85aa3a8d38
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@13830 a1c6a512-1295-4272-9138-f99709370657
1775 lines
50 KiB
C
1775 lines
50 KiB
C
/*
|
|
* WMA compatible decoder
|
|
* Copyright (c) 2002 The FFmpeg Project.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
/**
|
|
* @file wmadec.c
|
|
* WMA compatible decoder.
|
|
*/
|
|
|
|
#include <codecs.h>
|
|
#include <codecs/lib/codeclib.h>
|
|
#include "asf.h"
|
|
#include "wmadec.h"
|
|
#include "wmafixed.c"
|
|
|
|
#ifdef CPU_ARM
|
|
static inline
|
|
void CMUL(fixed32 *x, fixed32 *y,
|
|
fixed32 a, fixed32 b,
|
|
fixed32 t, fixed32 v)
|
|
{
|
|
/* This version loses one bit of precision. Could be solved at the cost
|
|
* of 2 extra cycles if it becomes an issue. */
|
|
int x1, y1, l;
|
|
asm(
|
|
"smull %[l], %[y1], %[b], %[t] \n"
|
|
"smlal %[l], %[y1], %[a], %[v] \n"
|
|
"rsb %[b], %[b], #0 \n"
|
|
"smull %[l], %[x1], %[a], %[t] \n"
|
|
"smlal %[l], %[x1], %[b], %[v] \n"
|
|
: [l] "=&r" (l), [x1]"=&r" (x1), [y1]"=&r" (y1), [b] "+r" (b)
|
|
: [a] "r" (a), [t] "r" (t), [v] "r" (v)
|
|
: "cc"
|
|
);
|
|
*x = x1 << 1;
|
|
*y = y1 << 1;
|
|
}
|
|
#elif defined CPU_COLDFIRE
|
|
static inline
|
|
void CMUL(fixed32 *x, fixed32 *y,
|
|
fixed32 a, fixed32 b,
|
|
fixed32 t, fixed32 v)
|
|
{
|
|
asm volatile ("mac.l %[a], %[t], %%acc0;"
|
|
"msac.l %[b], %[v], %%acc0;"
|
|
"mac.l %[b], %[t], %%acc1;"
|
|
"mac.l %[a], %[v], %%acc1;"
|
|
"movclr.l %%acc0, %[a];"
|
|
"move.l %[a], (%[x]);"
|
|
"movclr.l %%acc1, %[a];"
|
|
"move.l %[a], (%[y]);"
|
|
: [a] "+&r" (a)
|
|
: [x] "a" (x), [y] "a" (y),
|
|
[b] "r" (b), [t] "r" (t), [v] "r" (v)
|
|
: "cc", "memory");
|
|
}
|
|
#else
|
|
// PJJ : reinstate macro
|
|
void CMUL(fixed32 *pre,
|
|
fixed32 *pim,
|
|
fixed32 are,
|
|
fixed32 aim,
|
|
fixed32 bre,
|
|
fixed32 bim)
|
|
{
|
|
//int64_t x,y;
|
|
fixed32 _aref = are;
|
|
fixed32 _aimf = aim;
|
|
fixed32 _bref = bre;
|
|
fixed32 _bimf = bim;
|
|
fixed32 _r1 = fixmul32b(_bref, _aref);
|
|
fixed32 _r2 = fixmul32b(_bimf, _aimf);
|
|
fixed32 _r3 = fixmul32b(_bref, _aimf);
|
|
fixed32 _r4 = fixmul32b(_bimf, _aref);
|
|
*pre = _r1 - _r2;
|
|
*pim = _r3 + _r4;
|
|
|
|
}
|
|
#endif
|
|
|
|
typedef struct CoefVLCTable
|
|
{
|
|
int n; /* total number of codes */
|
|
const uint32_t *huffcodes; /* VLC bit values */
|
|
const uint8_t *huffbits; /* VLC bit size */
|
|
const uint16_t *levels; /* table to build run/level tables */
|
|
}
|
|
CoefVLCTable;
|
|
|
|
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
|
|
int fft_calc(FFTContext *s, FFTComplex *z);
|
|
|
|
|
|
fixed32 coefsarray[MAX_CHANNELS][BLOCK_MAX_SIZE] IBSS_ATTR;
|
|
|
|
//static variables that replace malloced stuff
|
|
fixed32 stat0[2048], stat1[1024], stat2[512], stat3[256], stat4[128]; //these are the MDCT reconstruction windows
|
|
|
|
fixed32 *tcosarray[5], *tsinarray[5];
|
|
fixed32 tcos0[1024], tcos1[512], tcos2[256], tcos3[128], tcos4[64]; //these are the sin and cos rotations used by the MDCT
|
|
fixed32 tsin0[1024], tsin1[512], tsin2[256], tsin3[128], tsin4[64];
|
|
|
|
FFTComplex *exparray[5]; //these are the fft lookup tables
|
|
|
|
uint16_t *revarray[5];
|
|
|
|
FFTComplex exptab0[512] IBSS_ATTR;
|
|
uint16_t revtab0[1024];
|
|
|
|
uint16_t *runtabarray[2], *levtabarray[2]; //these are VLC lookup tables
|
|
|
|
uint16_t runtab0[1336], runtab1[1336], levtab0[1336], levtab1[1336]; //these could be made smaller since only one can be 1336
|
|
|
|
FFTComplex mdct_tmp[1] ; /* dummy var */
|
|
|
|
//may also be too large by ~ 1KB each?
|
|
static VLC_TYPE vlcbuf1[6144][2];
|
|
static VLC_TYPE vlcbuf2[3584][2];
|
|
static VLC_TYPE vlcbuf3[1536][2] IBSS_ATTR; //small so lets try iram
|
|
|
|
|
|
|
|
|
|
#include "wmadata.h" // PJJ
|
|
|
|
/**
|
|
* The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
|
|
* done
|
|
*/
|
|
int fft_inits(FFTContext *s, int nbits, int inverse)
|
|
{
|
|
int i, n;
|
|
fixed32 c1, s1;
|
|
int s2;
|
|
|
|
s->nbits = nbits;
|
|
n = 1 << nbits;
|
|
|
|
s->inverse = inverse;
|
|
|
|
s2 = inverse ? 1 : -1;
|
|
|
|
if(nbits == 10){ //we folded all these stupid tables into the nbits==10 table, so don't make it for the others!
|
|
//should probably just remove exptab building out of this function and do it higher up for neatness
|
|
for(i=0;i<(n/2);++i)
|
|
{
|
|
//we're going to redo this in CORDIC fixed format! Hold onto your butts
|
|
|
|
/*
|
|
input to cordic is from 0 ->2pi with 0->0 and 2^32-1 ->2pi
|
|
output, which is what we'll store the variables as is
|
|
-1->-2^31 and 1->2^31-1
|
|
|
|
*/
|
|
|
|
fixed32 ifix = itofix32(i);
|
|
fixed32 nfix = itofix32(n);
|
|
fixed32 res = fixdiv32(ifix,nfix); //this is really bad here since nfix can be as large as 1024 !
|
|
//also, make this a shift, since its a fucking power of two divide
|
|
//alpha = fixmul32(TWO_M_PI_F, res);
|
|
//ct = fixcos32(alpha); //need to correct alpha for 0->2pi scale
|
|
//st = fixsin32(alpha);// * s2;
|
|
|
|
s1 = fsincos(res<<16, &c1); //does sin and cos in one pass!
|
|
|
|
//I really have my doubts about the correctness of the alpha to cordic mapping here, but it seems to work well enough
|
|
//double check this later!
