rockbox/firmware/target/arm/rk27xx/usb-drv-rk27xx.c
Aidan MacDonald ec164c389c usb: introduce new control request API
Change-Id: I6545d8985ab683c026f28f6a7c0e23b40d0a6506
2021-10-16 15:58:43 -04:00

541 lines
16 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Marcin Bukat
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "usb.h"
#include "usb_drv.h"
#include "cpu.h"
#include "system.h"
#include "kernel.h"
#include "panic.h"
#include "usb_ch9.h"
#include "usb_core.h"
#include <inttypes.h>
#include "power.h"
#define LOGF_ENABLE
#include "logf.h"
typedef volatile uint32_t reg32;
#ifdef LOGF_ENABLE
#define XFER_DIR_STR(dir) ((dir) ? "IN" : "OUT")
#define XFER_TYPE_STR(type) \
((type) == USB_ENDPOINT_XFER_CONTROL ? "CTRL" : \
((type) == USB_ENDPOINT_XFER_ISOC ? "ISOC" : \
((type) == USB_ENDPOINT_XFER_BULK ? "BULK" : \
((type) == USB_ENDPOINT_XFER_INT ? "INTR" : "INVL"))))
#endif
struct endpoint_t
{
const int ep_num; /* EP number */
const int type; /* EP type */
const int dir; /* DIR_IN/DIR_OUT */
volatile unsigned long *stat; /* RXSTAT/TXSTAT register */
bool allocated; /* flag to mark EPs taken */
volatile void *buf; /* tx/rx buffer address */
volatile int len; /* size of the transfer (bytes) */
volatile int cnt; /* number of bytes transfered/received */
volatile bool block; /* flag indicating that transfer is blocking */
struct semaphore complete; /* semaphore for blocking transfers */
};
/* compute RXCON address from RXSTAT, and so on */
#define RXSTAT(endp) *((endp)->stat)
#define RXCON(endp) *(1 + (endp)->stat)
#define DMAOUTCTL(endp) *(2 + (endp)->stat)
#define DMAOUTLMADDR(endp) *(3 + (endp)->stat)
/* compute TXCON address from TXSTAT, and so on */
#define TXSTAT(endp) *((endp)->stat)
#define TXCON(endp) *(1 + (endp)->stat)
#define TXBUF(endp) *(2 + (endp)->stat)
#define DMAINCTL(endp) *(3 + (endp)->stat)
#define DMAINLMADDR(endp) *(4 + (endp)->stat)
#define ENDPOINT(num, type, dir, reg) \
{num, USB_ENDPOINT_XFER_##type, USB_DIR_##dir, reg, false, NULL, 0, 0, true, {{0, 0}, 0, 0}}
static struct endpoint_t ctrlep[2] =
{
ENDPOINT(0, CONTROL, OUT, &RX0STAT),
ENDPOINT(0, CONTROL, IN, &TX0STAT),
};
static struct endpoint_t endpoints[16] =
{
ENDPOINT(0, CONTROL, OUT, NULL), /* stub */
ENDPOINT(1, BULK, OUT, &RX1STAT), /* BOUT1 */
ENDPOINT(2, BULK, IN, &TX2STAT), /* BIN2 */
ENDPOINT(3, INT, IN, &TX3STAT), /* IIN3 */
ENDPOINT(4, BULK, OUT, &RX4STAT), /* BOUT4 */
ENDPOINT(5, BULK, IN, &TX5STAT), /* BIN5 */
ENDPOINT(6, INT, IN, &TX6STAT), /* IIN6 */
ENDPOINT(7, BULK, OUT, &RX7STAT), /* BOUT7 */
ENDPOINT(8, BULK, IN, &TX8STAT), /* BIN8 */
ENDPOINT(9, INT, IN, &TX9STAT), /* IIN9 */
ENDPOINT(10, BULK, OUT, &RX10STAT), /* BOUT10 */
ENDPOINT(11, BULK, IN, &TX11STAT), /* BIN11 */
ENDPOINT(12, INT, IN, &TX12STAT), /* IIN12 */
ENDPOINT(13, BULK, OUT, &RX13STAT), /* BOUT13 */
ENDPOINT(14, BULK, IN, &TX14STAT), /* BIN14 */
ENDPOINT(15, INT, IN, &TX15STAT), /* IIN15 */
};
static volatile bool set_address = false;
static volatile bool set_configuration = false;
#undef ENDPOINT
static void setup_received(void)
{
static uint32_t setup_data[2];
logf("udc: setup");
/* copy setup data from packet */
setup_data[0] = SETUP1;
