rockbox/songdbj/org/tritonus/share/sampled/FloatSampleBuffer.java
Michiel Van Der Kolk 9fee0ec4ca Songdb java version, source. only 1.5 compatible
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@7101 a1c6a512-1295-4272-9138-f99709370657
2005-07-11 15:42:37 +00:00

734 lines
25 KiB
Java

/*
* FloatSampleBuffer.java
*
* This file is part of Tritonus: http://www.tritonus.org/
*/
/*
* Copyright (c) 2000,2004 by Florian Bomers <http://www.bomers.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
|<--- this code is formatted to fit into 80 columns --->|
*/
package org.tritonus.share.sampled;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Random;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioFileFormat;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.spi.AudioFileWriter;
import org.tritonus.share.TDebug;
/**
* A class for small buffers of samples in linear, 32-bit
* floating point format.
* <p>
* It is supposed to be a replacement of the byte[] stream
* architecture of JavaSound, especially for chains of
* AudioInputStreams. Ideally, all involved AudioInputStreams
* handle reading into a FloatSampleBuffer.
* <p>
* Specifications:
* <ol>
* <li>Channels are separated, i.e. for stereo there are 2 float arrays
* with the samples for the left and right channel
* <li>All data is handled in samples, where one sample means
* one float value in each channel
* <li>All samples are normalized to the interval [-1.0...1.0]
* </ol>
* <p>
* When a cascade of AudioInputStreams use FloatSampleBuffer for
* processing, they may implement the interface FloatSampleInput.
* This signals that this stream may provide float buffers
* for reading. The data is <i>not</i> converted back to bytes,
* but stays in a single buffer that is passed from stream to stream.
* For that serves the read(FloatSampleBuffer) method, which is
* then used as replacement for the byte-based read functions of
* AudioInputStream.<br>
* However, backwards compatibility must always be retained, so
* even when an AudioInputStream implements FloatSampleInput,
* it must work the same way when any of the byte-based read methods
* is called.<br>
* As an example, consider the following set-up:<br>
* <ul>
* <li>auAIS is an AudioInputStream (AIS) that reads from an AU file
* in 8bit pcm at 8000Hz. It does not implement FloatSampleInput.
* <li>pcmAIS1 is an AIS that reads from auAIS and converts the data
* to PCM 16bit. This stream implements FloatSampleInput, i.e. it
* can generate float audio data from the ulaw samples.
* <li>pcmAIS2 reads from pcmAIS1 and adds a reverb.
* It operates entirely on floating point samples.
* <li>The method that reads from pcmAIS2 (i.e. AudioSystem.write) does
* not handle floating point samples.
* </ul>
* So, what happens when a block of samples is read from pcmAIS2 ?
* <ol>
* <li>the read(byte[]) method of pcmAIS2 is called
* <li>pcmAIS2 always operates on floating point samples, so
* it uses an own instance of FloatSampleBuffer and initializes
* it with the number of samples requested in the read(byte[])
* method.
* <li>It queries pcmAIS1 for the FloatSampleInput interface. As it
* implements it, pcmAIS2 calls the read(FloatSampleBuffer) method
* of pcmAIS1.
* <li>pcmAIS1 notes that its underlying stream does not support floats,
* so it instantiates a byte buffer which can hold the number of
* samples of the FloatSampleBuffer passed to it. It calls the
* read(byte[]) method of auAIS.
* <li>auAIS fills the buffer with the bytes.
* <li>pcmAIS1 calls the <code>initFromByteArray</code> method of
* the float buffer to initialize it with the 8 bit data.
* <li>Then pcmAIS1 processes the data: as the float buffer is
* normalized, it does nothing with the buffer - and returns
* control to pcmAIS2. The SampleSizeInBits field of the
* AudioFormat of pcmAIS1 defines that it should be 16 bits.
* <li>pcmAIS2 receives the filled buffer from pcmAIS1 and does
* its processing on the buffer - it adds the reverb.
* <li>As pcmAIS2's read(byte[]) method had been called, pcmAIS2
* calls the <code>convertToByteArray</code> method of
* the float buffer to fill the byte buffer with the
* resulting samples.
