cf986e8d44
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@6248 a1c6a512-1295-4272-9138-f99709370657
1215 lines
37 KiB
C
1215 lines
37 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2002 by Philipp Pertermann
|
|
*
|
|
* All files in this archive are subject to the GNU General Public License.
|
|
* See the file COPYING in the source tree root for full license agreement.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include "mas.h"
|
|
#include "thread.h"
|
|
#include "kernel.h"
|
|
#include "settings.h"
|
|
#include "lcd.h"
|
|
#include "widgets.h"
|
|
#include "wps-display.h"
|
|
#include "sprintf.h"
|
|
#include "button.h"
|
|
#include "system.h"
|
|
#include "font.h"
|
|
#include "icons.h"
|
|
#include "lang.h"
|
|
#include "peakmeter.h"
|
|
|
|
/* no inline in simulator mode */
|
|
#ifdef SIMULATOR
|
|
#define inline
|
|
#endif
|
|
|
|
/* buffer the read peak value */
|
|
static int peak_meter_max_l;
|
|
static int peak_meter_max_r;
|
|
|
|
/* point in time when peak_meter_max_x becomes invalid */
|
|
static long peak_meter_timeout_l;
|
|
static long peak_meter_timeout_r;
|
|
|
|
/* when true a clip has occurred */
|
|
static bool peak_meter_l_clip = false;
|
|
static bool peak_meter_r_clip = false;
|
|
|
|
/* point in time when peak_meter_x_oveflow becomes invalid */
|
|
static long peak_meter_clip_timeout_l;
|
|
static long peak_meter_clip_timeout_r;
|
|
|
|
static int peak_meter_clip_hold;
|
|
|
|
/* specifies the value range in peak volume values */
|
|
static unsigned short peak_meter_range_min;
|
|
static unsigned short peak_meter_range_max;
|
|
static unsigned short peak_meter_range;
|
|
|
|
/* if set to true clip timeout is disabled */
|
|
static bool peak_meter_clip_eternal = false;
|
|
|
|
static bool peak_meter_use_dbfs = true;
|
|
static unsigned short db_min = 0;
|
|
static unsigned short db_max = 9000;
|
|
static unsigned short db_range = 9000;
|
|
|
|
#ifdef HAVE_RECORDING
|
|
static unsigned short trig_strt_threshold;
|
|
static long trig_strt_duration;
|
|
static long trig_strt_dropout;
|
|
static unsigned short trig_stp_threshold;
|
|
static long trig_stp_hold;
|
|
static long trig_rstrt_gap;
|
|
|
|
/* point in time when the threshold was exceeded */
|
|
static long trig_hightime;
|
|
|
|
/* point in time when the volume fell below the threshold*/
|
|
static long trig_lowtime;
|
|
|
|
/* The output value of the trigger. See TRIG_XXX constants for valid values */
|
|
static int trig_status = TRIG_OFF;
|
|
|
|
static void (*trigger_listener)(int) = NULL;
|
|
#endif
|
|
|
|
#if CONFIG_HWCODEC == MASNONE
|
|
#define MAS_REG_DQPEAK_L 0
|
|
#define MAS_REG_DQPEAK_R 0
|
|
#endif
|
|
|
|
#ifndef SIMULATOR
|
|
static int peak_meter_src_l = MAS_REG_DQPEAK_L;
|
|
static int peak_meter_src_r = MAS_REG_DQPEAK_R;
|
|
#endif
|
|
|
|
/* temporarily en- / disables peak meter. This is
|
|
especially for external applications to detect
|
|
if the peak_meter is in use and needs drawing at all */
|
|
bool peak_meter_enabled = true;
|
|
|
|
/*
|
|
bool peak_meter_use_thread = false;
|
|
static char peak_meter_stack[DEFAULT_STACK_SIZE];
|
|
*/
|
|
/* used in wps.c to set the display frame rate of the peak meter */
|
|
int peak_meter_fps = 20;
|
|
|
|
static int peak_meter_l;
|
|
static int peak_meter_r;
|
|
|
|
static int peak_meter_hold = 1;
|
|
static int peak_meter_release = 8;
|
|
|
|
/* debug only */
|
|
#ifdef PM_DEBUG
|
|
static int peek_calls = 0;
|
|
|
|
#define PEEKS_PER_DRAW_SIZE 40
|
|
static unsigned int peeks_per_redraw[PEEKS_PER_DRAW_SIZE];
|
|
|
|
#define TICKS_PER_DRAW_SIZE 20
|
|
static unsigned int ticks_per_redraw[TICKS_PER_DRAW_SIZE];
|
|
#endif
|
|
|
|
/* time out values for max */
|
|
static const long max_time_out[] = {
|
|
0 * HZ, HZ / 5, 30, HZ / 2, HZ, 2 * HZ,
|
|
3 * HZ, 4 * HZ, 5 * HZ, 6 * HZ, 7 * HZ, 8 * HZ,
|
|
9 * HZ, 10 * HZ, 15 * HZ, 20 * HZ, 30 * HZ, 60 * HZ
|
|
};
|
|