setup_data[1] = SETUP2;
/* pass setup data to the upper layer */
usb_core_legacy_control_request((struct usb_ctrlrequest*)setup_data);
}
static int max_pkt_size(struct endpoint_t *endp)
{
switch(endp->type)
{
case USB_ENDPOINT_XFER_CONTROL: return 64;
case USB_ENDPOINT_XFER_BULK: return usb_drv_port_speed() ? 512 : 64;
case USB_ENDPOINT_XFER_INT: return usb_drv_port_speed() ? 1024 : 64;
default: panicf("die"); return 0;
}
}
static void ep_write(struct endpoint_t *endp)
{
int xfer_size = MIN(max_pkt_size(endp), endp->cnt);
unsigned int timeout = current_tick + HZ/10;
while(TXBUF(endp) & TXFULL) /* TXFULL flag */
{
if(TIME_AFTER(current_tick, timeout))
break;
}
/* setup transfer size and DMA */
TXSTAT(endp) = xfer_size;
DMAINLMADDR(endp) = (uint32_t)endp->buf; /* local buffer address */
DMAINCTL(endp) = DMA_START;
/* Decrement by max packet size is intentional.
* This way if we have final packet short one we will get negative len
* after transfer, which in turn indicates we *don't* need to send
* zero length packet. If the final packet is max sized packet we will
* get zero len after transfer which indicates we need to send
* zero length packet to signal host end of the transfer.
*/
endp->cnt -= max_pkt_size(endp);
endp->buf += xfer_size;
/* clear NAK */
TXCON(endp) &= ~TXNAK;
}
static void ep_read(struct endpoint_t *endp)
{
/* setup DMA */
DMAOUTLMADDR(endp) = (uint32_t)endp->buf; /* local buffer address */
DMAOUTCTL(endp) = DMA_START;
/* clear NAK */
RXCON(endp) &= ~RXNAK;
}
static void in_intr(struct endpoint_t *endp)
{
uint32_t txstat = TXSTAT(endp);
/* check if clear feature was sent by host */
if(txstat & TXCFINT)
{
logf("clear_stall: %d", endp->ep_num);
usb_drv_stall(endp->ep_num, false, true);
}
/* check if a transfer has finished */
if(txstat & TXACK)
{
logf("udc: ack(%d)", endp->ep_num);
/* finished ? */
if(endp->cnt <= 0)
{
usb_core_transfer_complete(endp->ep_num, endp->dir, 0, endp->len);
/* release semaphore for blocking transfer */
if(endp->block)
semaphore_release(&endp->complete);
}
else /* more data to send */
ep_write(endp);
}
}
static void out_intr(struct endpoint_t *endp)
{
uint32_t rxstat = RXSTAT(endp);
logf("udc: out intr(%d)", endp->ep_num);
/* check if clear feature was sent by host */
if(rxstat & RXCFINT)
{
logf("clear_stall: %d", endp->ep_num);
usb_drv_stall(endp->ep_num, false, false);
}
/* check if a transfer has finished */
if(rxstat & RXACK)
{
int xfer_size = rxstat & 0xffff;
endp->cnt -= xfer_size;
endp->buf += xfer_size;
logf("udc: ack(%d) -> %d/%d", endp->ep_num, xfer_size, endp->cnt);
/* finished ? */
if(endp->cnt <= 0 || xfer_size < max_pkt_size(endp))
usb_core_transfer_complete(endp->ep_num, endp->dir, 0, endp->len);
else
ep_read(endp);
}
}
static void udc_phy_reset(void)
{
DEV_CTL |= SOFT_POR;
udelay(10000); /* min 10ms */
DEV_CTL &= ~SOFT_POR;
}
static void udc_soft_connect(void)
{
DEV_CTL |= CSR_DONE |
DEV_SOFT_CN |
DEV_SELF_PWR;
}
static void udc_helper(void)
{
uint32_t dev_info = DEV_INFO;
/* This polls for DEV_EN bit set in DEV_INFO register
* as well as tracks current requested configuration
* (DEV_INFO [11:8]). On state change it notifies usb stack
* about it.