* </ol>
* <p>
* To summarize, here are some advantages when using a FloatSampleBuffer
* for streaming:
* <ul>
* <li>no conversions from/to bytes need to be done during processing
* <li>the sample size in bits is irrelevant - normalized range
* <li>higher quality for processing
* <li>separated channels (easy process/remove/add channels)
* <li>potentially less copying of audio data, as processing
* the float samples is generally done in-place. The same
* instance of a FloatSampleBuffer may be used from the original data source
* to the final data sink.
* </ul>
* <p>
* Simple benchmarks showed that the processing requirements
* for the conversion to and from float is about the same as
* when converting it to shorts or ints without dithering,
* and significantly higher with dithering. An own implementation
* of a random number generator may improve this.
* <p>
* &quot;Lazy&quot; deletion of samples and channels:<br>
* <ul>
* <li>When the sample count is reduced, the arrays are not resized, but
* only the member variable <code>sampleCount</code> is reduced. A subsequent
* increase of the sample count (which will occur frequently), will check
* that and eventually reuse the existing array.
* <li>When a channel is deleted, it is not removed from memory but only
* hidden. Subsequent insertions of a channel will check whether a hidden channel
* can be reused.
* </ul>
* The lazy mechanism can save many array instantiation (and copy-) operations
* for the sake of performance. All relevant methods exist in a second
* version which allows explicitely to disable lazy deletion.
* <p>
* Use the <code>reset</code> functions to clear the memory and remove
* hidden samples and channels.
* <p>
* Note that the lazy mechanism implies that the arrays returned
* from <code>getChannel(int)</code> may have a greater size
* than getSampleCount(). Consequently, be sure to never rely on the
* length field of the sample arrays.
* <p>
* As an example, consider a chain of converters that all act
* on the same instance of FloatSampleBuffer. Some converters
* may decrease the sample count (e.g. sample rate converter) and
* delete channels (e.g. PCM2PCM converter). So, processing of one
* block will decrease both. For the next block, all starts
* from the beginning. With the lazy mechanism, all float arrays
* are only created once for processing all blocks.<br>
* Having lazy disabled would require for each chunk that is processed
* <ol>
* <li>new instantiation of all channel arrays
* at the converter chain beginning as they have been
* either deleted or decreased in size during processing of the
* previous chunk, and
* <li>re-instantiation of all channel arrays for
* the reduction of the sample count.
* </ol>
* <p>
* Dithering:<br>
* By default, this class uses dithering for reduction
* of sample width (e.g. original data was 16bit, target
* data is 8bit). As dithering may be needed in other cases
* (especially when the float samples are processed using DSP
* algorithms), or it is preferred to switch it off,
* dithering can be explicitely switched on or off with
* the method setDitherMode(int).<br>
* For a discussion about dithering, see
* <a href="http://www.iqsoft.com/IQSMagazine/BobsSoapbox/Dithering.htm">
* here</a> and
* <a href="http://www.iqsoft.com/IQSMagazine/BobsSoapbox/Dithering2.htm">
* here</a>.
*
* @author Florian Bomers
*/
public class FloatSampleBuffer {
/** Whether the functions without lazy parameter are lazy or not. */
private static final boolean LAZY_DEFAULT=true;
private ArrayList<float[]> channels = new ArrayList<float[]>(); // contains for each channel a float array
private int sampleCount=0;
private int channelCount=0;
private float sampleRate=0;
private int originalFormatType=0;
/** Constant for setDitherMode: dithering will be enabled if sample size is decreased */
public static final int DITHER_MODE_AUTOMATIC=0;
/** Constant for setDitherMode: dithering will be done */
public static final int DITHER_MODE_ON=1;
/** Constant for setDitherMode: dithering will not be done */
public static final int DITHER_MODE_OFF=2;
private float ditherBits = FloatSampleTools.DEFAULT_DITHER_BITS;
// e.g. the sample rate converter may want to force dithering
private int ditherMode = DITHER_MODE_AUTOMATIC;
//////////////////////////////// initialization /////////////////////////////////
/**
* Create an instance with initially no channels.