|
|
/* time out values for clip */
|
|
static const long clip_time_out[] = {
|
|
0 * HZ, 1 * HZ, 2 * HZ, 3 * HZ, 4 * HZ, 5 * HZ,
|
|
6 * HZ, 7 * HZ, 8 * HZ, 9 * HZ, 10 * HZ, 15 * HZ,
|
|
20 * HZ, 25 * HZ, 30 * HZ, 45 * HZ, 60 * HZ, 90 * HZ,
|
|
120 * HZ, 180 * HZ, 300 * HZ, 600L * HZ, 1200L * HZ,
|
|
2700L * HZ, 5400L * HZ
|
|
};
|
|
|
|
/* precalculated peak values that represent magical
|
|
dBfs values. Used to draw the scale */
|
|
#define DB_SCALE_SRC_VALUES_SIZE 12
|
|
#if 0
|
|
static const int db_scale_src_values[DB_SCALE_SRC_VALUES_SIZE] = {
|
|
32767, /* 0 db */
|
|
23197, /* - 3 db */
|
|
16422, /* - 6 db */
|
|
11626, /* - 9 db */
|
|
8231, /* -12 db */
|
|
4125, /* -18 db */
|
|
2067, /* -24 db */
|
|
1036, /* -30 db */
|
|
328, /* -40 db */
|
|
104, /* -50 db */
|
|
33, /* -60 db */
|
|
1, /* -inf */
|
|
};
|
|
#else
|
|
static const int db_scale_src_values[DB_SCALE_SRC_VALUES_SIZE] = {
|
|
32752, /* 0 db */
|
|
22784, /* - 3 db */
|
|
14256, /* - 6 db */
|
|
11752, /* - 9 db */
|
|
9256, /* -12 db */
|
|
4256, /* -18 db */
|
|
2186, /* -24 db */
|
|
1186, /* -30 db */
|
|
373, /* -40 db */
|
|
102, /* -50 db */
|
|
33, /* -60 db */
|
|
0, /* -inf */
|
|
};
|
|
#endif
|
|
|
|
static int db_scale_count = DB_SCALE_SRC_VALUES_SIZE;
|
|
|
|
/* if db_scale_valid is false the content of
|
|
db_scale_lcd_coord needs recalculation */
|
|
static bool db_scale_valid = false;
|
|
|
|
/* contains the lcd x coordinates of the magical
|
|
scale values in db_scale_src_values */
|
|
static int db_scale_lcd_coord[sizeof db_scale_src_values / sizeof (int)];
|
|
|
|
|
|
/**
|
|
* Calculates dB Value for the peak meter, uses peak value as input
|
|
* @param int sample - The input value
|
|
* Make sure that 0 <= value < SAMPLE_RANGE
|
|
*
|
|
* @return int - The 2 digit fixed comma result of the euation
|
|
* 20 * log (sample / SAMPLE_RANGE) + 90
|
|
* Output range is 0-8961 (that is 0,0 - 89,6 dB).
|
|
* Normally 0dB is full scale, here it is shifted +90dB.
|
|
* The calculation is based on the results of a linear
|
|
* approximation tool written specifically for this problem
|
|
* by Andreas Zwirtes (radhard@gmx.de). The result hat an
|
|
* accurracy of better than 2%. It is highly runtime optimized,
|
|
* the cascading if-clauses do an successive approximation on
|
|
* the input value. This avoids big lookup-tables and
|
|
* for-loops.
|
|
*/
|
|
|
|
int calc_db (int isample) {
|
|
/* return n+m*(isample-istart)/100 */
|
|
int n;
|
|
long m;
|
|
int istart;
|
|
|
|
/* Range 1-4 */
|
|
if (isample < 119) {
|
|
|
|
/* Range 1-2 */
|
|
if (isample < 5) {
|
|
|
|
/* Range 1 */
|
|
if (isample < 1) {
|
|
istart = 0;
|
|
n = 0;
|
|
m = 5900;
|
|
}
|
|
|
|
/* Range 2 */
|
|
else {
|
|
istart = 1;
|
|
n = 59;
|
|
m = 34950;
|
|
}
|
|
}
|
|
|
|
/* Range 3-4 */
|
|
else {
|
|
|
|
/* Range 3 */
|
|
if (isample < 24) {
|
|
istart = 5;
|
|
n = 1457;
|
|
m = 7168;
|
|
}
|
|
|
|
/* Range 4 */
|
|
else {
|
|
istart = 24;
|
|
n = 2819;
|
|
m = 1464;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Range 5-8 */
|
|
else {
|
|
|
|
/* Range 5-6 */
|
|
if (isample < 2918) {
|
|
|
|
/* Range 5 */
|
|
if (isample < 592) {
|
|
istart = 119;
|
|
n = 4210;
|
|
m = 295;
|
|
}
|
|
|
|
/* Range 6 */
|
|
else {
|
|
istart = 592;
|
|
n = 5605;
|
|
m = 60;
|
|
}
|
|
}
|
|
|
|
/* Range 7-8 */
|
|
else {
|
|
|
|
/* Range 7 */
|
|
if (isample < 15352) {
|
|
istart = 2918;
|
|
n = 7001;
|
|
m = 12;
|
|
}
|
|
|
|
/* Range 8 */
|
|
else {
|
|
istart = 15352;
|
|
n = 8439;
|
|
m = 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
return n + (m * (long)(isample - istart)) / 100L;
|
|
}
|
|
|
|
|
|
/**
|
|
* A helper function for peak_meter_db2sample. Don't call it separately but
|
|
* use peak_meter_db2sample. If one or both of min and max are outside the
|
|
* range 0 <= min (or max) < 8961 the behaviour of this function is
|
|
* undefined. It may not return.