|
|
|
|
exptab0[i].re = c1;
|
|
exptab0[i].im = s1*s2;
|
|
}
|
|
}
|
|
// s->fft_calc = fft_calc;
|
|
s->exptab1 = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* butter fly op */
|
|
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
|
{\
|
|
fixed32 ax, ay, bx, by;\
|
|
bx=pre1;\
|
|
by=pim1;\
|
|
ax=qre1;\
|
|
ay=qim1;\
|
|
pre = (bx + ax);\
|
|
pim = (by + ay);\
|
|
qre = (bx - ax);\
|
|
qim = (by - ay);\
|
|
}
|
|
|
|
|
|
int fft_calc_unscaled(FFTContext *s, FFTComplex *z)
|
|
{
|
|
int ln = s->nbits;
|
|
int j, np, np2;
|
|
int nblocks, nloops;
|
|
register FFTComplex *p, *q;
|
|
// FFTComplex *exptab = s->exptab;
|
|
int l;
|
|
fixed32 tmp_re, tmp_im;
|
|
int tabshift = 10-ln;
|
|
|
|
np = 1 << ln;
|
|
|
|
|
|
/* pass 0 */
|
|
|
|
p=&z[0];
|
|
j=(np >> 1);
|
|
do
|
|
{
|
|
BF(p[0].re, p[0].im, p[1].re, p[1].im,
|
|
p[0].re, p[0].im, p[1].re, p[1].im);
|
|
p+=2;
|
|
}
|
|
while (--j != 0);
|
|
|
|
/* pass 1 */
|
|
|
|
|
|
p=&z[0];
|
|
j=np >> 2;
|
|
if (s->inverse)
|
|
{
|
|
do
|
|
{
|
|
BF(p[0].re, p[0].im, p[2].re, p[2].im,
|
|
p[0].re, p[0].im, p[2].re, p[2].im);
|
|
BF(p[1].re, p[1].im, p[3].re, p[3].im,
|
|
p[1].re, p[1].im, -p[3].im, p[3].re);
|
|
p+=4;
|
|
}
|
|
while (--j != 0);
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
BF(p[0].re, p[0].im, p[2].re, p[2].im,
|
|
p[0].re, p[0].im, p[2].re, p[2].im);
|
|
BF(p[1].re, p[1].im, p[3].re, p[3].im,
|
|
p[1].re, p[1].im, p[3].im, -p[3].re);
|
|
p+=4;
|
|
}
|
|
while (--j != 0);
|
|
}
|
|
/* pass 2 .. ln-1 */
|
|
|
|
nblocks = np >> 3;
|
|
nloops = 1 << 2;
|
|
np2 = np >> 1;
|
|
do
|
|
{
|
|
p = z;
|
|
q = z + nloops;
|
|
for (j = 0; j < nblocks; ++j)
|
|
{
|
|
BF(p->re, p->im, q->re, q->im,
|
|
p->re, p->im, q->re, q->im);
|
|
|
|
p++;
|
|
q++;
|
|
for(l = nblocks; l < np2; l += nblocks)
|
|
{
|
|
CMUL(&tmp_re, &tmp_im, exptab0[(l<<tabshift)].re, exptab0[(l<<tabshift)].im, q->re, q->im);
|
|
//CMUL(&tmp_re, &tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
|
|
BF(p->re, p->im, q->re, q->im,
|
|
p->re, p->im, tmp_re, tmp_im);
|
|
p++;
|
|
q++;
|
|
}
|
|
|
|
p += nloops;
|
|
q += nloops;
|
|
}
|
|
nblocks = nblocks >> 1;
|
|
nloops = nloops << 1;
|
|
}
|
|
while (nblocks != 0);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* init MDCT or IMDCT computation.
|
|
*/
|
|
int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
|
|
{
|
|
int n, n4, i;
|
|
// fixed32 alpha;
|
|
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
n = 1 << nbits; //nbits ranges from 12 to 8 inclusive
|
|
s->nbits = nbits;
|
|
s->n = n;
|
|
n4 = n >> 2;
|
|
s->tcos = tcosarray[12-nbits];
|
|
s->tsin = tsinarray[12-nbits];
|
|
for(i=0;i<n4;i++)
|
|
{
|
|
//fixed32 pi2 = fixmul32(0x20000, M_PI_F);
|
|
fixed32 ip = itofix32(i) + 0x2000;
|
|
ip = ip >> nbits;
|
|
//ip = fixdiv32(ip,itofix32(n)); // PJJ optimize
|
|
//alpha = fixmul32(TWO_M_PI_F, ip);
|
|
//s->tcos[i] = -fixcos32(alpha); //alpha between 0 and pi/2
|
|
//s->tsin[i] = -fixsin32(alpha);
|
|
|
|
s->tsin[i] = - fsincos(ip<<16, &(s->tcos[i])); //I can't remember why this works, but it seems to agree for ~24 bits, maybe more!
|
|
s->tcos[i] *=-1;
|
|
}
|
|
if (fft_inits(&s->fft, s->nbits - 2, inverse) < 0)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
// av_freep(&s->tcos);
|
|
// av_freep(&s->tsin);
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Compute inverse MDCT of size N = 2^nbits
|
|
* @param output N samples
|
|
* @param input N/2 samples
|
|
* @param tmp N/2 samples
|
|
*/
|
|
void ff_imdct_calc(MDCTContext *s,
|
|
fixed32 *output,
|
|
fixed32 *input)
|
|
{
|
|
int k, n8, n4, n2, n, j,scale;
|
|
const fixed32 *tcos = s->tcos;
|
|
const fixed32 *tsin = s->tsin;
|
|
const fixed32 *in1, *in2;
|
|
FFTComplex *z1 = (FFTComplex *)output;
|
|
FFTComplex *z2 = (FFTComplex *)input;
|
|
int revtabshift = 12 - s->nbits;
|
|
|
|
n = 1 << s->nbits;
|
|
|
|
n2 = n >> 1;
|
|
n4 = n >> 2;
|
|
n8 = n >> 3;
|
|
|
|
|
|
/* pre rotation */
|
|
in1 = input;
|
|
in2 = input + n2 - 1;
|
|
|
|
for(k = 0; k < n4; k++)
|
|
{
|
|
j=revtab0[k<<revtabshift];
|
|
CMUL(&z1[j].re, &z1[j].im, *in2, *in1, tcos[k], tsin[k]);
|
|
in1 += 2;
|
|
in2 -= 2;
|
|
}
|
|
|
|
scale = fft_calc_unscaled(&s->fft, z1);
|
|
|
|
/* post rotation + reordering */
|
|
|
|
for(k = 0; k < n4; k++)
|
|
{
|
|
CMUL(&z2[k].re, &z2[k].im, (z1[k].re), (z1[k].im), tcos[k], tsin[k]);
|
|
}
|
|
|
|
for(k = 0; k < n8; k++)
|
|
{
|
|
fixed32 r1,r2,r3,r4,r1n,r2n,r3n;
|
|
|
|
r1 = z2[n8 + k].im;
|
|
r1n = r1 * -1;
|
|
r2 = z2[n8-1-k].re;
|
|
r2n = r2 * -1;
|
|
r3 = z2[k+n8].re;
|
|
r3n = r3 * -1;
|
|
r4 = z2[n8-k-1].im;
|
|
|
|
output[2*k] = r1n;
|
|
output[n2-1-2*k] = r1;
|
|
|
|
output[2*k+1] = r2;
|
|
output[n2-1-2*k-1] = r2n;
|
|
|
|
output[n2 + 2*k]= r3n;
|
|
output[n-1- 2*k]= r3n;
|
|
|
|
output[n2 + 2*k+1]= r4;
|
|
output[n-2 - 2 * k] = r4;
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Helper functions for wma_window.
