rockbox/apps/plugins/rocklife.c
Antoine Cellerier 4e7b760740 propset svn:keywords Id
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@13737 a1c6a512-1295-4272-9138-f99709370657
2007-06-29 19:45:00 +00:00

489 lines
15 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 Matthias Wientapper
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
* This is an implementatino of Conway's Game of Life
*
* from http://en.wikipedia.org/wiki/Conway's_Game_of_Life:
*
* Rules
*
* The universe of the Game of Life is an infinite two-dimensional
* orthogonal grid of square cells, each of which is in one of two
* possible states, live or dead. Every cell interacts with its eight
* neighbours, which are the cells that are directly horizontally,
* vertically, or diagonally adjacent. At each step in time, the
* following transitions occur:
*
* 1. Any live cell with fewer than two live neighbours dies, as if by
* loneliness.
*
* 2. Any live cell with more than three live neighbours dies, as if
* by overcrowding.
*
* 3. Any live cell with two or three live neighbours lives,
* unchanged, to the next generation.
*
* 4. Any dead cell with exactly three live neighbours comes to life.
*
* The initial pattern constitutes the first generation of the
* system. The second generation is created by applying the above
* rules simultaneously to every cell in the first generation --
* births and deaths happen simultaneously, and the discrete moment at
* which this happens is sometimes called a tick. (In other words,
* each generation is based entirely on the one before.) The rules
* continue to be applied repeatedly to create further generations.
*
*
*
* TODO:
* - nicer colours for pixels with respect to age
* - editor for start patterns
* - probably tons of speed-up opportunities
*/
#include "plugin.h"
#include "pluginlib_actions.h"
PLUGIN_HEADER
#define ROCKLIFE_PLAY_PAUSE PLA_FIRE
#define ROCKLIFE_INIT PLA_DOWN
#define ROCKLIFE_NEXT PLA_RIGHT
#define ROCKLIFE_NEXT_REP PLA_RIGHT_REPEAT
#define ROCKLIFE_QUIT PLA_QUIT
#define ROCKLIFE_STATUS PLA_LEFT
#define PATTERN_RANDOM 0
#define PATTERN_GROWTH_1 1
#define PATTERN_GROWTH_2 2
#define PATTERN_ACORN 3
#define PATTERN_GLIDER_GUN 4 /* not yet implemented */
static struct plugin_api* rb;
const struct button_mapping *plugin_contexts[]
= {generic_directions, generic_actions};
unsigned char grid_a[LCD_WIDTH][LCD_HEIGHT];
unsigned char grid_b[LCD_WIDTH][LCD_HEIGHT];
int generation = 0;
int population = 0;
int status_line = 0;
char buf[30];
static inline void set_cell(int x, int y, char *pgrid){
pgrid[x+y*LCD_WIDTH]=1;
}
/* clear grid */
void init_grid(char *pgrid){
int x, y;
for(y=0; y<LCD_HEIGHT; y++){
for(x=0; x<LCD_WIDTH; x++){
pgrid[x+y*LCD_WIDTH] = 0;
}
}
}
/* fill grid with initial pattern */
static void setup_grid(char *pgrid, int pattern){
int n, max;
int xmid, ymid;
max = LCD_HEIGHT*LCD_WIDTH;
switch(pattern){
case PATTERN_RANDOM:
rb->splash(HZ, "Random");
#if 0 /* two oscilators, debug pattern */
set_cell( 0, 1 , pgrid);
set_cell( 1, 1 , pgrid);
set_cell( 2, 1 , pgrid);
set_cell( 6, 7 , pgrid);
set_cell( 7, 7 , pgrid);
set_cell( 8, 7 , pgrid);
#endif
/* fill screen randomly */
for(n=0; n<(max>>2); n++)
pgrid[rb->rand()%max] = 1;
break;
case PATTERN_GROWTH_1:
rb->splash(HZ, "Growth");
xmid = (LCD_WIDTH>>1) - 2;
ymid = (LCD_HEIGHT>>1) - 2;
set_cell(xmid + 6, ymid + 0 , pgrid);
set_cell(xmid + 4, ymid + 1 , pgrid);
set_cell(xmid + 6, ymid + 1 , pgrid);
