define LCD_REG_7 (*(volatile unsigned long *)(0xc200001c))
#define LCD_REG_8 (*(volatile unsigned long *)(0xc2000020))
#define LCD_REG_9 (*(volatile unsigned long *)(0xc2000024))
#define LCD_FB_BASE_REG (*(volatile unsigned long *)(0xc2000028))
static inline void lcd_init_gpio(void)
{
GPIOB_ENABLE |= (1<<7);
GPIOB_ENABLE |= (1<<5);
GPIOB_OUTPUT_EN |= (1<<7);
GPIOB_OUTPUT_EN |= (1<<5);
GPIOD_ENABLE |= (1<<6);
GPIOD_OUTPUT_EN |= (1<<6);
}
static inline void lcd_bus_idle(void)
{
LCD_CLOCK_GPIO |= (1 << LCD_CLOCK_PIN);
LCD_DATA_OUT_GPIO |= (1 << LCD_DATA_OUT_PIN);
}
static inline void lcd_send_byte(unsigned char byte)
{
int i;
for (i = 7; i >=0 ; i--)
{
LCD_CLOCK_GPIO &= ~(1 << LCD_CLOCK_PIN);
if ((byte >> i) & 1)
{
LCD_DATA_OUT_GPIO |= (1 << LCD_DATA_OUT_PIN);
} else {
LCD_DATA_OUT_GPIO &= ~(1 << LCD_DATA_OUT_PIN);
}
udelay(1);
LCD_CLOCK_GPIO |= (1 << LCD_CLOCK_PIN);
udelay(1);
lcd_bus_idle();
udelay(3);
}
}
static inline void lcd_send_msg(unsigned char cmd, unsigned int data)
{
lcd_bus_idle();
udelay(1);
LCD_CS_GPIO &= ~(1 << LCD_CS_PIN);
udelay(10);
lcd_send_byte(cmd);
lcd_send_byte((unsigned char)(data >> 8));
lcd_send_byte((unsigned char)(data & 0xff));
LCD_CS_GPIO |= (1 << LCD_CS_PIN);
udelay(1);
lcd_bus_idle();
}
static inline void lcd_write_reg(unsigned int reg, unsigned int data)
{
lcd_send_msg(0x70, reg);
lcd_send_msg(0x72, data);
}
static inline void cache_flush(void)
{
#ifndef BOOTLOADER
outl(inl(0xf000f044) | 0x2, 0xf000f044);
while ((CACHE_CTL & 0x8000) != 0)
{
}
#endif
}
/* The LCD controller gets passed the address of the framebuffer, but can only
use the physical, not the remapped, address. This is a quick and dirty way
of correcting it */
static unsigned long phys_fb_address(unsigned long address)
{
if(address < 0x10000000)
{
return address + 0x10000000;
} else {
return address;
}
}
inline void lcd_init_device(void)
{
/* All this is magic worked out by MrH */
/* Init GPIO ports */
lcd_init_gpio();
/* Controller init */
outl((inl(0x70000084) | (1 << 28)), 0x70000084);
outl((inl(0x70000080) & ~(1 << 28)), 0x70000080);
outl(((inl(0x70000010) & (0x03ffffff)) | (0x15 << 26)), 0x70000010);
outl(((inl(0x70000014) & (0x0fffffff)) | (0x5 << 28)), 0x70000014);
outl((inl(0x70000020) & ~(0x3 << 10)), 0x70000020);
DEV_EN |= (1 << 26); /* Enable controller */
outl(0x6, 0x600060d0);
DEV_RS |= (1 << 26); /* Reset controller */
outl((inl(0x70000020) & ~(1 << 14)), 0x70000020);
lcd_bus_idle();
DEV_RS &=~(1 << 26); /* Clear reset */
udelay(1000);
LCD_REG_0 = (LCD_REG_0 & (0x00ffffff)) | (0x22 << 24);
LCD_REG_0 = (LCD_REG_0 & (0xff00ffff)) | (0x14 << 16);