|
|
*
|
|
*
|
|
*/
|
|
|
|
static inline void vector_fmul_add_add(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
|
|
int i;
|
|
for(i=0; i<len; i++)
|
|
dst[i] = fixmul32b(src0[i], src1[i]) + dst[i];
|
|
}
|
|
|
|
static inline void vector_fmul_reverse(fixed32 *dst, const fixed32 *src0, const fixed32 *src1, int len){
|
|
int i;
|
|
src1 += len-1;
|
|
for(i=0; i<len; i++)
|
|
dst[i] = fixmul32b(src0[i], src1[-i]);
|
|
}
|
|
|
|
/**
|
|
* Apply MDCT window and add into output.
|
|
*
|
|
* We ensure that when the windows overlap their squared sum
|
|
* is always 1 (MDCT reconstruction rule).
|
|
*/
|
|
static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out)
|
|
{
|
|
//float *in = s->output;
|
|
int block_len, bsize, n;
|
|
|
|
/* left part */
|
|
if (s->block_len_bits <= s->prev_block_len_bits) {
|
|
block_len = s->block_len;
|
|
bsize = s->frame_len_bits - s->block_len_bits;
|
|
|
|
vector_fmul_add_add(out, in, s->windows[bsize], block_len);
|
|
|
|
} else {
|
|
block_len = 1 << s->prev_block_len_bits;
|
|
n = (s->block_len - block_len) / 2;
|
|
bsize = s->frame_len_bits - s->prev_block_len_bits;
|
|
|
|
vector_fmul_add_add(out+n, in+n, s->windows[bsize], block_len);
|
|
|
|
memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32));
|
|
}
|
|
|
|
out += s->block_len;
|
|
in += s->block_len;
|
|
|
|
/* right part */
|
|
if (s->block_len_bits <= s->next_block_len_bits) {
|
|
block_len = s->block_len;
|
|
bsize = s->frame_len_bits - s->block_len_bits;
|
|
|
|
vector_fmul_reverse(out, in, s->windows[bsize], block_len);
|
|
|
|
} else {
|
|
block_len = 1 << s->next_block_len_bits;
|
|
n = (s->block_len - block_len) / 2;
|
|
bsize = s->frame_len_bits - s->next_block_len_bits;
|
|
|
|
memcpy(out, in, n*sizeof(fixed32));
|
|
|
|
vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
|
|
|
|
memset(out+n+block_len, 0, n*sizeof(fixed32));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/* XXX: use same run/length optimization as mpeg decoders */
|
|
static void init_coef_vlc(VLC *vlc,
|
|
uint16_t **prun_table, uint16_t **plevel_table,
|
|
const CoefVLCTable *vlc_table, int tab)
|
|
{
|
|
int n = vlc_table->n;
|
|
const uint8_t *table_bits = vlc_table->huffbits;
|
|
const uint32_t *table_codes = vlc_table->huffcodes;
|
|
const uint16_t *levels_table = vlc_table->levels;
|
|
uint16_t *run_table, *level_table;
|
|
const uint16_t *p;
|
|
int i, l, j, level;
|
|
|
|
|
|
init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4);
|
|
|
|
run_table = runtabarray[tab];
|
|
//run_table = av_malloc(n * sizeof(uint16_t)); //max n should be 1336
|
|
|
|
level_table= levtabarray[tab];
|
|
//level_table = av_malloc(n * sizeof(uint16_t));
|
|
p = levels_table;
|
|
i = 2;
|
|
level = 1;
|
|
while (i < n)
|
|
{
|
|
l = *p++;
|
|
for(j=0;j<l;++j)
|
|
{
|
|
run_table[i] = j;
|
|
level_table[i] = level;
|
|
++i;
|
|
}
|
|
++level;
|
|
}
|
|
*prun_table = run_table;
|
|
*plevel_table = level_table;
|
|
}
|
|
|
|
int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
|
|
{
|
|
//WMADecodeContext *s = avctx->priv_data;
|
|
int i, m, j, flags1, flags2;
|
|
fixed32 *window;
|
|
uint8_t *extradata;
|
|
fixed64 bps1;
|
|
fixed32 high_freq;
|
|
fixed64 bps;
|
|
int sample_rate1;
|
|
int coef_vlc_table;
|
|
// int filehandle;
|
|
#ifdef CPU_COLDFIRE
|
|
coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
|
|
#endif
|
|
|
|
s->sample_rate = wfx->rate;
|
|
s->nb_channels = wfx->channels;
|
|
s->bit_rate = wfx->bitrate;
|
|
s->block_align = wfx->blockalign;
|
|
|
|
s->coefs = &coefsarray;
|
|
|
|
if (wfx->codec_id == ASF_CODEC_ID_WMAV1){
|
|
s->version = 1;
|
|
}else{
|
|
s->version = 2;
|
|
}
|
|
|
|
/* extract flag infos */
|
|
flags1 = 0;
|
|
flags2 = 0;
|
|
extradata = wfx->data;
|
|
if (s->version == 1 && wfx->datalen >= 4) {
|
|
flags1 = extradata[0] | (extradata[1] << 8);
|
|
flags2 = extradata[2] | (extradata[3] << 8);
|
|
}else if (s->version == 2 && wfx->datalen >= 6){
|
|
flags1 = extradata[0] | (extradata[1] << 8) |
|
|
(extradata[2] << 16) | (extradata[3] << 24);
|
|
flags2 = extradata[4] | (extradata[5] << 8);
|
|
}
|
|
s->use_exp_vlc = flags2 & 0x0001;
|
|
s->use_bit_reservoir = flags2 & 0x0002;
|
|
s->use_variable_block_len = flags2 & 0x0004;
|
|
|
|
/* compute MDCT block size */
|
|
if (s->sample_rate <= 16000){
|
|
s->frame_len_bits = 9;
|
|
}else if (s->sample_rate <= 22050 ||
|
|
(s->sample_rate <= 32000 && s->version == 1)){
|
|
s->frame_len_bits = 10;
|
|
}else{
|
|
s->frame_len_bits = 11;
|
|
}
|
|
s->frame_len = 1 << s->frame_len_bits;
|
|
if (s-> use_variable_block_len)
|
|
{
|
|
int nb_max, nb;
|
|
nb = ((flags2 >> 3) & 3) + 1;
|
|
if ((s->bit_rate / s->nb_channels) >= 32000)
|
|
{
|
|
nb += 2;
|
|
}
|
|
nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
|
|
if (nb > nb_max)
|
|
nb = nb_max;
|
|
s->nb_block_sizes = nb + 1;
|
|
}
|
|
else
|
|
{
|
|
s->nb_block_sizes = 1;
|
|
}
|
|
|
|
/* init rate dependant parameters */
|
|
s->use_noise_coding = 1;
|
|
high_freq = fixmul64byfixed(itofix64(s->sample_rate), 0x8000);
|
|
|
|
|
|
/* if version 2, then the rates are normalized */
|
|
sample_rate1 = s->sample_rate;
|
|
if (s->version == 2)
|
|
{
|
|
if (sample_rate1 >= 44100)
|
|
sample_rate1 = 44100;
|
|
else if (sample_rate1 >= 22050)
|
|
sample_rate1 = 22050;
|
|
else if (sample_rate1 >= 16000)
|
|
sample_rate1 = 16000;
|
|
else if (sample_rate1 >= 11025)
|
|
sample_rate1 = 11025;
|
|
else if (sample_rate1 >= 8000)