|
|
* @param int min - The minimum of the value range that is searched.
|
|
* @param int max - The maximum of the value range that is searched.
|
|
* @param int db - The value in dBfs * (-100) for which the according
|
|
* minimal peak sample is searched.
|
|
* @return int - A linear volume value with 0 <= value < MAX_PEAK
|
|
*/
|
|
static int db_to_sample_bin_search(int min, int max, int db){
|
|
int test = min + (max - min) / 2;
|
|
|
|
if (min < max) {
|
|
if (calc_db(test) < db) {
|
|
test = db_to_sample_bin_search(test, max, db);
|
|
} else {
|
|
if (calc_db(test-1) > db) {
|
|
test = db_to_sample_bin_search(min, test, db);
|
|
}
|
|
}
|
|
}
|
|
return test;
|
|
}
|
|
|
|
/**
|
|
* Converts a value representing dBfs to a linear
|
|
* scaled volume info as it is used by the MAS.
|
|
* An incredibly inefficiant function which is
|
|
* the vague inverse of calc_db. This really
|
|
* should be replaced by something better soon.
|
|
*
|
|
* @param int db - A dBfs * 100 value with
|
|
* -9000 < value <= 0
|
|
* @return int - The return value is in the range of
|
|
* 0 <= return value < MAX_PEAK
|
|
*/
|
|
int peak_meter_db2sample(int db) {
|
|
int retval = 0;
|
|
|
|
/* what is the maximum pseudo db value */
|
|
int max_peak_db = calc_db(MAX_PEAK - 1);
|
|
|
|
/* range check: db value to big */
|
|
if (max_peak_db + db < 0) {
|
|
retval = 0;
|
|
}
|
|
|
|
/* range check: db value too small */
|
|
else if (max_peak_db + db >= max_peak_db) {
|
|
retval = MAX_PEAK -1;
|
|
}
|
|
|
|
/* value in range: find the matching linear value */
|
|
else {
|
|
retval = db_to_sample_bin_search(0, MAX_PEAK, max_peak_db + db);
|
|
|
|
/* as this is a dirty function anyway, we want to adjust the
|
|
full scale hit manually to avoid users complaining that when
|
|
they adjust maximum for 0 dBfs and display it in percent it
|
|
shows 99%. That is due to precision loss and this is the
|
|
optical fix */
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Set the min value for restriction of the value range.
|
|
* @param int newmin - depending wether dBfs is used
|
|
* newmin is a value in dBfs * 100 or in linear percent values.
|
|
* for dBfs: -9000 < newmin <= 0
|
|
* for linear: 0 <= newmin <= 100
|
|
*/
|
|
void peak_meter_set_min(int newmin) {
|
|
if (peak_meter_use_dbfs) {
|
|
peak_meter_range_min = peak_meter_db2sample(newmin);
|
|
|
|
} else {
|
|
if (newmin < peak_meter_range_max) {
|
|
peak_meter_range_min = newmin * MAX_PEAK / 100;
|
|
}
|
|
}
|
|
|
|
peak_meter_range = peak_meter_range_max - peak_meter_range_min;
|
|
|
|
db_min = calc_db(peak_meter_range_min);
|
|
db_range = db_max - db_min;
|
|
db_scale_valid = false;
|
|
}
|
|
|
|
/**
|
|
* Returns the minimum value of the range the meter
|
|
* displays. If the scale is set to dBfs it returns
|
|
* dBfs values * 100 or linear percent values.
|
|
* @return: using dBfs : -9000 < value <= 0
|
|
* using linear scale: 0 <= value <= 100
|
|
*/
|
|
int peak_meter_get_min(void) {
|
|
int retval = 0;
|
|
if (peak_meter_use_dbfs) {
|
|
retval = calc_db(peak_meter_range_min) - calc_db(MAX_PEAK - 1);
|
|
} else {
|
|
retval = peak_meter_range_min * 100 / MAX_PEAK;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Set the max value for restriction of the value range.
|
|
* @param int newmax - depending wether dBfs is used
|
|
* newmax is a value in dBfs * 100 or in linear percent values.
|
|
* for dBfs: -9000 < newmax <= 0
|
|
* for linear: 0 <= newmax <= 100
|
|
*/
|
|
void peak_meter_set_max(int newmax) {
|
|
if (peak_meter_use_dbfs) {
|
|
peak_meter_range_max = peak_meter_db2sample(newmax);
|
|
} else {
|
|
if (newmax > peak_meter_range_min) {
|
|
peak_meter_range_max = newmax * MAX_PEAK / 100;
|
|
}
|
|
}
|
|
|
|
peak_meter_range = peak_meter_range_max - peak_meter_range_min;
|
|
|
|
db_max = calc_db(peak_meter_range_max);
|
|
db_range = db_max - db_min;
|
|
db_scale_valid = false;
|
|
}
|
|
|
|
/**
|
|
* Returns the minimum value of the range the meter
|
|
* displays. If the scale is set to dBfs it returns
|
|
* dBfs values * 100 or linear percent values
|
|
* @return: using dBfs : -9000 < value <= 0
|
|
* using linear scale: 0 <= value <= 100
|
|
*/
|
|
int peak_meter_get_max(void) {
|
|
int retval = 0;
|
|
if (peak_meter_use_dbfs) {
|
|
retval = calc_db(peak_meter_range_max) - calc_db(MAX_PEAK - 1);
|
|
} else {
|
|
retval = peak_meter_range_max * 100 / MAX_PEAK;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Returns 1 if the meter currently is
|
|
* displaying dBfs values, 0 if the meter
|
|
* displays percent values.