*/
public FloatSampleBuffer() {
this(0,0,1);
}
/**
* Create an empty FloatSampleBuffer with the specified number of channels,
* samples, and the specified sample rate.
*/
public FloatSampleBuffer(int channelCount, int sampleCount, float sampleRate) {
init(channelCount, sampleCount, sampleRate, LAZY_DEFAULT);
}
/**
* Creates a new instance of FloatSampleBuffer and initializes
* it with audio data given in the interleaved byte array <code>buffer</code>.
*/
public FloatSampleBuffer(byte[] buffer, int offset, int byteCount,
AudioFormat format) {
this(format.getChannels(),
byteCount/(format.getSampleSizeInBits()/8*format.getChannels()),
format.getSampleRate());
initFromByteArray(buffer, offset, byteCount, format);
}
protected void init(int channelCount, int sampleCount, float sampleRate) {
init(channelCount, sampleCount, sampleRate, LAZY_DEFAULT);
}
protected void init(int channelCount, int sampleCount, float sampleRate, boolean lazy) {
if (channelCount<0 || sampleCount<0) {
throw new IllegalArgumentException(
"invalid parameters in initialization of FloatSampleBuffer.");
}
setSampleRate(sampleRate);
if (getSampleCount()!=sampleCount || getChannelCount()!=channelCount) {
createChannels(channelCount, sampleCount, lazy);
}
}
private void createChannels(int channelCount, int sampleCount, boolean lazy) {
this.sampleCount=sampleCount;
// lazy delete of all channels. Intentionally lazy !
this.channelCount=0;
for (int ch=0; ch<channelCount; ch++) {
insertChannel(ch, false, lazy);
}
if (!lazy) {
// remove hidden channels
while (channels.size()>channelCount) {
channels.remove(channels.size()-1);
}
}
}
/**
* Resets this buffer with the audio data specified
* in the arguments. This FloatSampleBuffer's sample count
* will be set to <code>byteCount / format.getFrameSize()</code>.
* If LAZY_DEFAULT is true, it will use lazy deletion.
*
* @throws IllegalArgumentException
*/
public void initFromByteArray(byte[] buffer, int offset, int byteCount,
AudioFormat format) {
initFromByteArray(buffer, offset, byteCount, format, LAZY_DEFAULT);
}
/**
* Resets this buffer with the audio data specified
* in the arguments. This FloatSampleBuffer's sample count
* will be set to <code>byteCount / format.getFrameSize()</code>.
*
* @param lazy if true, then existing channels will be tried to be re-used
* to minimize garbage collection.
* @throws IllegalArgumentException
*/
public void initFromByteArray(byte[] buffer, int offset, int byteCount,
AudioFormat format, boolean lazy) {
if (offset+byteCount>buffer.length) {
throw new IllegalArgumentException
("FloatSampleBuffer.initFromByteArray: buffer too small.");
}
int thisSampleCount = byteCount/format.getFrameSize();
init(format.getChannels(), thisSampleCount, format.getSampleRate(), lazy);
// save format for automatic dithering mode
originalFormatType = FloatSampleTools.getFormatType(format);
FloatSampleTools.byte2float(buffer, offset,
channels, 0, sampleCount, format);
}
/**
* Resets this sample buffer with the data in <code>source</code>.
*/
public void initFromFloatSampleBuffer(FloatSampleBuffer source) {
init(source.getChannelCount(), source.getSampleCount(), source.getSampleRate());
for (int ch=0; ch<getChannelCount(); ch++) {
System.arraycopy(source.getChannel(ch), 0, getChannel(ch), 0, sampleCount);
}
}
/**
* Deletes all channels, frees memory...
* This also removes hidden channels by lazy remove.
*/
public void reset() {
init(0,0,1, false);
}
/**
* Destroys any existing data and creates new channels.
* It also destroys lazy removed channels and samples.
*/
public void reset(int channels, int sampleCount, float sampleRate) {
init(channels, sampleCount, sampleRate, false);
}
//////////////////////////////// conversion back to bytes /////////////////////////////////
/**
* @return the required size of the buffer
* for calling convertToByteArray(..) is called
*/
public int getByteArrayBufferSize(AudioFormat format) {
// make sure this format is supported
FloatSampleTools.getFormatType(format);
return format.getFrameSize() * getSampleCount();
}
/**
* Writes this sample buffer's audio data to <code>buffer</code>
* as an interleaved byte array.