|
|
sample_rate1 = 8000;
|
|
}
|
|
|
|
fixed64 tmp = itofix64(s->bit_rate);
|
|
fixed64 tmp2 = itofix64(s->nb_channels * s->sample_rate);
|
|
bps = fixdiv64(tmp, tmp2);
|
|
fixed64 tim = fixmul64byfixed(bps, s->frame_len);
|
|
fixed64 tmpi = fixdiv64(tim,itofix64(8));
|
|
s->byte_offset_bits = av_log2(fixtoi64(tmpi)) + 2;
|
|
|
|
/* compute high frequency value and choose if noise coding should
|
|
be activated */
|
|
bps1 = bps;
|
|
if (s->nb_channels == 2)
|
|
bps1 = fixmul32(bps,0x1999a);
|
|
if (sample_rate1 == 44100)
|
|
{
|
|
if (bps1 >= 0x9c29)
|
|
s->use_noise_coding = 0;
|
|
else
|
|
high_freq = fixmul64byfixed(high_freq,0x6666);
|
|
}
|
|
else if (sample_rate1 == 22050)
|
|
{
|
|
if (bps1 >= 0x128f6)
|
|
s->use_noise_coding = 0;
|
|
else if (bps1 >= 0xb852)
|
|
high_freq = fixmul64byfixed(high_freq,0xb333);
|
|
else
|
|
high_freq = fixmul64byfixed(high_freq,0x999a);
|
|
}
|
|
else if (sample_rate1 == 16000)
|
|
{
|
|
if (bps > 0x8000)
|
|
high_freq = fixmul64byfixed(high_freq,0x8000);
|
|
else
|
|
high_freq = fixmul64byfixed(high_freq,0x4ccd);
|
|
}
|
|
else if (sample_rate1 == 11025)
|
|
{
|
|
high_freq = fixmul64byfixed(high_freq,0xb3333);
|
|
}
|
|
else if (sample_rate1 == 8000)
|
|
{
|
|
if (bps <= 0xa000)
|
|
{
|
|
high_freq = fixmul64byfixed(high_freq,0x8000);
|
|
}
|
|
else if (bps > 0xc000)
|
|
{
|
|
s->use_noise_coding = 0;
|
|
}
|
|
else
|
|
{
|
|
high_freq = fixmul64byfixed(high_freq,0xa666);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (bps >= 0xcccd)
|
|
{
|
|
high_freq = fixmul64byfixed(high_freq,0xc000);
|
|
}
|
|
else if (bps >= 0x999a)
|
|
{
|
|
high_freq = fixmul64byfixed(high_freq,0x999a);
|
|
}
|
|
else
|
|
{
|
|
high_freq = fixmul64byfixed(high_freq,0x8000);
|
|
}
|
|
}
|
|
|
|
/* compute the scale factor band sizes for each MDCT block size */
|
|
{
|
|
int a, b, pos, lpos, k, block_len, i, j, n;
|
|
const uint8_t *table;
|
|
|
|
if (s->version == 1)
|
|
{
|
|
s->coefs_start = 3;
|
|
}
|
|
else
|
|
{
|
|
s->coefs_start = 0;
|
|
}
|
|
for(k = 0; k < s->nb_block_sizes; ++k)
|
|
{
|
|
block_len = s->frame_len >> k;
|
|
|
|
if (s->version == 1)
|
|
{
|
|
lpos = 0;
|
|
for(i=0;i<25;++i)
|
|
{
|
|
a = wma_critical_freqs[i];
|
|
b = s->sample_rate;
|
|
pos = ((block_len * 2 * a) + (b >> 1)) / b;
|
|
if (pos > block_len)
|
|
pos = block_len;
|
|
s->exponent_bands[0][i] = pos - lpos;
|
|
if (pos >= block_len)
|
|
{
|
|
++i;
|
|
break;
|
|
}
|
|
lpos = pos;
|
|
}
|
|
s->exponent_sizes[0] = i;
|
|
}
|
|
else
|
|
{
|
|
/* hardcoded tables */
|
|
table = NULL;
|
|
a = s->frame_len_bits - BLOCK_MIN_BITS - k;
|
|
if (a < 3)
|
|
{
|
|
if (s->sample_rate >= 44100)
|
|
table = exponent_band_44100[a];
|
|
else if (s->sample_rate >= 32000)
|
|
table = exponent_band_32000[a];
|
|
else if (s->sample_rate >= 22050)
|
|
table = exponent_band_22050[a];
|
|
}
|
|
if (table)
|
|
{
|
|
n = *table++;
|
|
for(i=0;i<n;++i)
|
|
s->exponent_bands[k][i] = table[i];
|
|
s->exponent_sizes[k] = n;
|
|
}
|
|
else
|
|
{
|
|
j = 0;
|
|
lpos = 0;
|
|
for(i=0;i<25;++i)
|
|
{
|
|
a = wma_critical_freqs[i];
|
|
b = s->sample_rate;
|
|
pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
|
|
pos <<= 2;
|
|
if (pos > block_len)
|
|
pos = block_len;
|
|
if (pos > lpos)
|
|
s->exponent_bands[k][j++] = pos - lpos;
|
|
if (pos >= block_len)
|
|
break;
|
|
lpos = pos;
|
|
}
|
|
s->exponent_sizes[k] = j;
|
|
}
|
|
}
|
|
|
|
/* max number of coefs */
|
|
s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
|
|
/* high freq computation */
|
|
fixed64 tmp = itofix64(block_len<<2);
|
|
tmp = fixmul64byfixed(tmp,high_freq);
|
|
fixed64 tmp2 = itofix64(s->sample_rate);
|
|
tmp2 += 0x8000;
|
|
s->high_band_start[k] = fixtoi64(fixdiv64(tmp,tmp2));
|
|
|
|
/*
|
|
s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
|
|
s->sample_rate + 0.5);*/
|
|
|
|
n = s->exponent_sizes[k];
|
|
j = 0;
|
|
pos = 0;
|
|
for(i=0;i<n;++i)
|
|
{
|
|
int start, end;
|
|
start = pos;
|
|
pos += s->exponent_bands[k][i];
|
|
end = pos;
|
|
if (start < s->high_band_start[k])
|
|
start = s->high_band_start[k];
|
|
if (end > s->coefs_end[k])
|
|
end = s->coefs_end[k];
|
|
if (end > start)
|
|
s->exponent_high_bands[k][j++] = end - start;
|
|
}
|
|
s->exponent_high_sizes[k] = j;
|
|
}
|
|
}
|
|
|
|
/* init MDCT */
|
|
/*TODO: figure out how to fold this up into one array*/
|
|
tcosarray[0] = tcos0; tcosarray[1] = tcos1; tcosarray[2] = tcos2; tcosarray[3] = tcos3;tcosarray[4] = tcos4;
|
|
tsinarray[0] = tsin0; tsinarray[1] = tsin1; tsinarray[2] = tsin2; tsinarray[3] = tsin3;tsinarray[4] = tsin4;
|
|
|
|
/*these are folded up now*/
|
|
exparray[0] = exptab0; //exparray[1] = exptab1; exparray[2] = exptab2; exparray[3] = exptab3; exparray[4] = exptab4;
|
|
revarray[0]=revtab0; //revarray[1]=revtab1; revarray[2]=revtab2; revarray[3]=revtab3; revarray[4]=revtab4;
|
|
|
|
s->mdct_tmp = mdct_tmp; /* temporary storage for imdct */
|
|
for(i = 0; i < s->nb_block_sizes; ++i)
|
|
{
|
|
ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
|
|
}
|
|
|
|
/* init the MDCT bit reverse table here rather then in fft_init */
|
|
|
|
for(i=0;i<1024;i++) /*hard coded to a 2048 bit rotation*/
|
|
{ /*smaller sizes can reuse the largest*/
|
|
m=0;
|
|
for(j=0;j<10;j++)
|
|
{
|
|
m |= ((i >> j) & 1) << (10-j-1);
|
|
}
|
|
|
|
revtab0[i]=m;
|
|
}
|
|
|
|
/*ffmpeg uses malloc to only allocate as many window sizes as needed. However, we're really only interested in the worst case memory usage.