|
|
* @return int - returns 0 or 1.
|
|
*/
|
|
int peak_meter_get_use_dbfs(void) {
|
|
return peak_meter_use_dbfs ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* Specifies wether the values displayed are scaled
|
|
* as dBfs or as linear percent values.
|
|
* @param int - Set to 0 for linear percent scale. Any other value
|
|
* switches on dBfs.
|
|
*/
|
|
void peak_meter_set_use_dbfs(int use){
|
|
peak_meter_use_dbfs = ((use & 1) == 1);
|
|
db_scale_valid = false;
|
|
}
|
|
|
|
/**
|
|
* Initialize the range of the meter. Only values
|
|
* that are in the range of [range_min ... range_max]
|
|
* are displayed.
|
|
* @param bool dbfs - set to true for dBfs,
|
|
* set to false for linear scaling in percent
|
|
* @param int range_min - Specifies the lower value of the range.
|
|
* Pass a value dBfs * 100 when dbfs is set to true.
|
|
* Pass a percent value when dbfs is set to false.
|
|
* @param int range_max - Specifies the upper value of the range.
|
|
* Pass a value dBfs * 100 when dbfs is set to true.
|
|
* Pass a percent value when dbfs is set to false.
|
|
*/
|
|
void peak_meter_init_range( bool dbfs, int range_min, int range_max)
|
|
{
|
|
peak_meter_use_dbfs = dbfs;
|
|
peak_meter_set_min(range_min);
|
|
peak_meter_set_max(range_max);
|
|
}
|
|
|
|
/**
|
|
* Initialize the peak meter with all relevant values concerning times.
|
|
* @param int release - Set the maximum amount of pixels the meter is allowed
|
|
* to decrease with each redraw
|
|
* @param int hold - Select the time preset for the time the peak indicator
|
|
* is reset after a peak occurred. The preset values are
|
|
* stored in max_time_out.
|
|
* @param int clip_hold - Select the time preset for the time the peak
|
|
* indicator is reset after a peak occurred. The preset
|
|
* values are stored in clip_time_out.
|
|
*/
|
|
void peak_meter_init_times(int release, int hold, int clip_hold) {
|
|
peak_meter_hold = hold;
|
|
peak_meter_release = release;
|
|
peak_meter_clip_hold = clip_hold;
|
|
}
|
|
|
|
/**
|
|
* Set the source of the peak meter to playback or to
|
|
* record.
|
|
* @param: bool playback - If true playback peak meter is used.
|
|
* If false recording peak meter is used.
|
|
*/
|
|
void peak_meter_playback(bool playback)
|
|
{
|
|
#ifdef SIMULATOR
|
|
(void)playback;
|
|
#elif CONFIG_HWCODEC == MASNONE
|
|
/* FIX: not for the sw-based ones yes */
|
|
#else
|
|
if (playback) {
|
|
peak_meter_src_l = MAS_REG_DQPEAK_L;
|
|
peak_meter_src_r = MAS_REG_DQPEAK_R;
|
|
} else {
|
|
peak_meter_src_l = MAS_REG_QPEAK_L;
|
|
peak_meter_src_r = MAS_REG_QPEAK_R;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_RECORDING
|
|
static void set_trig_status(int new_state) {
|
|
if (trig_status != new_state) {
|
|
trig_status = new_state;
|
|
if (trigger_listener != NULL) {
|
|
trigger_listener(trig_status);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Reads peak values from the MAS, and detects clips. The
|
|
* values are stored in peak_meter_l peak_meter_r for later
|
|
* evauluation. Consecutive calls to peak_meter_peek detect
|
|
* that ocurred. This function could be used by a thread for
|
|
* busy reading the MAS.