set_cell(xmid + 7, ymid + 1 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 6, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 3 , pgrid);
set_cell(xmid + 2, ymid + 4 , pgrid);
set_cell(xmid + 0, ymid + 5 , pgrid);
set_cell(xmid + 2, ymid + 5 , pgrid);
break;
case PATTERN_ACORN:
rb->splash(HZ, "Acorn");
xmid = (LCD_WIDTH>>1) - 3;
ymid = (LCD_HEIGHT>>1) - 1;
set_cell(xmid + 1, ymid + 0 , pgrid);
set_cell(xmid + 3, ymid + 1 , pgrid);
set_cell(xmid + 0, ymid + 2 , pgrid);
set_cell(xmid + 1, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 5, ymid + 2 , pgrid);
set_cell(xmid + 6, ymid + 2 , pgrid);
break;
case PATTERN_GROWTH_2:
rb->splash(HZ, "Growth 2");
xmid = (LCD_WIDTH>>1) - 4;
ymid = (LCD_HEIGHT>>1) - 1;
set_cell(xmid + 0, ymid + 0 , pgrid);
set_cell(xmid + 1, ymid + 0 , pgrid);
set_cell(xmid + 2, ymid + 0 , pgrid);
set_cell(xmid + 4, ymid + 0 , pgrid);
set_cell(xmid + 0, ymid + 1 , pgrid);
set_cell(xmid + 3, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 1, ymid + 3 , pgrid);
set_cell(xmid + 2, ymid + 3 , pgrid);
set_cell(xmid + 4, ymid + 3 , pgrid);
set_cell(xmid + 0, ymid + 4 , pgrid);
set_cell(xmid + 2, ymid + 4 , pgrid);
set_cell(xmid + 4, ymid + 4 , pgrid);
break;
case PATTERN_GLIDER_GUN:
rb->splash(HZ, "Glider Gun");
set_cell( 24, 0, pgrid);
set_cell( 22, 1, pgrid);
set_cell( 24, 1, pgrid);
set_cell( 12, 2, pgrid);
set_cell( 13, 2, pgrid);
set_cell( 20, 2, pgrid);
set_cell( 21, 2, pgrid);
set_cell( 34, 2, pgrid);
set_cell( 35, 2, pgrid);
set_cell( 11, 3, pgrid);
set_cell( 15, 3, pgrid);
set_cell( 20, 3, pgrid);
set_cell( 21, 3, pgrid);
set_cell( 34, 3, pgrid);
set_cell( 35, 3, pgrid);
set_cell( 0, 4, pgrid);
set_cell( 1, 4, pgrid);
set_cell( 10, 4, pgrid);
set_cell( 16, 4, pgrid);
set_cell( 20, 4, pgrid);
set_cell( 21, 4, pgrid);
set_cell( 0, 5, pgrid);
set_cell( 1, 5, pgrid);
set_cell( 10, 5, pgrid);
set_cell( 14, 5, pgrid);
set_cell( 16, 5, pgrid);
set_cell( 17, 5, pgrid);
set_cell( 22, 5, pgrid);
set_cell( 24, 5, pgrid);
set_cell( 10, 6, pgrid);
set_cell( 16, 6, pgrid);
set_cell( 24, 6, pgrid);
set_cell( 11, 7, pgrid);
set_cell( 15, 7, pgrid);
set_cell( 12, 8, pgrid);
set_cell( 13, 8, pgrid);
break;
}
}
/* display grid */
static void show_grid(char *pgrid){
int x, y;
int m;
unsigned char age;
rb->lcd_clear_display();
for(y=0; y<LCD_HEIGHT; y++){
for(x=0; x<LCD_WIDTH; x++){
m = y*LCD_WIDTH+x;
age = pgrid[m];
if(age){
#if LCD_DEPTH >= 16
rb->lcd_set_foreground( LCD_RGBPACK( age, age, age ));
#elif LCD_DEPTH == 2
rb->lcd_set_foreground(age>>7);
#endif
rb->lcd_drawpixel(x, y);
}
}
}
if(status_line){
rb->snprintf(buf, sizeof(buf), "g:%d p:%d", generation, population);
#if LCD_DEPTH > 1
rb->lcd_set_foreground( LCD_BLACK );
#endif
rb->lcd_puts(0, 0, buf);
}
rb->lcd_update();
}
/* check state of cell depending on the number of neighbours */
static inline int check_cell(unsigned char *n){
int sum;
int empty_cells = 0;
unsigned char live = 0;
/* count empty neighbour cells */
if(n[0]==0) empty_cells++;
if(n[1]==0) empty_cells++;
if(n[2]==0) empty_cells++;
if(n[3]==0) empty_cells++;
if(n[5]==0) empty_cells++;
if(n[6]==0) empty_cells++;
if(n[7]==0) empty_cells++;
if(n[8]==0) empty_cells++;
/* now we build the number of non-zero neighbours :-P */
sum = 8 - empty_cells;
/* 1st and 2nd rule*/
if (n[4] && (sum<2 || sum>3))
live = false;
/* 3rd rule */
if (n[4] && (sum==2 || sum==3))
live = true;
/* 4rd rule */
if (!n[4] && sum==3)
live = true;
return live;
}
/* Calculate the next generation of cells
*
* The borders of the grid are connected to their opposite sides.