|
|
* In the worst case you can have 5 window sizes, 128 doubling up 2048
|
|
* Smaller windows are handled differently.
|
|
* Since we don't have malloc, just statically allocate this
|
|
*/
|
|
fixed32 *temp[5];
|
|
temp[0] = stat0;
|
|
temp[1] = stat1;
|
|
temp[2] = stat2;
|
|
temp[3] = stat3;
|
|
temp[4] = stat4;
|
|
|
|
/* init MDCT windows : simple sinus window */
|
|
for(i = 0; i < s->nb_block_sizes; i++)
|
|
{
|
|
int n, j;
|
|
fixed32 alpha;
|
|
n = 1 << (s->frame_len_bits - i);
|
|
//window = av_malloc(sizeof(fixed32) * n);
|
|
window = temp[i];
|
|
|
|
//fixed32 n2 = itofix32(n<<1); //2x the window length
|
|
//alpha = fixdiv32(M_PI_F, n2); //PI / (2x Window length) == PI<<(s->frame_len_bits - i+1)
|
|
|
|
//alpha = M_PI_F>>(s->frame_len_bits - i+1);
|
|
alpha = (1<<15)>>(s->frame_len_bits - i+1); /* this calculates 0.5/(2*n) */
|
|
for(j=0;j<n;++j)
|
|
{
|
|
fixed32 j2 = itofix32(j) + 0x8000;
|
|
window[j] = fsincos(fixmul32(j2,alpha)<<16, 0); //alpha between 0 and pi/2
|
|
|
|
}
|
|
//printf("created window\n");
|
|
s->windows[i] = window;
|
|
//printf("assigned window\n");
|
|
}
|
|
|
|
s->reset_block_lengths = 1;
|
|
|
|
if (s->use_noise_coding)
|
|
{
|
|
/* init the noise generator */
|
|
if (s->use_exp_vlc)
|
|
{
|
|
s->noise_mult = 0x51f;
|
|
}
|
|
else
|
|
{
|
|
s->noise_mult = 0xa3d;
|
|
}
|
|
|
|
|
|
{
|
|
unsigned int seed;
|
|
fixed32 norm;
|
|
seed = 1;
|
|
norm = 0; // PJJ: near as makes any diff to 0!
|
|
for (i=0;i<NOISE_TAB_SIZE;++i)
|
|
{
|
|
seed = seed * 314159 + 1;
|
|
s->noise_table[i] = itofix32((int)seed) * norm;
|
|
}
|
|
}
|
|
|
|
init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits),
|
|
hgain_huffbits, 1, 1,
|
|
hgain_huffcodes, 2, 2);
|
|
}
|
|
|
|
if (s->use_exp_vlc)
|
|
{
|
|
s->exp_vlc.table = vlcbuf3;
|
|
s->exp_vlc.table_allocated = 1536;
|
|
init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits),
|
|
scale_huffbits, 1, 1,
|
|
scale_huffcodes, 4, 4);
|
|
}
|
|
else
|
|
{
|
|
wma_lsp_to_curve_init(s, s->frame_len);
|
|
}
|
|
|
|
/* choose the VLC tables for the coefficients */
|
|
coef_vlc_table = 2;
|
|
if (s->sample_rate >= 32000)
|
|
{
|
|
if (bps1 < 0xb852)
|
|
coef_vlc_table = 0;
|
|
else if (bps1 < 0x128f6)
|
|
coef_vlc_table = 1;
|
|
}
|
|
|
|
runtabarray[0] = runtab0; runtabarray[1] = runtab1;
|
|
levtabarray[0] = levtab0; levtabarray[1] = levtab1;
|
|
|
|
s->coef_vlc[0].table = vlcbuf1;
|
|
s->coef_vlc[0].table_allocated = 24576/4;
|
|
s->coef_vlc[1].table = vlcbuf2;
|
|
s->coef_vlc[1].table_allocated = 14336/4;
|
|
|
|
init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
|
|
&coef_vlcs[coef_vlc_table * 2], 0);
|
|
init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
|
|
&coef_vlcs[coef_vlc_table * 2 + 1], 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* compute x^-0.25 with an exponent and mantissa table. We use linear
|
|
interpolation to reduce the mantissa table size at a small speed
|
|
expense (linear interpolation approximately doubles the number of
|
|
bits of precision). */
|
|
static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
|
|
{
|
|
union {
|
|
fixed64 f;
|
|
unsigned int v;
|
|
} u, t;
|
|
unsigned int e, m;
|
|
fixed64 a, b;
|
|
|
|
u.f = x;
|
|
e = u.v >> 23;
|
|
m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
|
|
/* build interpolation scale: 1 <= t < 2. */
|
|
t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
|
|
a = s->lsp_pow_m_table1[m];
|
|
b = s->lsp_pow_m_table2[m];
|
|
return lsp_pow_e_table[e] * (a + b * t.f);
|
|
}
|
|
|
|
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
|
|
{
|
|
fixed32 wdel, a, b;
|
|
int i, m;
|
|
|
|
wdel = fixdiv32(M_PI_F, itofix32(frame_len));
|
|
for (i=0; i<frame_len; ++i)
|
|
{
|
|
s->lsp_cos_table[i] = 0x20000 * fixcos32(wdel * i); //wdel*i between 0 and pi
|
|
|
|
}
|
|
|
|
|
|
/* NOTE: these two tables are needed to avoid two operations in
|
|
pow_m1_4 */
|
|
b = itofix32(1);
|
|
int ix = 0;
|
|
for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
|
|
{
|
|
m = (1 << LSP_POW_BITS) + i;
|
|
a = m * (0x8000 / (1 << LSP_POW_BITS)); //PJJ
|
|
a = pow_a_table[ix++]; // PJJ : further refinement
|
|
s->lsp_pow_m_table1[i] = 2 * a - b;
|
|
s->lsp_pow_m_table2[i] = b - a;
|
|
b = a;
|
|
}
|
|
}
|
|
|
|
/* NOTE: We use the same code as Vorbis here */
|
|
/* XXX: optimize it further with SSE/3Dnow */
|
|
static void wma_lsp_to_curve(WMADecodeContext *s,
|
|
fixed32 *out,
|
|
fixed32 *val_max_ptr,
|
|
int n,
|
|
fixed32 *lsp)
|
|
{
|
|
int i, j;
|
|
fixed32 p, q, w, v, val_max;
|
|
|
|
val_max = 0;
|
|
for(i=0;i<n;++i)
|
|
{
|
|
p = 0x8000;
|
|
q = 0x8000;
|
|
w = s->lsp_cos_table[i];
|
|
for (j=1;j<NB_LSP_COEFS;j+=2)
|
|
{
|
|
q *= w - lsp[j - 1];
|
|
p *= w - lsp[j];
|
|
}
|
|
p *= p * (0x20000 - w);
|
|
q *= q * (0x20000 + w);
|
|
v = p + q;
|
|
v = pow_m1_4(s, v); // PJJ
|
|
if (v > val_max)
|
|
val_max = v;
|
|
out[i] = v;
|
|
}
|
|
*val_max_ptr = val_max;
|
|
}
|
|
|
|
/* decode exponents coded with LSP coefficients (same idea as Vorbis) */
|
|
static void decode_exp_lsp(WMADecodeContext *s, int ch)
|
|
{
|
|
fixed32 lsp_coefs[NB_LSP_COEFS];
|
|
int val, i;
|
|
|
|
for (i = 0; i < NB_LSP_COEFS; ++i)
|
|
{
|
|
if (i == 0 || i >= 8)
|
|
val = get_bits(&s->gb, 3);
|
|
else
|
|
val = get_bits(&s->gb, 4);
|
|
lsp_coefs[i] = lsp_codebook[i][val];
|
|
}
|
|
|
|
wma_lsp_to_curve(s,
|
|
s->exponents[ch],
|
|
&s->max_exponent[ch],
|
|
s->block_len,
|
|