|
|
*/
|
|
inline void peak_meter_peek(void)
|
|
{
|
|
#ifdef SIMULATOR
|
|
int left = 8000;
|
|
int right = 9000;
|
|
#elif CONFIG_HWCODEC == MASNONE
|
|
/* FIX */
|
|
int left = 9000;
|
|
int right = 8000;
|
|
#else
|
|
/* read the peak values */
|
|
int left = mas_codec_readreg(peak_meter_src_l);
|
|
int right = mas_codec_readreg(peak_meter_src_r);
|
|
#endif
|
|
|
|
/* check for clips
|
|
An clip is assumed when two consecutive readouts
|
|
of the volume are at full scale. This is proven
|
|
to be inaccurate in both ways: it may detect clips
|
|
when no clip occurred and it may fail to detect
|
|
a real clip. */
|
|
if ((left == peak_meter_l) &&
|
|
(left == MAX_PEAK - 1)) {
|
|
peak_meter_l_clip = true;
|
|
peak_meter_clip_timeout_l =
|
|
current_tick + clip_time_out[peak_meter_clip_hold];
|
|
}
|
|
|
|
if ((right == peak_meter_r) &&
|
|
(right == MAX_PEAK - 1)) {
|
|
peak_meter_r_clip = true;
|
|
peak_meter_clip_timeout_r =
|
|
current_tick + clip_time_out[peak_meter_clip_hold];
|
|
}
|
|
|
|
#ifdef HAVE_RECORDING
|
|
switch (trig_status) {
|
|
case TRIG_READY:
|
|
/* no more changes, if trigger was activated as release trigger */
|
|
/* threshold exceeded? */
|
|
if ((left > trig_strt_threshold) || (right > trig_strt_threshold)) {
|
|
if (trig_strt_duration) {
|
|
/* reset trigger duration */
|
|
trig_hightime = current_tick;
|
|
|
|
/* reset dropout duration */
|
|
trig_lowtime = current_tick;
|
|
|
|
/* if trig_duration is set to 0 the user wants to start
|
|
recording immediately */
|
|
set_trig_status(TRIG_STEADY);
|
|
} else {
|
|
set_trig_status(TRIG_GO);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TRIG_STEADY:
|
|
case TRIG_RETRIG:
|
|
/* trigger duration exceeded */
|
|
if (current_tick - trig_hightime > trig_strt_duration) {
|
|
set_trig_status(TRIG_GO);
|
|
} else {
|
|
/* threshold exceeded? */
|
|
if ((left > trig_strt_threshold) ||
|
|
(right > trig_strt_threshold)) {
|
|
/* reset lowtime */
|
|
trig_lowtime = current_tick;
|
|
}
|
|
/* volume is below threshold */
|
|
else {
|
|
/* dropout occurred? */
|
|
if (current_tick - trig_lowtime > trig_strt_dropout){
|
|
if (trig_status == TRIG_STEADY){
|
|
set_trig_status(TRIG_READY);
|
|
}
|
|
/* trig_status == TRIG_RETRIG */
|
|
else {
|
|
/* the gap has already expired */
|
|
trig_lowtime = current_tick - trig_rstrt_gap - 1;
|
|
set_trig_status(TRIG_POSTREC);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TRIG_GO:
|
|
case TRIG_CONTINUE:
|
|
/* threshold exceeded? */
|
|
if ((left > trig_stp_threshold) || (right > trig_stp_threshold)) {
|
|
/* restart hold time countdown */
|
|
trig_lowtime = current_tick;
|
|
} else {
|
|
set_trig_status(TRIG_POSTREC);
|
|
trig_hightime = current_tick;
|
|
}
|
|
break;
|
|
|
|
case TRIG_POSTREC:
|
|
/* gap time expired? */
|
|
if (current_tick - trig_lowtime > trig_rstrt_gap){
|
|
/* start threshold exceeded? */
|
|
if ((left > trig_strt_threshold) ||
|
|
(right > trig_strt_threshold)) {
|
|
|
|
set_trig_status(TRIG_RETRIG);
|
|
trig_hightime = current_tick;
|
|
}
|
|
else
|
|
|
|
/* stop threshold exceeded */
|
|
if ((left > trig_stp_threshold) ||
|
|
(right > trig_stp_threshold)) {
|
|
if (current_tick - trig_hightime > trig_stp_hold){
|
|
trig_lowtime = current_tick;
|
|
set_trig_status(TRIG_CONTINUE);
|
|
} else {
|
|
trig_lowtime = current_tick - trig_rstrt_gap - 1;
|
|
}
|
|
}
|
|
|
|
/* below any threshold */
|
|
else {
|
|
if (current_tick - trig_lowtime > trig_stp_hold){
|
|
set_trig_status(TRIG_READY);
|
|
} else {
|
|
trig_hightime = current_tick;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* still within the gap time */
|
|
else {
|
|
/* stop threshold exceeded */
|
|
if ((left > trig_stp_threshold) ||
|
|
(right > trig_stp_threshold)) {
|
|
set_trig_status(TRIG_CONTINUE);
|
|
trig_lowtime = current_tick;
|
|
}
|
|
|
|
/* hold time expired */
|
|
else if (current_tick - trig_lowtime > trig_stp_hold){
|
|
trig_hightime = current_tick;
|
|
trig_lowtime = current_tick;
|
|
set_trig_status(TRIG_READY);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* peaks are searched -> we have to find the maximum. When
|
|
many calls of peak_meter_peek the maximum value will be
|
|
stored in peak_meter_x. This maximum is reset by the
|
|
functions peak_meter_read_x. */
|
|
peak_meter_l = MAX(peak_meter_l, left);
|
|
peak_meter_r = MAX(peak_meter_r, right);
|
|
|
|
#ifdef PM_DEBUG
|
|
peek_calls++;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Reads out the peak volume of the left channel.
|
|
* @return int - The maximum value that has been detected
|
|
* since the last call of peak_meter_read_l. The value
|
|
* is in the range 0 <= value < MAX_PEAK.
|
|
*/
|
|
static int peak_meter_read_l (void)
|
|
{
|
|
/* peak_meter_l contains the maximum of
|
|
all peak values that were read by peak_meter_peek
|
|
since the last call of peak_meter_read_r */
|
|
int retval = peak_meter_l;
|
|
#ifdef PM_DEBUG
|
|
peek_calls = 0;
|
|
#endif
|
|
|
|
#ifdef SIMULATOR
|
|
peak_meter_l = 8000;
|
|
#elif CONFIG_HWCODEC == MASNONE
|
|
/* FIX */
|
|
peak_meter_l = 8000;
|
|
#else
|
|
/* reset peak_meter_l so that subsequent calls of
|
|
peak_meter_peek doesn't get fooled by an old
|
|
maximum value */
|
|
peak_meter_l = mas_codec_readreg(peak_meter_src_l);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Reads out the peak volume of the right channel.