*
*
* To avoid multiplications while accessing data in the 2-d grid
* (pgrid) we try to re-use previously accessed neighbourhood
* information which is stored in an 3x3 array.
*
*/
static void next_generation(char *pgrid, char *pnext_grid){
int x, y;
unsigned char cell;
int age;
int m;
unsigned char n[9];
rb->memset(n, 0, sizeof(n));
/*
* cell is (4) with 8 neighbours
*
* 0|1|2
* -----
* 3|4|5
* -----
* 6|7|8
*/
population = 0;
/* go through the grid */
for(y=0; y<LCD_HEIGHT; y++){
for(x=0; x<LCD_WIDTH; x++){
if(y==0 && x==0){
/* first cell in first row, we have to load all neighbours */
n[0] = pgrid[((x+LCD_WIDTH-1)%LCD_WIDTH)+((y+LCD_HEIGHT-1)%LCD_HEIGHT)*LCD_WIDTH];
n[1] = pgrid[((x )%LCD_WIDTH)+((y+LCD_HEIGHT-1)%LCD_HEIGHT)*LCD_WIDTH];
n[2] = pgrid[((x +1)%LCD_WIDTH)+((y+LCD_HEIGHT-1)%LCD_HEIGHT)*LCD_WIDTH];
n[3] = pgrid[((x+LCD_WIDTH-1)%LCD_WIDTH)+((y )%LCD_HEIGHT)*LCD_WIDTH];
n[5] = pgrid[((x +1)%LCD_WIDTH)+((y )%LCD_HEIGHT)*LCD_WIDTH];
n[6] = pgrid[((x+LCD_WIDTH-1)%LCD_WIDTH)+((y +1)%LCD_HEIGHT)*LCD_WIDTH];
n[7] = pgrid[((x )%LCD_WIDTH)+((y +1)%LCD_HEIGHT)*LCD_WIDTH];
n[8] = pgrid[((x +1)%LCD_WIDTH)+((y +1)%LCD_HEIGHT)*LCD_WIDTH];
} else {
if(x==0){
/* beginning of a row, copy what we know about our predecessor,
0, 1, 3 are known, 2, 5, 6, 7, 8 have to be loaded
*/
n[0] = n[4];
n[1] = n[5];
n[2] = pgrid[((x +1)%LCD_WIDTH)+((y+LCD_HEIGHT-1)%LCD_HEIGHT)*LCD_WIDTH];
n[3] = n[7];
n[5] = pgrid[((x +1)%LCD_WIDTH)+((y )%LCD_HEIGHT)*LCD_WIDTH];
n[6] = pgrid[((x+LCD_WIDTH-1)%LCD_WIDTH)+((y +1)%LCD_HEIGHT)*LCD_WIDTH];
n[7] = pgrid[((x )%LCD_WIDTH)+((y +1)%LCD_HEIGHT)*LCD_WIDTH];
n[8] = pgrid[((x +1)%LCD_WIDTH)+((y +1)%LCD_HEIGHT)*LCD_WIDTH];
} else {
/* we are moving right in a row,
* copy what we know about the neighbours on our left side,
* 2, 5, 8 have to be loaded
*/
n[0] = n[1];
n[1] = n[2];
n[2] = pgrid[((x +1)%LCD_WIDTH)+((y+LCD_HEIGHT-1)%LCD_HEIGHT)*LCD_WIDTH];
n[3] = n[4];
n[5] = pgrid[((x +1)%LCD_WIDTH)+((y )%LCD_HEIGHT)*LCD_WIDTH];
n[6] = n[7];
n[7] = n[8];
n[8] = pgrid[((x +1)%LCD_WIDTH)+((y +1)%LCD_HEIGHT)*LCD_WIDTH];
}
}
m = x+y*LCD_WIDTH;
/* how old is our cell? */
n[4] = pgrid[m];
age = n[4];
/* calculate the cell based on given neighbour information */
cell = check_cell(n);
/* is the actual cell alive? */