* <code>buffer</code> must be large enough to hold all data.
*
* @throws IllegalArgumentException when buffer is too small or <code>format</code> doesn't match
* @return number of bytes written to <code>buffer</code>
*/
public int convertToByteArray(byte[] buffer, int offset, AudioFormat format) {
int byteCount = getByteArrayBufferSize(format);
if (offset + byteCount > buffer.length) {
throw new IllegalArgumentException
("FloatSampleBuffer.convertToByteArray: buffer too small.");
}
if (format.getSampleRate()!=getSampleRate()) {
throw new IllegalArgumentException
("FloatSampleBuffer.convertToByteArray: different samplerates.");
}
if (format.getChannels()!=getChannelCount()) {
throw new IllegalArgumentException
("FloatSampleBuffer.convertToByteArray: different channel count.");
}
FloatSampleTools.float2byte(channels, 0, buffer, offset, getSampleCount(),
format, getConvertDitherBits(FloatSampleTools.getFormatType(format)));
return byteCount;
}
/**
* Creates a new byte[] buffer, fills it with the audio data, and returns it.
* @throws IllegalArgumentException when sample rate or channels do not match
* @see #convertToByteArray(byte[], int, AudioFormat)
*/
public byte[] convertToByteArray(AudioFormat format) {
// throws exception when sampleRate doesn't match
// creates a new byte[] buffer and returns it
byte[] res = new byte[getByteArrayBufferSize(format)];
convertToByteArray(res, 0, format);
return res;
}
//////////////////////////////// actions /////////////////////////////////
/**
* Resizes this buffer.
* <p>If <code>keepOldSamples</code> is true, as much as possible samples are
* retained. If the buffer is enlarged, silence is added at the end.
* If <code>keepOldSamples</code> is false, existing samples are discarded
* and the buffer contains random samples.
*/
public void changeSampleCount(int newSampleCount, boolean keepOldSamples) {
int oldSampleCount=getSampleCount();
if (oldSampleCount==newSampleCount) {
return;
}
Object[] oldChannels=null;
if (keepOldSamples) {
oldChannels=getAllChannels();
}
init(getChannelCount(), newSampleCount, getSampleRate());
if (keepOldSamples) {
// copy old channels and eventually silence out new samples
int copyCount=newSampleCount<oldSampleCount?
newSampleCount:oldSampleCount;
for (int ch=0; ch<getChannelCount(); ch++) {
float[] oldSamples=(float[]) oldChannels[ch];
float[] newSamples=(float[]) getChannel(ch);
if (oldSamples!=newSamples) {
// if this sample array was not object of lazy delete
System.arraycopy(oldSamples, 0, newSamples, 0, copyCount);
}
if (oldSampleCount<newSampleCount) {
// silence out new samples
for (int i=oldSampleCount; i<newSampleCount; i++) {
newSamples[i]=0.0f;
}
}
}
}
}
public void makeSilence() {
// silence all channels
if (getChannelCount()>0) {
makeSilence(0);
for (int ch=1; ch<getChannelCount(); ch++) {
copyChannel(0, ch);
}
}
}
public void makeSilence(int channel) {
float[] samples=getChannel(channel);
for (int i=0; i<getSampleCount(); i++) {
samples[i]=0.0f;
}
}
public void addChannel(boolean silent) {
// creates new, silent channel
insertChannel(getChannelCount(), silent);
}
/**
* Insert a (silent) channel at position <code>index</code>.
* If LAZY_DEFAULT is true, this is done lazily.
*/
public void insertChannel(int index, boolean silent) {
insertChannel(index, silent, LAZY_DEFAULT);
}
/**
* Inserts a channel at position <code>index</code>.
* <p>If <code>silent</code> is true, the new channel will be silent.
* Otherwise it will contain random data.