LCD_REG_0 = (LCD_REG_0 & (0xffffc0ff)) | (0x3 << 8);
LCD_REG_0 = (LCD_REG_0 & (0xffffffc0)) | (0xa);
LCD_REG_1 &= 0x00ffffff;
LCD_REG_1 &= 0xff00ffff;
LCD_REG_1 = (LCD_REG_1 & 0xffff03ff) | (0x2 << 10);
LCD_REG_1 = (LCD_REG_1 & 0xfffffc00) | (0xdd);
LCD_REG_2 |= (1 << 5);
LCD_REG_2 |= (1 << 6);
LCD_REG_2 = (LCD_REG_2 & 0xfffffcff) | (0x2 << 8);
LCD_REG_7 &= (0xf800ffff);
LCD_REG_7 &= (0xfffff800);
LCD_REG_8 = (LCD_REG_8 & (0xf800ffff)) | (0xb0 << 16);
LCD_REG_8 = (LCD_REG_8 & (0xfffff800)) | (0xde); /* X-Y Geometry? */
LCD_REG_5 |= 0xc;
LCD_REG_5 = (LCD_REG_5 & ~(0x70)) | (0x3 << 4);
LCD_REG_5 |= 2;
LCD_REG_6 &= ~(1 << 15);
LCD_REG_6 |= (0xe00);
LCD_REG_6 = (LCD_REG_6 & (0xffffff1f)) | (0x4 << 5);
LCD_REG_6 |= (1 << 4);
LCD_REG_5 &= ~(1 << 7);
LCD_FB_BASE_REG = phys_fb_address((unsigned long)lcd_framebuffer);
udelay(100000);
/* LCD init */
outl((inl(0x70000080) & ~(1 << 28)), 0x70000080);
udelay(10000);
outl((inl(0x70000080) | (1 << 28)), 0x70000080);
udelay(10000);
lcd_write_reg(16, 0x4444);
lcd_write_reg(17, 0x0001);
lcd_write_reg(18, 0x0003);
lcd_write_reg(19, 0x1119);
lcd_write_reg(18, 0x0013);
udelay(50000);
lcd_write_reg(16, 0x4440);
lcd_write_reg(19, 0x3119);
udelay(150000);
lcd_write_reg(1, 0x101b);
lcd_write_reg(2, 0x0700);
lcd_write_reg(3, 0x6020);
lcd_write_reg(4, 0x0000);
lcd_write_reg(5, 0x0000);
lcd_write_reg(8, 0x0102);
lcd_write_reg(9, 0x0000);
lcd_write_reg(11, 0x4400);
lcd_write_reg(12, 0x0110);
lcd_write_reg(64, 0x0000);
lcd_write_reg(65, 0x0000);
lcd_write_reg(66, (219 << 8)); /* Screen resolution? */
lcd_write_reg(67, 0x0000);
lcd_write_reg(68, (175 << 8));
lcd_write_reg(69, (219 << 8));
lcd_write_reg(48, 0x0000);
lcd_write_reg(49, 0x0704);
lcd_write_reg(50, 0x0107);
lcd_write_reg(51, 0x0704);
lcd_write_reg(52, 0x0107);
lcd_write_reg(53, 0x0002);
lcd_write_reg(54, 0x0707);
lcd_write_reg(55, 0x0503);
lcd_write_reg(56, 0x0000);
lcd_write_reg(57, 0x0000);
lcd_write_reg(33, 175);
lcd_write_reg(12, 0x0110);
lcd_write_reg(16, 0x4740);
lcd_write_reg(7, 0x0045);
udelay(50000);
lcd_write_reg(7, 0x0065);
lcd_write_reg(7, 0x0067);
udelay(50000);
lcd_write_reg(7, 0x0077);
lcd_send_msg(0x70, 34);
}
inline void lcd_update(void)
{
cache_flush();
if(!(LCD_REG_6 & 1))
LCD_REG_6 |= 1;
}
inline void lcd_update_rect(int x, int y, int width, int height)
{
(void) x;
(void) y;
(void) width;
(void) height;
lcd_update();
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
/* TODO: Implement lcd_set_contrast() */
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
/* TODO: Implement lcd_set_invert_display() */
(void)yesno;