if(cell){
population++;
/* prevent overflow */
if(age>252){
pnext_grid[m] = 252;
} else {
pnext_grid[m] = age + 1;
}
}
else
pnext_grid[m] = 0;
#if 0
DEBUGF("x=%d,y=%d\n", x, y);
DEBUGF("cell: %d\n", cell);
DEBUGF("%d %d %d\n", n[0],n[1],n[2]);
DEBUGF("%d %d %d\n", n[3],n[4],n[5]);
DEBUGF("%d %d %d\n", n[6],n[7],n[8]);
DEBUGF("----------------\n");
#endif
}
}
generation++;
}
/**********************************/
/* this is the plugin entry point */
/**********************************/
enum plugin_status plugin_start(struct plugin_api* api, void* parameter)
{
int button = 0;
int quit = 0;
int stop = 0;
int pattern = 0;
char *pgrid;
char *pnext_grid;
char *ptemp;
(void)parameter;
rb = api;
rb->backlight_set_timeout(1);
#if LCD_DEPTH > 1
rb->lcd_set_backdrop(NULL);
rb->lcd_set_background(LCD_DEFAULT_BG);
#endif
/* link pointers to grids */
pgrid = (char *)grid_a;
pnext_grid = (char *)grid_b;
init_grid(pgrid);
setup_grid(pgrid, pattern++);
show_grid(pgrid);
while(!quit) {
button = pluginlib_getaction(rb, TIMEOUT_BLOCK, plugin_contexts, 2);
switch(button) {
case ROCKLIFE_NEXT:
case ROCKLIFE_NEXT_REP:
/* calculate next generation */
next_generation(pgrid, pnext_grid);
/* swap buffers, grid is the new generation */
ptemp = pgrid;
pgrid = pnext_grid;
pnext_grid = ptemp;
/* show new generation */
show_grid(pgrid);
break;
case ROCKLIFE_PLAY_PAUSE:
stop = 0;
while(!stop){
/* calculate next generation */
next_generation(pgrid, pnext_grid);
/* swap buffers, grid is the new generation */
ptemp = pgrid;
pgrid = pnext_grid;
pnext_grid = ptemp;
/* show new generation */
rb->yield();
show_grid(pgrid);
button = pluginlib_getaction(rb, 0, plugin_contexts, 2);
switch(button) {
case ROCKLIFE_PLAY_PAUSE:
case ROCKLIFE_QUIT:
stop = 1;
break;
default:
break;
}
rb->yield();
}
break;
case ROCKLIFE_INIT:
init_grid(pgrid);
setup_grid(pgrid, pattern);
show_grid(pgrid);
pattern++;
pattern%=5;
break;
case ROCKLIFE_STATUS:
status_line = !status_line;
show_grid(pgrid);
break;
case ROCKLIFE_QUIT:
/* quit plugin */
quit=true;
return PLUGIN_OK;
break;
default:
if (rb->default_event_handler(button) == SYS_USB_CONNECTED) {
return PLUGIN_USB_CONNECTED;
}
break;
}
rb->yield();
}
rb->backlight_set_timeout(rb->global_settings->backlight_timeout);
return PLUGIN_OK;
}