|
|
* @return int - The maximum value that has been detected
|
|
* since the last call of peak_meter_read_l. The value
|
|
* is in the range 0 <= value < MAX_PEAK.
|
|
*/
|
|
static int peak_meter_read_r (void) {
|
|
/* peak_meter_r contains the maximum of
|
|
all peak values that were read by peak_meter_peek
|
|
since the last call of peak_meter_read_r */
|
|
int retval = peak_meter_r;
|
|
#ifdef PM_DEBUG
|
|
peek_calls = 0;
|
|
#endif
|
|
|
|
#ifdef SIMULATOR
|
|
peak_meter_l = 8000;
|
|
#elif CONFIG_HWCODEC == MASNONE
|
|
/* FIX */
|
|
peak_meter_r = 8000;
|
|
#else
|
|
/* reset peak_meter_r so that subsequent calls of
|
|
peak_meter_peek doesn't get fooled by an old
|
|
maximum value */
|
|
peak_meter_r = mas_codec_readreg(peak_meter_src_r);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Reset the detected clips. This method is for
|
|
* use by the user interface.
|
|
* @param int unused - This parameter was added to
|
|
* make the function compatible with set_int
|
|
*/
|
|
void peak_meter_set_clip_hold(int time) {
|
|
peak_meter_clip_eternal = false;
|
|
|
|
if (time <= 0) {
|
|
peak_meter_l_clip = false;
|
|
peak_meter_r_clip = false;
|
|
peak_meter_clip_eternal = true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Scales a peak value as read from the MAS to the range of meterwidth.
|
|
* The scaling is performed according to the scaling method (dBfs / linear)
|
|
* and the range (peak_meter_range_min .. peak_meter_range_max).
|
|
* @param unsigned short val - The volume value. Range: 0 <= val < MAX_PEAK
|
|
* @param int meterwidht - The widht of the meter in pixel
|
|
* @return unsigned short - A value 0 <= return value <= meterwidth
|
|
*/
|
|
unsigned short peak_meter_scale_value(unsigned short val, int meterwidth){
|
|
int retval;
|
|
|
|
if (val <= peak_meter_range_min) {
|
|
return 0;
|
|
}
|
|
|
|
if (val >= peak_meter_range_max) {
|
|
return meterwidth;
|
|
}
|
|
|
|
retval = val;
|
|
|
|
/* different scaling is used for dBfs and linear percent */
|
|
if (peak_meter_use_dbfs) {
|
|
|
|
/* scale the samples dBfs */
|
|
retval = (calc_db(retval) - db_min) * meterwidth / db_range;
|
|
}
|
|
|
|
/* Scale for linear percent display */
|
|
else
|
|
{
|
|
/* scale the samples */
|
|
retval = ((retval - peak_meter_range_min) * meterwidth)
|
|
/ peak_meter_range;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
|
|
/**
|
|
* Draws a peak meter in the specified size at the specified position.
|
|
* @param int x - The x coordinate.
|
|
* Make sure that 0 <= x and x + width < LCD_WIDTH
|
|
* @param int y - The y coordinate.
|
|
* Make sure that 0 <= y and y + height < LCD_HEIGHT
|
|
* @param int width - The width of the peak meter. Note that for display
|
|
* of clips a 3 pixel wide area is used ->
|
|
* width > 3
|
|
* @param int height - The height of the peak meter. height > 3
|
|
*/
|
|
void peak_meter_draw(int x, int y, int width, int height) {
|
|
int left = 0, right = 0;
|
|
static int last_left = 0, last_right = 0;
|
|
int meterwidth = width - 3;
|
|
int i;
|
|
|
|
#ifdef PM_DEBUG
|
|
static long pm_tick = 0;
|
|
int tmp = peek_calls;
|
|
#endif
|
|
|
|
/* if disabled only draw the peak meter */
|
|
if (peak_meter_enabled) {
|
|
|
|
/* read the volume info from MAS */
|
|
left = peak_meter_read_l();
|
|
right = peak_meter_read_r();
|
|
/*peak_meter_peek();*/
|
|
|
|
/* scale the samples dBfs */
|
|
left = peak_meter_scale_value(left, meterwidth);
|
|
right = peak_meter_scale_value(right, meterwidth);
|
|
|
|
/* if the scale has changed -> recalculate the scale
|
|
(The scale becomes invalid when the range changed.) */
|
|
if (!db_scale_valid){
|
|
|
|
if (peak_meter_use_dbfs) {
|
|
db_scale_count = DB_SCALE_SRC_VALUES_SIZE;
|
|
for (i = 0; i < db_scale_count; i++){
|
|
/* find the real x-coords for predefined interesting
|
|
dBfs values. These only are recalculated when the
|
|
scaling of the meter changed. */
|
|
db_scale_lcd_coord[i] =
|
|
peak_meter_scale_value(
|
|
db_scale_src_values[i],
|
|
meterwidth - 1);
|
|
}
|
|
}
|
|
|
|
/* when scaling linear we simly make 10% steps */