lsp_coefs);
|
|
}
|
|
|
|
/* decode exponents coded with VLC codes */
|
|
static int decode_exp_vlc(WMADecodeContext *s, int ch)
|
|
{
|
|
int last_exp, n, code;
|
|
const uint16_t *ptr, *band_ptr;
|
|
fixed32 v, max_scale;
|
|
fixed32 *q,*q_end;
|
|
|
|
band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
|
|
ptr = band_ptr;
|
|
q = s->exponents[ch];
|
|
q_end = q + s->block_len;
|
|
max_scale = 0;
|
|
|
|
|
|
if (s->version == 1) //wmav1 only
|
|
{
|
|
last_exp = get_bits(&s->gb, 5) + 10;
|
|
/* XXX: use a table */
|
|
v = pow_10_to_yover16[last_exp];
|
|
max_scale = v;
|
|
n = *ptr++;
|
|
do
|
|
{
|
|
*q++ = v;
|
|
}
|
|
while (--n);
|
|
}
|
|
last_exp = 36;
|
|
|
|
while (q < q_end)
|
|
{
|
|
code = get_vlc(&s->gb, &s->exp_vlc);
|
|
if (code < 0)
|
|
{
|
|
return -1;
|
|
}
|
|
/* NOTE: this offset is the same as MPEG4 AAC ! */
|
|
last_exp += code - 60;
|
|
/* XXX: use a table */
|
|
v = pow_10_to_yover16[last_exp];
|
|
if (v > max_scale)
|
|
{
|
|
max_scale = v;
|
|
}
|
|
n = *ptr++;
|
|
do
|
|
{
|
|
*q++ = v;
|
|
|
|
}
|
|
while (--n);
|
|
}
|
|
|
|
s->max_exponent[ch] = max_scale;
|
|
return 0;
|
|
}
|
|
|
|
/* return 0 if OK. return 1 if last block of frame. return -1 if
|
|
unrecorrable error. */
|
|
static int wma_decode_block(WMADecodeContext *s)
|
|
{
|
|
int n, v, a, ch, code, bsize;
|
|
int coef_nb_bits, total_gain;
|
|
int nb_coefs[MAX_CHANNELS];
|
|
fixed32 mdct_norm;
|
|
|
|
// printf("***decode_block: %d:%d (%d)\n", s->frame_count - 1, s->block_num, s->block_len);
|
|
/* compute current block length */
|
|
if (s->use_variable_block_len)
|
|
{
|
|
n = av_log2(s->nb_block_sizes - 1) + 1;
|
|
|
|
if (s->reset_block_lengths)
|
|
{
|
|
s->reset_block_lengths = 0;
|
|
v = get_bits(&s->gb, n);
|
|
if (v >= s->nb_block_sizes)
|
|
{
|
|
return -2;
|
|
}
|
|
s->prev_block_len_bits = s->frame_len_bits - v;
|
|
v = get_bits(&s->gb, n);
|
|
if (v >= s->nb_block_sizes)
|
|
{
|
|
return -3;
|
|
}
|
|
s->block_len_bits = s->frame_len_bits - v;
|
|
}
|
|
else
|
|
{
|
|
/* update block lengths */
|
|
s->prev_block_len_bits = s->block_len_bits;
|
|
s->block_len_bits = s->next_block_len_bits;
|
|
}
|
|
v = get_bits(&s->gb, n);
|
|
|
|
|
|
|
|
LOGF("v was %d", v);
|
|
if (v >= s->nb_block_sizes)
|
|
{
|
|
// rb->splash(HZ*4, "v was %d", v); //5, 7
|
|
return -4; //this is it
|
|
}
|
|
else{
|
|
//rb->splash(HZ, "passed v block (%d)!", v);
|
|
}
|
|
s->next_block_len_bits = s->frame_len_bits - v;
|
|
}
|
|
else
|
|
{
|
|
/* fixed block len */
|
|
s->next_block_len_bits = s->frame_len_bits;
|
|
s->prev_block_len_bits = s->frame_len_bits;
|
|
s->block_len_bits = s->frame_len_bits;
|
|
}
|
|
/* now check if the block length is coherent with the frame length */
|
|
s->block_len = 1 << s->block_len_bits;
|
|
|
|
if ((s->block_pos + s->block_len) > s->frame_len)
|
|
{
|
|
return -5;
|
|
}
|
|
|
|
if (s->nb_channels == 2)
|
|
{
|
|
s->ms_stereo = get_bits(&s->gb, 1);
|
|
}
|
|
v = 0;
|
|
for (ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
a = get_bits(&s->gb, 1);
|
|
s->channel_coded[ch] = a;
|
|
v |= a;
|
|
}
|
|
/* if no channel coded, no need to go further */
|
|
/* XXX: fix potential framing problems */
|
|
if (!v)
|
|
{
|
|
goto next;
|
|
}
|
|
|
|
bsize = s->frame_len_bits - s->block_len_bits;
|
|
|
|
/* read total gain and extract corresponding number of bits for
|
|
coef escape coding */
|
|
total_gain = 1;
|
|
for(;;)
|
|
{
|
|
a = get_bits(&s->gb, 7);
|
|
total_gain += a;
|
|
if (a != 127)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (total_gain < 15)
|
|
coef_nb_bits = 13;
|
|
else if (total_gain < 32)
|
|
coef_nb_bits = 12;
|
|
else if (total_gain < 40)
|
|
coef_nb_bits = 11;
|
|
else if (total_gain < 45)
|
|
coef_nb_bits = 10;
|
|
else
|
|
coef_nb_bits = 9;
|
|
/* compute number of coefficients */
|
|
n = s->coefs_end[bsize] - s->coefs_start;
|
|
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
nb_coefs[ch] = n;
|
|
}
|
|
/* complex coding */
|
|
|
|
if (s->use_noise_coding)
|
|
{
|
|
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
if (s->channel_coded[ch])
|
|
{
|
|
int i, n, a;
|
|
n = s->exponent_high_sizes[bsize];
|
|
for(i=0;i<n;++i)
|
|
{
|
|
a = get_bits(&s->gb, 1);
|
|
s->high_band_coded[ch][i] = a;
|
|
/* if noise coding, the coefficients are not transmitted */
|
|
if (a)
|
|
nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
|
|
}
|
|
}
|
|
}
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
if (s->channel_coded[ch])
|
|
{
|
|
int i, n, val, code;
|
|
|
|
n = s->exponent_high_sizes[bsize];
|
|
val = (int)0x80000000;
|
|
for(i=0;i<n;++i)
|
|
{
|
|
if (s->high_band_coded[ch][i])
|
|
{
|
|
if (val == (int)0x80000000)
|
|
{
|
|
val = get_bits(&s->gb, 7) - 19;
|
|
}
|
|
else
|
|
{
|
|
code = get_vlc(&s->gb, &s->hgain_vlc);
|
|
if (code < 0)
|
|
{
|
|
return -6;
|
|
}
|
|
val += code - 18;
|
|
}
|
|
s->high_band_values[ch][i] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* exponents can be reused in short blocks. */
|
|
if ((s->block_len_bits == s->frame_len_bits) || get_bits(&s->gb, 1)) {
|
|
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
if (s->channel_coded[ch])
|
|
{
|
|
if (s->use_exp_vlc)
|
|
{
|
|
if (decode_exp_vlc(s, ch) < 0)
|
|
{
|
|
return -7;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
decode_exp_lsp(s, ch);
|
|
}
|
|
s->exponents_bsize[ch] = bsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* parse spectral coefficients : just RLE encoding */