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
/* TODO: Implement lcd_set_flip() */
(void)yesno;
}
/* Blitting functions */
void lcd_blit(const fb_data* data, int x, int by, int width,
int bheight, int stride)
{
/* TODO: Implement lcd_blit() */
(void)data;
(void)x;
(void)by;
(void)width;
(void)bheight;
(void)stride;
}
#define CSUB_X 2
#define CSUB_Y 2
#define RYFAC (31*257)
#define GYFAC (63*257)
#define BYFAC (31*257)
#define RVFAC 11170 /* 31 * 257 * 1.402 */
#define GVFAC (-11563) /* 63 * 257 * -0.714136 */
#define GUFAC (-5572) /* 63 * 257 * -0.344136 */
#define BUFAC 14118 /* 31 * 257 * 1.772 */
#define ROUNDOFFS (127*257)
/* Performance function to blit a YUV bitmap directly to the LCD
Actually this code is from gigabeat, because this target is also
writing direct to a buffer. */
void lcd_yuv_blit(unsigned char * const src[3],
int src_x, int src_y, int stride,
int _x, int _y, int width, int height)
{
const unsigned char *usrc;
const unsigned char *vsrc;
const unsigned char *ysrc;
int xphase;
int rc, gc, bc;
int y, u, v;
int red, green, blue;
unsigned rbits, gbits, bbits;
int count;
fb_data *dst_row;
width = (width + 1) & ~1;
fb_data *dst = (fb_data*)lcd_framebuffer + _x * LCD_WIDTH + (LCD_WIDTH - _y) - 1;
fb_data *dst_last = dst - (height - 1);
do
{
dst_row = dst;
count = width;
ysrc = src[0] + stride * src_y + src_x;
/* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */
usrc = src[1] + (stride/CSUB_X) * (src_y/CSUB_Y)
+ (src_x/CSUB_X);
vsrc = src[2] + (stride/CSUB_X) * (src_y/CSUB_Y)
+ (src_x/CSUB_X);
xphase = src_x % CSUB_X;
u = *usrc++ - 128;
v = *vsrc++ - 128;
rc = RVFAC * v + ROUNDOFFS;
gc = GVFAC * v + GUFAC * u + ROUNDOFFS;
bc = BUFAC * u + ROUNDOFFS;
do
{
y = *ysrc++;
red = RYFAC * y + rc;
green = GYFAC * y + gc;
blue = BYFAC * y + bc;
if ((unsigned)red > (RYFAC*255+ROUNDOFFS))
{
if (red < 0)
red = 0;
else
red = (RYFAC*255+ROUNDOFFS);
}
if ((unsigned)green > (GYFAC*255+ROUNDOFFS))
{
if (green < 0)
green = 0;
else
green = (GYFAC*255+ROUNDOFFS);
}
if ((unsigned)blue > (BYFAC*255+ROUNDOFFS))
{
if (blue < 0)
blue = 0;
else
blue = (BYFAC*255+ROUNDOFFS);
}
rbits = ((unsigned)red) >> 16 ;
gbits = ((unsigned)green) >> 16 ;
bbits = ((unsigned)blue) >> 16 ;
*dst_row = (rbits << 11) | (gbits << 5) | bbits;
/* next pixel - since rotated, add WIDTH */
dst_row += LCD_WIDTH;
if (++xphase >= CSUB_X)
{
u = *usrc++ - 128;
v = *vsrc++ - 128;
rc = RVFAC * v + ROUNDOFFS;
gc = GVFAC * v + GUFAC * u + ROUNDOFFS;
bc = BUFAC * u + ROUNDOFFS;
xphase = 0;
}
}
while (--count);
if (dst == dst_last) break;
dst--;
src_y++;
} while( 1);
}