|
|
else {
|
|
db_scale_count = 10;
|
|
for (i = 0; i < db_scale_count; i++) {
|
|
db_scale_lcd_coord[i] =
|
|
(i * (MAX_PEAK / 10) - peak_meter_range_min) *
|
|
meterwidth / peak_meter_range;
|
|
}
|
|
}
|
|
|
|
/* mark scale valid to avoid recalculating dBfs values
|
|
of the scale. */
|
|
db_scale_valid = true;
|
|
}
|
|
|
|
/* apply release */
|
|
left = MAX(left , last_left - peak_meter_release);
|
|
right = MAX(right, last_right - peak_meter_release);
|
|
|
|
/* reset max values after timeout */
|
|
if (TIME_AFTER(current_tick, peak_meter_timeout_l)){
|
|
peak_meter_max_l = 0;
|
|
}
|
|
|
|
if (TIME_AFTER(current_tick, peak_meter_timeout_r)){
|
|
peak_meter_max_r = 0;
|
|
}
|
|
|
|
if (!peak_meter_clip_eternal) {
|
|
if (peak_meter_l_clip &&
|
|
TIME_AFTER(current_tick, peak_meter_clip_timeout_l)){
|
|
peak_meter_l_clip = false;
|
|
}
|
|
|
|
if (peak_meter_r_clip &&
|
|
TIME_AFTER(current_tick, peak_meter_clip_timeout_r)){
|
|
peak_meter_r_clip = false;
|
|
}
|
|
}
|
|
|
|
/* check for new max values */
|
|
if (left > peak_meter_max_l) {
|
|
peak_meter_max_l = left - 1;
|
|
peak_meter_timeout_l =
|
|
current_tick + max_time_out[peak_meter_hold];
|
|
}
|
|
|
|
if (right > peak_meter_max_r) {
|
|
peak_meter_max_r = right - 1;
|
|
peak_meter_timeout_r =
|
|
current_tick + max_time_out[peak_meter_hold];
|
|
}
|
|
}
|
|
|
|
/* draw the peak meter */
|
|
lcd_clearrect(x, y, width, height);
|
|
|
|
/* draw left */
|
|
lcd_fillrect (x, y, left, height / 2 - 2 );
|
|
if (peak_meter_max_l > 0) {
|
|
lcd_drawline(x + peak_meter_max_l, y,
|
|
x + peak_meter_max_l, y + height / 2 - 2 );
|
|
}
|
|
if (peak_meter_l_clip) {
|
|
lcd_fillrect(x + meterwidth, y, 3, height / 2 - 1);
|
|
}
|
|
|
|
/* draw right */
|
|
lcd_fillrect(x, y + height / 2 + 1, right, height / 2 - 2);
|
|
if (peak_meter_max_r > 0) {
|
|
lcd_drawline( x + peak_meter_max_r, y + height / 2,
|
|
x + peak_meter_max_r, y + height - 2);
|
|
}
|
|
if (peak_meter_r_clip) {
|
|
lcd_fillrect(x + meterwidth, y + height / 2, 3, height / 2 - 1);
|
|
}
|
|
|
|
/* draw scale end */
|
|
lcd_drawline(x + meterwidth, y,
|
|
x + meterwidth, y + height - 2);
|
|
|
|
/* draw dots for scale marks */
|
|
for (i = 0; i < db_scale_count; i++) {
|
|
/* The x-coordinates of interesting scale mark points
|
|
have been calculated before */
|
|
lcd_invertpixel(db_scale_lcd_coord[i], y + height / 2 - 1);
|
|
}
|
|
|
|
#ifdef HAVE_RECORDING
|
|
if (trig_status != TRIG_OFF) {
|
|
int start_trigx, stop_trigx, ycenter;
|
|
|
|
ycenter = y + height / 2;
|
|
/* display threshold value */
|
|
start_trigx = x+peak_meter_scale_value(trig_strt_threshold,meterwidth);
|
|
lcd_drawline(start_trigx, ycenter - 2, start_trigx, ycenter);
|
|
start_trigx ++;
|
|
if (start_trigx < LCD_WIDTH) lcd_drawpixel(start_trigx, ycenter - 1);
|
|
|
|
stop_trigx = x + peak_meter_scale_value(trig_stp_threshold,meterwidth);
|
|
lcd_drawline(stop_trigx, ycenter - 2, stop_trigx, ycenter);
|
|
if (stop_trigx > 0) lcd_drawpixel(stop_trigx - 1, ycenter - 1);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PM_DEBUG
|
|
/* display a bar to show how many calls to peak_meter_peek
|
|
have ocurred since the last display */
|
|
lcd_invertrect(x, y, tmp, 3);
|
|
|
|
if (tmp < PEEKS_PER_DRAW_SIZE) {
|
|
peeks_per_redraw[tmp]++;
|
|
}
|
|
|
|
tmp = current_tick - pm_tick;
|
|
if (tmp < TICKS_PER_DRAW_SIZE ){
|
|
ticks_per_redraw[tmp] ++;
|
|
}
|
|
|
|
/* display a bar to show how many ticks have passed since
|
|
the last redraw */
|
|
lcd_invertrect(x, y + height / 2, current_tick - pm_tick, 2);
|
|
pm_tick = current_tick;
|
|
#endif
|
|
|
|
last_left = left;
|
|
last_right = right;
|
|
}
|
|
|
|
#ifdef HAVE_RECORDING
|
|
/**
|
|
* Defines the parameters of the trigger. After these parameters are defined
|
|
* the trigger can be started either by peak_meter_attack_trigger or by
|
|
* peak_meter_release_trigger. Note that you can pass either linear (%) or
|
|
* logarithmic (db) values to the thresholds. Positive values are intepreted as
|
|
* percent (0 is 0% .. 100 is 100%). Negative values are interpreted as db.