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
if (s->channel_coded[ch])
|
|
{
|
|
VLC *coef_vlc;
|
|
int level, run, sign, tindex;
|
|
int16_t *ptr, *eptr;
|
|
const int16_t *level_table, *run_table;
|
|
|
|
/* special VLC tables are used for ms stereo because
|
|
there is potentially less energy there */
|
|
tindex = (ch == 1 && s->ms_stereo);
|
|
coef_vlc = &s->coef_vlc[tindex];
|
|
run_table = s->run_table[tindex];
|
|
level_table = s->level_table[tindex];
|
|
/* XXX: optimize */
|
|
ptr = &s->coefs1[ch][0];
|
|
eptr = ptr + nb_coefs[ch];
|
|
memset(ptr, 0, s->block_len * sizeof(int16_t));
|
|
|
|
|
|
|
|
for(;;)
|
|
{
|
|
code = get_vlc(&s->gb, coef_vlc);
|
|
if (code < 0)
|
|
{
|
|
return -8;
|
|
}
|
|
if (code == 1)
|
|
{
|
|
/* EOB */
|
|
break;
|
|
}
|
|
else if (code == 0)
|
|
{
|
|
/* escape */
|
|
level = get_bits(&s->gb, coef_nb_bits);
|
|
/* NOTE: this is rather suboptimal. reading
|
|
block_len_bits would be better */
|
|
run = get_bits(&s->gb, s->frame_len_bits);
|
|
}
|
|
else
|
|
{
|
|
/* normal code */
|
|
run = run_table[code];
|
|
level = level_table[code];
|
|
}
|
|
sign = get_bits(&s->gb, 1);
|
|
if (!sign)
|
|
level = -level;
|
|
ptr += run;
|
|
if (ptr >= eptr)
|
|
{
|
|
return -9;
|
|
}
|
|
*ptr++ = level;
|
|
|
|
|
|
/* NOTE: EOB can be omitted */
|
|
if (ptr >= eptr)
|
|
break;
|
|
}
|
|
}
|
|
if (s->version == 1 && s->nb_channels >= 2)
|
|
{
|
|
align_get_bits(&s->gb);
|
|
}
|
|
}
|
|
|
|
{
|
|
int n4 = s->block_len >> 1;
|
|
//mdct_norm = 0x10000;
|
|
//mdct_norm = fixdiv32(mdct_norm,itofix32(n4));
|
|
|
|
mdct_norm = 0x10000>>(s->block_len_bits-1); //theres no reason to do a divide by two in fixed precision ...
|
|
|
|
if (s->version == 1)
|
|
{
|
|
fixed32 tmp = fixsqrt32(itofix32(n4));
|
|
mdct_norm *= tmp; // PJJ : exercise this path
|
|
}
|
|
}
|
|
|
|
|
|
/* finally compute the MDCT coefficients */
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
if (s->channel_coded[ch])
|
|
{
|
|
int16_t *coefs1;
|
|
fixed32 *exponents, *exp_ptr;
|
|
fixed32 *coefs, atemp;
|
|
fixed64 mult;
|
|
fixed64 mult1;
|
|
fixed32 noise;
|
|
int i, j, n, n1, last_high_band, esize;
|
|
fixed32 exp_power[HIGH_BAND_MAX_SIZE];
|
|
|
|
//total_gain, coefs1, mdctnorm are lossless
|
|
|
|
coefs1 = s->coefs1[ch];
|
|
exponents = s->exponents[ch];
|
|
esize = s->exponents_bsize[ch];
|
|
mult = fixdiv64(pow_table[total_gain],Fixed32To64(s->max_exponent[ch]));
|
|
// mul = fixtof64(pow_table[total_gain])/(s->block_len/2)/fixtof64(s->max_exponent[ch]);
|
|
|
|
mult = fixmul64byfixed(mult, mdct_norm); //what the hell? This is actually fixed64*2^16!
|
|
coefs = (*(s->coefs))[ch]; //VLC exponenents are used to get MDCT coef here!
|
|
|
|
n=0;
|
|
|
|
if (s->use_noise_coding)
|
|
{
|
|
mult1 = mult;
|
|
|
|
/* very low freqs : noise */
|
|
for(i = 0;i < s->coefs_start; ++i)
|
|
{
|
|
*coefs++ = fixmul32(fixmul32(s->noise_table[s->noise_index],(*exponents++)),Fixed32From64(mult1));
|
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
|
|
}
|
|
|
|
n1 = s->exponent_high_sizes[bsize];
|
|
|
|
/* compute power of high bands */
|
|
exp_ptr = exponents +
|
|
s->high_band_start[bsize] -
|
|
s->coefs_start;
|
|
last_high_band = 0; /* avoid warning */
|
|
for (j=0;j<n1;++j)
|
|
{
|
|
n = s->exponent_high_bands[s->frame_len_bits -
|
|
s->block_len_bits][j];
|
|
if (s->high_band_coded[ch][j])
|
|
{
|
|
fixed32 e2, v;
|
|
e2 = 0;
|
|
for(i = 0;i < n; ++i)
|
|
{
|
|
v = exp_ptr[i];
|
|
e2 += v * v;
|
|
}
|
|
exp_power[j] = fixdiv32(e2,n);
|
|
last_high_band = j;
|
|
}
|
|
exp_ptr += n;
|
|
}
|
|
|
|
/* main freqs and high freqs */
|
|
for(j=-1;j<n1;++j)
|
|
{
|
|
if (j < 0)
|
|
{
|
|
n = s->high_band_start[bsize] -
|
|
s->coefs_start;
|
|
}
|
|
else
|
|
{
|
|
n = s->exponent_high_bands[s->frame_len_bits -
|
|
s->block_len_bits][j];
|
|
}
|
|
if (j >= 0 && s->high_band_coded[ch][j])
|
|
{
|
|
/* use noise with specified power */
|
|
fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
|
|
mult1 = (fixed64)fixsqrt32(tmp);
|
|
/* XXX: use a table */
|
|
mult1 = mult1 * pow_table[s->high_band_values[ch][j]];
|
|
mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
|
|
mult1 = fixmul64byfixed(mult1,mdct_norm);
|
|
for(i = 0;i < n; ++i)
|
|
{
|
|
noise = s->noise_table[s->noise_index];
|
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
|
|
*coefs++ = fixmul32(fixmul32(*exponents,noise),Fixed32From64(mult1));
|
|
++exponents;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* coded values + small noise */
|
|
for(i = 0;i < n; ++i)
|
|
{
|
|
// PJJ: check code path
|
|
noise = s->noise_table[s->noise_index];
|
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
|
|
*coefs++ = fixmul32(fixmul32(((*coefs1++) + noise),*exponents),mult);
|
|
++exponents;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* very high freqs : noise */
|
|
n = s->block_len - s->coefs_end[bsize];
|
|
mult1 = fixmul32(mult,exponents[-1]);
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
*coefs++ = fixmul32(s->noise_table[s->noise_index],Fixed32From64(mult1));
|
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/* XXX: optimize more */
|
|
|
|
n = nb_coefs[ch];
|
|
|
|
|
|
|
|
|
|
for(i = 0;i < n; ++i)
|
|
{
|
|
/*
|
|
* Previously the IMDCT was run in 17.15 precision to avoid overflow. However rare files could
|
|
* overflow here as well, so switch to 17.15 now. As a bonus, this saves us a shift later on.
