rockbox/firmware/target/arm/s3c2440/lcd-s3c2440.c

523 lines
12 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 by Greg White
* Copyright (C) 2009 by Bob Cousins
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <sys/types.h> /* off_t */
#include "config.h"
#include "system.h"
#include "cpu.h"
#include "string.h"
#include "lcd.h"
#include "kernel.h"
#include "lcd-target.h"
#define LCDADDR(x, y) (&lcd_framebuffer[(y)][(x)])
static bool lcd_on = true;
#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
static bool lcd_powered = true;
#endif
static unsigned lcd_yuv_options = 0;
/* Copies a rectangle from one framebuffer to another. Can be used in
single transfer mode with width = num pixels, and height = 1 which
allows a full-width rectangle to be copied more efficiently. */
extern void lcd_copy_buffer_rect(fb_data *dst, const fb_data *src,
int width, int height);
#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
bool lcd_active(void)
{
return lcd_on;
}
#endif
static unsigned int LCDBANK(unsigned int address)
{
return ((address >> 22) & 0xff);
}
static unsigned int LCDBASEU(unsigned int address)
{
return (address & ((1 << 22)-1)) >> 1;
}
static unsigned int LCDBASEL(unsigned int address)
{
address += 320*240*2;
return (address & ((1 << 22)-1)) >> 1;
}
static inline void delay_cycles(volatile int delay)
{
while(delay>0) delay--;
}
static void LCD_CTRL_setup(void)
{
LCDCON1 = (LCD_CLKVAL << 8) | (LCD_MMODE << 7) | (LCD_PNRMODE << 5) |
(LCD_BPPMODE << 1);
LCDCON2 = (LCD_UPPER_MARGIN << 24) | ((LCD_HEIGHT - 1) << 14) |
(LCD_LOWER_MARGIN << 6) | (LCD_VSYNC_LEN << 0);
LCDCON3 = (LCD_LEFT_MARGIN << 19) | ((LCD_WIDTH - 1) << 8) |
(LCD_RIGHT_MARGIN << 0);
LCDCON4 = (LCD_HSYNC_LEN << 0);
/* HWSWP = 1, INVVFRAM = 1, INVVLINE = 1, FRM565 = 1, All others = 0 */
LCDCON5 = 0xB01;
LCDSADDR1 = (LCDBANK((unsigned)FRAME) << 21) | (LCDBASEU((unsigned)FRAME));
LCDSADDR2 = LCDBASEL((unsigned)FRAME);
LCDSADDR3 = 0x000000F0;
}
static void LCD_CTRL_clock(bool onoff)
{
if(onoff)
{
GPCCON &=~0xFFF000FC;
GPCCON |= 0xAAA000A8;
GPCUP |= 0xFC0E;
GPDCON &=~0xFFF0FFF0;
GPDCON |= 0xAAA0AAA0;
GPDUP |= 0xFCFC;
bitset32(&CLKCON, 0x20); /* enable LCD clock */
LCDCON1 |= LCD_ENVID;
}
else
{
GPCCON &= ~0xFFF000FC;
GPCUP &= ~0xFC0E;
GPDCON &= ~0xFFF0FFF0;
GPDUP &= ~0xFCFC;
LCDCON1 &= ~LCD_ENVID; /* Must disable first or bus may freeze */
bitclr32(&CLKCON, 0x20); /* disable LCD clock */
}
}
#ifdef GIGABEAT_F
static void reset_LCD(bool reset)
{
GPBCON&=~0xC000;
GPBCON|=0x4000;
if(reset)
GPBDAT|=0x80;
else
GPBDAT&=~0x80;
}
#endif
/****************************************************************************/
#ifdef GIGABEAT_F
static void LCD_SPI_send(const unsigned char *array, int count)
{
while (count--)
{
while ((SPSTA0&0x01)==0){};
SPTDAT0=*array++;
}
}
static void LCD_SPI_setreg(unsigned char reg, unsigned char value)
{
unsigned char regval[] =
{
0x00,reg,0x01,value
};
LCD_SPI_send(regval, sizeof(regval));
}
static void LCD_SPI_SS(bool select)
{
delay_cycles(0x4FFF);
GPBCON&=~0x30000;
GPBCON|=0x10000;
if(select)
GPBDAT|=0x100;
else
GPBDAT&=~0x100;
}
static void LCD_SPI_start(void)
{
bitset32(&CLKCON, 0x40000); /* enable SPI clock */
LCD_SPI_SS(false);
SPCON0=0x3E;
SPPRE0=24;
reset_LCD(true);
LCD_SPI_SS(true);
}
static void LCD_SPI_stop(void)
{
LCD_SPI_SS(false);
SPCON0 &= ~0x10;
bitclr32(&CLKCON, 0x40000); /* disable SPI clock */
}
static void LCD_SPI_init(void)
{
/*
* SPI setup - Some of these registers are known; they are documented in
* the wiki. Many thanks to Alex Gerchanovsky for discovering this
* sequence.