*/
/* SET ADDRESS request */
if(!set_address)
if(dev_info & 0x7f)
{
set_address = true;
usb_core_notify_set_address(dev_info & 0x7f);
}
/* SET CONFIGURATION request */
if(!set_configuration)
if(dev_info & DEV_EN)
{
set_configuration = true;
usb_core_notify_set_config(((dev_info >> 7) & 0xf) + 1);
}
}
/* return port speed FS=0, HS=1 */
int usb_drv_port_speed(void)
{
return (DEV_INFO & DEV_SPEED) ? 0 : 1;
}
/* Reserve endpoint */
int usb_drv_request_endpoint(int type, int dir)
{
logf("req: %s %s", XFER_DIR_STR(dir), XFER_TYPE_STR(type));
/* Find an available ep/dir pair */
for(int ep_num = 1; ep_num<USB_NUM_ENDPOINTS;ep_num++)
{
struct endpoint_t *endp = &endpoints[ep_num];
if(endp->allocated || endp->type != type || endp->dir != dir)
continue;
/* allocate endpoint and enable interrupt */
endp->allocated = true;
if(dir == USB_DIR_IN)
TXCON(endp) = (ep_num << 8) | TXEPEN | TXNAK | TXACKINTEN | TXCFINTE;
else
RXCON(endp) = (ep_num << 8) | RXEPEN | RXNAK | RXACKINTEN | RXCFINTE | RXERRINTEN;
EN_INT |= 1 << (ep_num + 7);
logf("add: ep%d %s", ep_num, XFER_DIR_STR(dir));
return ep_num | dir;
}
return -1;
}
/* Free endpoint */
void usb_drv_release_endpoint(int ep)
{
int ep_num = EP_NUM(ep);
logf("rel: ep%d", ep_num);
endpoints[ep_num].allocated = false;
/* disable interrupt from this endpoint */
EN_INT &= ~(1 << (ep_num + 7));
}
/* Set the address (usually it's in a register).
* There is a problem here: some controller want the address to be set between
* control out and ack and some want to wait for the end of the transaction.
* In the first case, you need to write some code special code when getting
* setup packets and ignore this function (have a look at other drives)
*/
void usb_drv_set_address(int address)
{
(void)address;
/* UDC seems to set this automaticaly */
}
static int _usb_drv_send(int endpoint, void *ptr, int length, bool block)
{
logf("udc: send(%x)", endpoint);
struct endpoint_t *ep;
int ep_num = EP_NUM(endpoint);
if (ep_num == 0)
ep = &ctrlep[DIR_IN];
else
ep = &endpoints[ep_num];
/* for send transfers, make sure the data is committed */
commit_discard_dcache_range(ptr, length);
ep->buf = ptr;
ep->len = ep->cnt = length;
ep->block = block;
ep_write(ep);
/* wait for transfer to end */
if(block)
semaphore_wait(&ep->complete, TIMEOUT_BLOCK);
return 0;
}
/* Setup a send transfer. (blocking) */
int usb_drv_send(int endpoint, void *ptr, int length)
{
return _usb_drv_send(endpoint, ptr, length, true);
}
/* Setup a send transfer. (non blocking) */
int usb_drv_send_nonblocking(int endpoint, void *ptr, int length)
{
return _usb_drv_send(endpoint, ptr, length, false);
}
/* Setup a receive transfer. (non blocking) */
int usb_drv_recv_nonblocking(int endpoint, void* ptr, int length)
{
logf("udc: recv(%x)", endpoint);
struct endpoint_t *ep;
int ep_num = EP_NUM(endpoint);
if(ep_num == 0)
ep = &ctrlep[DIR_OUT];
else
ep = &endpoints[ep_num];
/* for recv, discard the cache lines related to the buffer */
commit_discard_dcache_range(ptr, length);
ep->buf = ptr;
ep->len = ep->cnt = length;
ep_read(ep);
return 0;
}
/* Kill all transfers. Usually you need to set a bit for each endpoint
* and flush fifos. You should also call the completion handler with
* error status for everything
*/
void usb_drv_cancel_all_transfers(void)
{