|
|
*/
|
|
|
|
|
|
atemp = (fixed32)(coefs1[i]*mult>>17);
|
|
//this "works" in the sense that the mdcts converge
|
|
//atemp= ftofix32(coefs1[i] * fixtof64(exponents[i]) * fixtof64(mult>>16));
|
|
|
|
*coefs++=fixmul32(atemp,exponents[i<<bsize>>esize]);
|
|
|
|
}
|
|
n = s->block_len - s->coefs_end[bsize];
|
|
for(i = 0;i < n; ++i)
|
|
*coefs++ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
if (s->ms_stereo && s->channel_coded[1])
|
|
{
|
|
fixed32 a, b;
|
|
int i;
|
|
fixed32 (*coefs)[MAX_CHANNELS][BLOCK_MAX_SIZE] = (s->coefs);
|
|
|
|
/* nominal case for ms stereo: we do it before mdct */
|
|
/* no need to optimize this case because it should almost
|
|
never happen */
|
|
if (!s->channel_coded[0])
|
|
{
|
|
memset((*(s->coefs))[0], 0, sizeof(fixed32) * s->block_len);
|
|
s->channel_coded[0] = 1;
|
|
}
|
|
|
|
for(i = 0; i < s->block_len; ++i)
|
|
{
|
|
a = (*coefs)[0][i];
|
|
b = (*coefs)[1][i];
|
|
(*coefs)[0][i] = a + b;
|
|
(*coefs)[1][i] = a - b;
|
|
}
|
|
}
|
|
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
if (s->channel_coded[ch])
|
|
{
|
|
static fixed32 output[BLOCK_MAX_SIZE * 2] IBSS_ATTR;
|
|
|
|
int n4, index, n;
|
|
|
|
n = s->block_len;
|
|
n4 = s->block_len >>1;
|
|
|
|
ff_imdct_calc(&s->mdct_ctx[bsize],
|
|
output,
|
|
(*(s->coefs))[ch]);
|
|
|
|
|
|
/* add in the frame */
|
|
index = (s->frame_len / 2) + s->block_pos - n4;
|
|
|
|
wma_window(s, output, &s->frame_out[ch][index]);
|
|
|
|
|
|
|
|
/* specific fast case for ms-stereo : add to second
|
|
channel if it is not coded */
|
|
if (s->ms_stereo && !s->channel_coded[1])
|
|
{
|
|
wma_window(s, output, &s->frame_out[1][index]);
|
|
}
|
|
}
|
|
}
|
|
next:
|
|
/* update block number */
|
|
++s->block_num;
|
|
s->block_pos += s->block_len;
|
|
if (s->block_pos >= s->frame_len)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* decode a frame of frame_len samples */
|
|
static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
|
|
{
|
|
int ret, i, n, a, ch, incr;
|
|
int16_t *ptr;
|
|
fixed32 *iptr;
|
|
// rb->splash(HZ, "in wma_decode_frame");
|
|
|
|
/* read each block */
|
|
s->block_num = 0;
|
|
s->block_pos = 0;
|
|
|
|
|
|
for(;;)
|
|
{
|
|
ret = wma_decode_block(s);
|
|
if (ret < 0)
|
|
{
|
|
LOGF("wma_decode_block: %d",ret);
|
|
//rb->splash(HZ*4, "wma_decode_block failed with ret %d", ret);
|
|
return -1;
|
|
}
|
|
if (ret)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* convert frame to integer */
|
|
n = s->frame_len;
|
|
incr = s->nb_channels;
|
|
for(ch = 0; ch < s->nb_channels; ++ch)
|
|
{
|
|
ptr = samples + ch;
|
|
iptr = s->frame_out[ch];
|
|
|
|
for (i=0;i<n;++i)
|
|
{
|
|
a = fixtoi32(*iptr++)<<1; //ugly but good enough for now
|
|
|
|
|
|
|
|
|
|
|
|
if (a > 32767)
|
|
{
|
|
a = 32767;
|
|
}
|
|
else if (a < -32768)
|
|
{
|
|
a = -32768;
|
|
}
|
|
*ptr = a;
|
|
ptr += incr;
|
|
}
|
|
/* prepare for next block */
|
|
memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
|
|
s->frame_len * sizeof(fixed32));
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int wma_decode_superframe(WMADecodeContext* s,
|
|
void *data, /*output*/
|
|
int *data_size,
|
|
uint8_t *buf, /*input*/
|
|
int buf_size)
|
|
{
|
|
//WMADecodeContext *s = avctx->priv_data;
|
|
int nb_frames, bit_offset, i, pos, len;
|
|
uint8_t *q;
|
|
int16_t *samples;
|
|
|
|
if (buf_size==0)
|
|
{
|
|
s->last_superframe_len = 0;
|
|
return 0;
|
|
}
|
|
|
|
samples = data;
|
|
init_get_bits(&s->gb, buf, buf_size*8);
|
|
if (s->use_bit_reservoir)
|
|
{
|
|
/* read super frame header */
|
|
get_bits(&s->gb, 4); /* super frame index */
|
|
nb_frames = get_bits(&s->gb, 4) - 1;
|
|
|
|
bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
|
|
if (s->last_superframe_len > 0)
|
|
{
|
|
/* add bit_offset bits to last frame */
|
|
if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
|
|
MAX_CODED_SUPERFRAME_SIZE)
|
|
{
|
|
goto fail;
|
|
}
|
|
q = s->last_superframe + s->last_superframe_len;
|
|
len = bit_offset;
|
|
while (len > 0)
|
|
{
|
|
*q++ = (get_bits)(&s->gb, 8);
|
|
len -= 8;
|
|
}
|
|
if (len > 0)
|
|
{
|
|
*q++ = (get_bits)(&s->gb, len) << (8 - len);
|
|
}
|
|
|
|
/* XXX: bit_offset bits into last frame */
|
|
init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
|
|
/* skip unused bits */
|
|
if (s->last_bitoffset > 0)
|
|
skip_bits(&s->gb, s->last_bitoffset);
|
|
/* this frame is stored in the last superframe and in the
|
|
current one */
|
|
if (wma_decode_frame(s, samples) < 0)
|
|
{
|
|
goto fail;
|
|
}
|
|
samples += s->nb_channels * s->frame_len;
|
|
}
|
|
|
|
/* read each frame starting from bit_offset */
|
|
pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
|
|
init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
|
|
len = pos & 7;
|
|
if (len > 0)
|
|
skip_bits(&s->gb, len);
|
|
|
|
s->reset_block_lengths = 1;
|
|
for(i=0;i<nb_frames;++i)
|
|
{
|
|
if (wma_decode_frame(s, samples) < 0)
|
|
{
|
|
goto fail;
|
|
}
|
|
samples += s->nb_channels * s->frame_len;
|
|
}
|
|
|
|
/* we copy the end of the frame in the last frame buffer */
|
|
pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
|
|
s->last_bitoffset = pos & 7;
|
|
pos >>= 3;
|
|
len = buf_size - pos;
|
|
if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
|
|
{
|
|
goto fail;
|
|
}
|
|
s->last_superframe_len = len;
|
|
memcpy(s->last_superframe, buf + pos, len);
|
|
}
|
|
else
|
|
{
|
|
/* single frame decode */
|
|
if (wma_decode_frame(s, samples) < 0)
|
|
{
|
|
goto fail;
|
|
}
|
|
samples += s->nb_channels * s->frame_len;
|
|
}
|
|
*data_size = (int8_t *)samples - (int8_t *)data;
|
|
return s->block_align;
|
|
fail:
|
|
/* when error, we reset the bit reservoir */
|
|
s->last_superframe_len = 0;
|
|
return -1;
|
|
}
|
|
|
|
|