*/
LCD_CTRL_clock(true);
LCD_SPI_start();
LCD_SPI_setreg(0x0F, 0x01);
LCD_SPI_setreg(0x09, 0x06);
LCD_SPI_setreg(0x16, 0xA6);
LCD_SPI_setreg(0x1E, 0x49);
LCD_SPI_setreg(0x1F, 0x26);
LCD_SPI_setreg(0x0B, 0x2F);
LCD_SPI_setreg(0x0C, 0x2B);
LCD_SPI_setreg(0x19, 0x5E);
LCD_SPI_setreg(0x1A, 0x15);
LCD_SPI_setreg(0x1B, 0x15);
LCD_SPI_setreg(0x1D, 0x01);
LCD_SPI_setreg(0x00, 0x03);
LCD_SPI_setreg(0x01, 0x10);
LCD_SPI_setreg(0x02, 0x0A);
LCD_SPI_setreg(0x06, 0x04); /* Set the orientation */
LCD_SPI_setreg(0x08, 0x2E);
LCD_SPI_setreg(0x24, 0x12);
LCD_SPI_setreg(0x25, 0x3F);
LCD_SPI_setreg(0x26, 0x0B);
LCD_SPI_setreg(0x27, 0x00);
LCD_SPI_setreg(0x28, 0x00);
LCD_SPI_setreg(0x29, 0xF6);
LCD_SPI_setreg(0x2A, 0x03);
LCD_SPI_setreg(0x2B, 0x0A);
LCD_SPI_setreg(0x04, 0x01); /* Turn the display on */
LCD_SPI_stop();
}
#endif
/****************************************************************************/
/* LCD init */
void lcd_init_device(void)
{
#ifdef BOOTLOADER
int i;
/* When the Rockbox bootloader starts the framebuffer address is changed
* but the LCD display should stay the same til an lcd_update() occurs.
* This copies the data from the old framebuffer to the new one to make the
* change non-visable to the user.
*/
unsigned short *buf = (unsigned short*)(FRAME);
unsigned short *oldbuf = (unsigned short*)(LCDSADDR1<<1);
/* The Rockbox bootloader is transitioning from RGB555I to RGB565 mode
so convert the frambuffer data accordingly */
for(i=0; i< 320*240; i++)
{
*(buf++) = ((*oldbuf>>1) & 0x1F) | (*oldbuf & 0xffc0);
oldbuf++;
}
#endif
/* Set pins up */
GPHUP &= 0x600;
GPECON |= 0x0A800000;
GPEUP |= 0x3800;
#ifdef GIGABEAT_F
GPBUP |= 0x181;
#endif
bitset32(&CLKCON, 0x20); /* enable LCD clock */
LCD_CTRL_setup();
#ifdef GIGABEAT_F
LCD_SPI_init();
#else
LCD_CTRL_clock(true);
#endif
}
#if defined(HAVE_LCD_SLEEP)
static void LCD_SPI_powerdown(void)
{
lcd_powered = false;
LCD_SPI_start();
LCD_SPI_setreg(0x04, 0x00);
LCD_SPI_stop();
reset_LCD(false); /* This makes a big difference on power */
LCD_CTRL_clock(false);
}
void lcd_sleep(void)
{
if (lcd_powered)
{
/* "not powered" implies "disabled" */
if (lcd_on)
lcd_enable(false);
LCD_SPI_powerdown();
}
}
#endif
#if defined(HAVE_LCD_ENABLE)
static void LCD_SPI_powerup(void)
{
LCD_CTRL_clock(true);
LCD_SPI_start();
LCD_SPI_setreg(0x04, 0x01);
LCD_SPI_stop();
lcd_powered = true;
}
void lcd_enable(bool state)
{
if (state == lcd_on)
return;
if(state)
{
/* "enabled" implies "powered" */
if (!lcd_powered)
{
LCD_SPI_powerup();
/* Wait long enough for a frame to be written - yes, it
* takes awhile. */
sleep(HZ/5);
}
lcd_on = true;
lcd_update();
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else
{
lcd_on = false;
}
}
#endif
#ifdef GIGABEAT_F
void lcd_set_flip(bool yesno) {
if (!lcd_on)
return;
LCD_SPI_start();
if(yesno)
{
LCD_SPI_setreg(0x06, 0x02);
}
else
{