}
/* Set test mode, you can forget that for now, usually it's sufficient
* to bit copy the argument into some register of the controller
*/
void usb_drv_set_test_mode(int mode)
{
(void)mode;
}
/* Check if endpoint is in stall state */
bool usb_drv_stalled(int endpoint, bool in)
{
struct endpoint_t *endp = &endpoints[EP_NUM(endpoint)];
if(in)
return !!(TXCON(endp) & TXSTALL);
else
return !!(RXCON(endp) & RXSTALL);
}
/* Stall the endpoint. Usually set a flag in the controller */
void usb_drv_stall(int endpoint, bool stall, bool in)
{
struct endpoint_t *endp = &endpoints[EP_NUM(endpoint)];
if(in)
{
if(stall)
TXCON(endp) |= TXSTALL;
else
TXCON(endp) &= ~TXSTALL;
}
else
{
if(stall)
RXCON(endp) |= RXSTALL;
else
RXCON(endp) &= ~RXSTALL;
}
}
/* one time init (once per connection) - basicaly enable usb core */
void usb_drv_init(void)
{
/* init semaphore of ep0 */
semaphore_init(&ctrlep[DIR_OUT].complete, 1, 0);
semaphore_init(&ctrlep[DIR_IN].complete, 1, 0);
for(int ep_num = 1; ep_num < USB_NUM_ENDPOINTS; ep_num++)
semaphore_init(&endpoints[ep_num].complete, 1, 0);
}
/* turn off usb core */
void usb_drv_exit(void)
{
DEV_CTL = DEV_SELF_PWR;
/* disable USB interrupts in interrupt controller */
INTC_IMR &= ~IRQ_ARM_UDC;
INTC_IECR &= ~IRQ_ARM_UDC;
/* we cannot disable UDC clock since this causes data abort
* when reading DEV_INFO in order to check usb connect event
*/
}
int usb_detect(void)
{
if(DEV_INFO & VBUS_STS)
return USB_INSERTED;
else
return USB_EXTRACTED;
}
/* UDC ISR function */
void INT_UDC(void)
{
/* read what caused UDC irq */
uint32_t intsrc = INT2FLAG & 0x7fffff;
if(intsrc & USBRST_INTR) /* usb reset */
{
logf("udc_int: reset, %ld", current_tick);
EN_INT = EN_SUSP_INTR | /* Enable Suspend Irq */
EN_RESUME_INTR | /* Enable Resume Irq */
EN_USBRST_INTR | /* Enable USB Reset Irq */
EN_OUT0_INTR | /* Enable OUT Token receive Irq EP0 */
EN_IN0_INTR | /* Enable IN Token transmit Irq EP0 */
EN_SETUP_INTR; /* Enable SETUP Packet Receive Irq */
INTCON = UDC_INTHIGH_ACT | /* interrupt high active */
UDC_INTEN; /* enable EP0 irqs */
TX0CON = TXACKINTEN | /* Set as one to enable the EP0 tx irq */
TXNAK; /* Set as one to response NAK handshake */
RX0CON = RXACKINTEN |
RXEPEN | /* Endpoint 0 Enable. When cleared the
* endpoint does not respond to an SETUP
* or OUT token */
RXNAK; /* Set as one to response NAK handshake */
set_address = false;
set_configuration = false;
}
/* This needs to be processed AFTER usb reset */
udc_helper();
if(intsrc & SETUP_INTR) /* setup interrupt */
{
setup_received();
}
if(intsrc & IN0_INTR)
{
/* EP0 IN done */
in_intr(&ctrlep[DIR_IN]);
}
if(intsrc & OUT0_INTR)
{
/* EP0 OUT done */
out_intr(&ctrlep[DIR_OUT]);
}
if(intsrc & USBRST_INTR)
{
/* usb reset */
usb_drv_init();
}
if(intsrc & RESUME_INTR)
{
/* usb resume */
TX0CON |= TXCLR; /* TxClr */
TX0CON &= ~TXCLR;
RX0CON |= RXCLR; /* RxClr */
RX0CON &= ~RXCLR;
}
if(intsrc & SUSP_INTR)
{
/* usb suspend */
}
if(intsrc & CONN_INTR)
{
/* usb connect */
udc_phy_reset();
udelay(10000); /* wait at least 10ms */
udc_soft_connect();
}
/* other endpoints */
for(int ep_num = 1; ep_num < 16; ep_num++)
{
if(!(intsrc & (1 << (ep_num + 7))))
continue;
struct endpoint_t *endp = &endpoints[ep_num];
if(endp->dir == USB_DIR_IN)
in_intr(endp);
else
out_intr(endp);
}
}