* <p>If <code>lazy</code> is true, hidden channels which have at least getSampleCount()
* elements will be examined for reusage as inserted channel.<br>
* If <code>lazy</code> is false, still hidden channels are reused,
* but it is assured that the inserted channel has exactly getSampleCount() elements,
* thus not wasting memory.
*/
public void insertChannel(int index, boolean silent, boolean lazy) {
int physSize=channels.size();
int virtSize=getChannelCount();
float[] newChannel=null;
if (physSize>virtSize) {
// there are hidden channels. Try to use one.
for (int ch=virtSize; ch<physSize; ch++) {
float[] thisChannel=(float[]) channels.get(ch);
if ((lazy && thisChannel.length>=getSampleCount())
|| (!lazy && thisChannel.length==getSampleCount())) {
// we found a matching channel. Use it !
newChannel=thisChannel;
channels.remove(ch);
break;
}
}
}
if (newChannel==null) {
newChannel=new float[getSampleCount()];
}
channels.add(index, newChannel);
this.channelCount++;
if (silent) {
makeSilence(index);
}
}
/** performs a lazy remove of the channel */
public void removeChannel(int channel) {
removeChannel(channel, LAZY_DEFAULT);
}
/**
* Removes a channel.
* If lazy is true, the channel is not physically removed, but only hidden.
* These hidden channels are reused by subsequent calls to addChannel
* or insertChannel.
*/
public void removeChannel(int channel, boolean lazy) {
if (!lazy) {
channels.remove(channel);
} else if (channel<getChannelCount()-1) {
// if not already, move this channel at the end
channels.add(channels.remove(channel));
}
channelCount--;
}
/**
* both source and target channel have to exist. targetChannel
* will be overwritten
*/
public void copyChannel(int sourceChannel, int targetChannel) {
float[] source=getChannel(sourceChannel);
float[] target=getChannel(targetChannel);
System.arraycopy(source, 0, target, 0, getSampleCount());
}
/**
* Copies data inside all channel. When the 2 regions
* overlap, the behavior is not specified.
*/
public void copy(int sourceIndex, int destIndex, int length) {
for (int i=0; i<getChannelCount(); i++) {
copy(i, sourceIndex, destIndex, length);
}
}
/**
* Copies data inside a channel. When the 2 regions
* overlap, the behavior is not specified.
*/
public void copy(int channel, int sourceIndex, int destIndex, int length) {
float[] data=getChannel(channel);
int bufferCount=getSampleCount();
if (sourceIndex+length>bufferCount || destIndex+length>bufferCount
|| sourceIndex<0 || destIndex<0 || length<0) {
throw new IndexOutOfBoundsException("parameters exceed buffer size");
}
System.arraycopy(data, sourceIndex, data, destIndex, length);
}
/**
* Mix up of 1 channel to n channels.<br>
* It copies the first channel to all newly created channels.
* @param targetChannelCount the number of channels that this sample buffer
* will have after expanding. NOT the number of
* channels to add !
* @exception IllegalArgumentException if this buffer does not have one
* channel before calling this method.
*/
public void expandChannel(int targetChannelCount) {
// even more sanity...
if (getChannelCount()!=1) {
throw new IllegalArgumentException(
"FloatSampleBuffer: can only expand channels for mono signals.");
}
for (int ch=1; ch<targetChannelCount; ch++) {
addChannel(false);
copyChannel(0, ch);
}
}
/**
* Mix down of n channels to one channel.<br>
* It uses a simple mixdown: all other channels are added to first channel.<br>
* The volume is NOT lowered !
* Be aware, this might cause clipping when converting back
* to integer samples.
*/
public void mixDownChannels() {
float[] firstChannel=getChannel(0);
int sampleCount=getSampleCount();
int channelCount=getChannelCount();
for (int ch=channelCount-1; ch>0; ch--) {
float[] thisChannel=getChannel(ch);
for (int i=0; i<sampleCount; i++) {
firstChannel[i]+=thisChannel[i];
}
removeChannel(ch);
}
}
/**
* Initializes audio data from the provided byte array.
* The float samples are written at <code>destOffset</code>.
* This FloatSampleBuffer must be big enough to accomodate the samples.