LCD_SPI_setreg(0x06, 0x04);
}
LCD_SPI_stop();
}
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val) {
if (!lcd_on)
return;
LCD_SPI_start();
LCD_SPI_setreg(0x0B, (unsigned char) val);
LCD_SPI_stop();
}
void lcd_set_invert_display(bool yesno) {
if (!lcd_on)
return;
LCD_SPI_start();
if(yesno)
{
LCD_SPI_setreg(0x27, 0x10);
}
else
{
LCD_SPI_setreg(0x27, 0x00);
}
LCD_SPI_stop();
}
#else
void lcd_set_flip(bool yesno)
{
(void)yesno;
/* Not implemented */
}
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val)
{
(void)val;
/* Not implemented */
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
/* Not implemented */
}
#endif
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
fb_data *dst, *src;
if (!lcd_on)
return;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* Clip right */
if (x < 0)
width += x, x = 0; /* Clip left */
if (width <= 0)
return; /* nothing left to do */
if (y + height > LCD_HEIGHT)
height = LCD_HEIGHT - y; /* Clip bottom */
if (y < 0)
height += y, y = 0; /* Clip top */
if (height <= 0)
return; /* nothing left to do */
/* TODO: It may be faster to swap the addresses of lcd_driver_framebuffer
* and lcd_framebuffer */
dst = (fb_data *)FRAME + LCD_WIDTH*y + x;
src = &lcd_framebuffer[y][x];
/* Copy part of the Rockbox framebuffer to the second framebuffer */
if (width < LCD_WIDTH)
{
/* Not full width - do line-by-line */
lcd_copy_buffer_rect(dst, src, width, height);
}
else
{
/* Full width - copy as one line */
lcd_copy_buffer_rect(dst, src, LCD_WIDTH*height, 1);
}
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
if (!lcd_on)
return;
lcd_copy_buffer_rect((fb_data *)FRAME, &lcd_framebuffer[0][0],
LCD_WIDTH*LCD_HEIGHT, 1);
}
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(fb_data *dst,
unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(fb_data *dst,
unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
/* Performance function to blit a YUV bitmap directly to the LCD */
/* For the Gigabeat - show it rotated */
/* So the LCD_WIDTH is now the height */
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
/* Caches for chroma data so it only need be recaculated every other
line */
unsigned char const * yuv_src[3];
off_t z;
if (!lcd_on)
return;
/* Sorry, but width and height must be >= 2 or else */
width &= ~1;
height >>= 1;
y = LCD_WIDTH - 1 - y;
fb_data *dst = (fb_data*)FRAME + x * LCD_WIDTH + y;
z = stride*src_y;
yuv_src[0] = src[0] + z + src_x;
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
if (lcd_yuv_options & LCD_YUV_DITHER)
{
do
{
lcd_write_yuv420_lines_odither(dst, yuv_src, width, stride, y, x);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
dst -= 2;
y -= 2;
}
while (--height > 0);
}
else
{
do
{
lcd_write_yuv420_lines(dst, yuv_src, width, stride);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
dst -= 2;
}
while (--height > 0);
}
}