* <p>
* <code>srcBuffer</code> is read from index <code>srcOffset</code>
* to <code>(srcOffset + (lengthInSamples * format.getFrameSize()))</code.
*
* @param input the input buffer in interleaved audio data
* @param inByteOffset the offset in <code>input</code>
* @param format input buffer's audio format
* @param floatOffset the offset where to write the float samples
* @param frameCount number of samples to write to this sample buffer
*/
public void setSamplesFromBytes(byte[] input, int inByteOffset, AudioFormat format,
int floatOffset, int frameCount) {
if (floatOffset < 0 || frameCount < 0 || inByteOffset < 0) {
throw new IllegalArgumentException
("FloatSampleBuffer.setSamplesFromBytes: negative inByteOffset, floatOffset, or frameCount");
}
if (inByteOffset + (frameCount * format.getFrameSize()) > input.length) {
throw new IllegalArgumentException
("FloatSampleBuffer.setSamplesFromBytes: input buffer too small.");
}
if (floatOffset + frameCount > getSampleCount()) {
throw new IllegalArgumentException
("FloatSampleBuffer.setSamplesFromBytes: frameCount too large");
}
FloatSampleTools.byte2float(input, inByteOffset, channels, floatOffset, frameCount, format);
}
//////////////////////////////// properties /////////////////////////////////
public int getChannelCount() {
return channelCount;
}
public int getSampleCount() {
return sampleCount;
}
public float getSampleRate() {
return sampleRate;
}
/**
* Sets the sample rate of this buffer.
* NOTE: no conversion is done. The samples are only re-interpreted.
*/
public void setSampleRate(float sampleRate) {
if (sampleRate<=0) {
throw new IllegalArgumentException
("Invalid samplerate for FloatSampleBuffer.");
}
this.sampleRate=sampleRate;
}
/**
* NOTE: the returned array may be larger than sampleCount. So in any case,
* sampleCount is to be respected.
*/
public float[] getChannel(int channel) {
if (channel<0 || channel>=getChannelCount()) {
throw new IllegalArgumentException(
"FloatSampleBuffer: invalid channel number.");
}
return (float[]) channels.get(channel);
}
public Object[] getAllChannels() {
Object[] res=new Object[getChannelCount()];
for (int ch=0; ch<getChannelCount(); ch++) {
res[ch]=getChannel(ch);
}
return res;
}
/**
* Set the number of bits for dithering.
* Typically, a value between 0.2 and 0.9 gives best results.
* <p>Note: this value is only used, when dithering is actually performed.
*/
public void setDitherBits(float ditherBits) {
if (ditherBits<=0) {
throw new IllegalArgumentException("DitherBits must be greater than 0");
}
this.ditherBits=ditherBits;
}
public float getDitherBits() {
return ditherBits;
}
/**
* Sets the mode for dithering.
* This can be one of:
* <ul><li>DITHER_MODE_AUTOMATIC: it is decided automatically,
* whether dithering is necessary - in general when sample size is
* decreased.
* <li>DITHER_MODE_ON: dithering will be forced
* <li>DITHER_MODE_OFF: dithering will not be done.
* </ul>
*/
public void setDitherMode(int mode) {
if (mode!=DITHER_MODE_AUTOMATIC
&& mode!=DITHER_MODE_ON
&& mode!=DITHER_MODE_OFF) {
throw new IllegalArgumentException("Illegal DitherMode");
}
this.ditherMode=mode;
}
public int getDitherMode() {
return ditherMode;
}
/**
* @return the ditherBits parameter for the float2byte functions
*/
protected float getConvertDitherBits(int newFormatType) {
// let's see whether dithering is necessary
boolean doDither = false;
switch (ditherMode) {
case DITHER_MODE_AUTOMATIC:
doDither=(originalFormatType & FloatSampleTools.F_SAMPLE_WIDTH_MASK)>
(newFormatType & FloatSampleTools.F_SAMPLE_WIDTH_MASK);
break;
case DITHER_MODE_ON:
doDither=true;
break;
case DITHER_MODE_OFF:
doDither=false;
break;
}
return doDither?ditherBits:0.0f;
}
}