|
|
* To avoid ambiguosity of the value 0 the negative values are shifted by -1.
|
|
* Thus -75 is -74db .. -1 is 0db.
|
|
* @param start_threshold - The threshold used for attack trigger. Negative
|
|
* values are interpreted as db -1, positive as %.
|
|
* @param start_duration - The minimum time span within which start_threshold
|
|
* must be exceeded to fire the attack trigger.
|
|
* @param start_dropout - The maximum time span the level may fall below
|
|
* start_threshold without releasing the attack trigger.
|
|
* @param stop_threshold - The threshold the volume must fall below to release
|
|
* the release trigger.Negative values are
|
|
* interpreted as db -1, positive as %.
|
|
* @param stop_hold - The minimum time the volume must fall below the
|
|
* stop_threshold to release the trigger.
|
|
* @param
|
|
*/
|
|
void peak_meter_define_trigger(
|
|
int start_threshold,
|
|
long start_duration,
|
|
long start_dropout,
|
|
int stop_threshold,
|
|
long stop_hold_time,
|
|
long restart_gap
|
|
)
|
|
{
|
|
if (start_threshold < 0) {
|
|
/* db */
|
|
if (start_threshold < -89) {
|
|
trig_strt_threshold = 0;
|
|
} else {
|
|
trig_strt_threshold =peak_meter_db2sample((start_threshold+1)*100);
|
|
}
|
|
} else {
|
|
/* linear percent */
|
|
trig_strt_threshold = start_threshold * MAX_PEAK / 100;
|
|
}
|
|
trig_strt_duration = start_duration;
|
|
trig_strt_dropout = start_dropout;
|
|
if (stop_threshold < 0) {
|
|
/* db */
|
|
trig_stp_threshold = peak_meter_db2sample((stop_threshold + 1) * 100);
|
|
} else {
|
|
/* linear percent */
|
|
trig_stp_threshold = stop_threshold * MAX_PEAK / 100;
|
|
}
|
|
trig_stp_hold = stop_hold_time;
|
|
trig_rstrt_gap = restart_gap;
|
|
}
|
|
|
|
/**
|
|
* Enables or disables the trigger.
|
|
* @param on - If true the trigger is turned on.
|
|
*/
|
|
void peak_meter_trigger(bool on) {
|
|
/* don't use set_trigger here as that would fire an undesired event */
|
|
trig_status = on ? TRIG_READY : TRIG_OFF;
|
|
}
|
|
|
|
/**
|
|
* Registers the listener function that listenes on trig_status changes.
|
|
* @param listener - The function that is called with each change of
|
|
* trig_status. May be set to NULL if no callback is desired.
|
|
*/
|
|
void peak_meter_set_trigger_listener(void (*listener)(int status)) {
|
|
trigger_listener = listener;
|
|
}
|
|
|
|
/**
|
|
* Fetches the status of the trigger.
|
|
* TRIG_OFF: the trigger is inactive
|
|
* TRIG_RELEASED: The volume level is below the threshold
|
|
* TRIG_ACTIVATED: The volume level has exceeded the threshold, but the trigger
|
|
* hasn't been fired yet.
|
|
* TRIG_FIRED: The volume exceeds the threshold
|
|
*
|
|
* To activate the trigger call either peak_meter_attack_trigger or
|
|
* peak_meter_release_trigger. To turn the trigger off call
|
|
* peak_meter_trigger_off.
|
|
*/
|
|
int peak_meter_trigger_status(void) {
|
|
return trig_status; /* & TRIG_PIT_MASK;*/
|
|
}
|
|
|
|
void peak_meter_draw_trig(int xpos, int ypos) {
|
|
int x = xpos + ICON_PLAY_STATE_WIDTH + 1;
|
|
switch (trig_status) {
|
|
long time_left;
|
|
|
|
case TRIG_READY:
|
|
scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2,
|
|
TRIGBAR_WIDTH, 0, 0, HORIZONTAL);
|
|
lcd_bitmap(bitmap_icons_7x8[Icon_Stop], xpos, ypos,
|
|
ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false);
|
|
break;
|
|
|
|
case TRIG_STEADY:
|
|
case TRIG_RETRIG:
|
|
time_left = trig_strt_duration - (current_tick - trig_hightime);
|
|
time_left = time_left * TRIGBAR_WIDTH / trig_strt_duration;
|
|
scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2,
|
|
TRIGBAR_WIDTH, 0, TRIGBAR_WIDTH - time_left, HORIZONTAL);
|
|
lcd_bitmap(bitmap_icons_7x8[Icon_Stop], xpos, ypos,
|
|
ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false);
|
|
break;
|
|
|
|
case TRIG_GO:
|
|
case TRIG_CONTINUE:
|
|
scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2,
|
|
TRIGBAR_WIDTH, TRIGBAR_WIDTH, TRIGBAR_WIDTH, HORIZONTAL);
|
|
lcd_bitmap(bitmap_icons_7x8[Icon_Record],
|
|
TRIG_WIDTH - ICON_PLAY_STATE_WIDTH, ypos,
|
|
ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false);
|
|
break;
|
|
|
|
case TRIG_POSTREC:
|
|
time_left = trig_stp_hold - (current_tick - trig_lowtime);
|
|
time_left = time_left * TRIGBAR_WIDTH / trig_stp_hold;
|
|
scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2,
|
|
TRIGBAR_WIDTH, time_left, TRIGBAR_WIDTH, HORIZONTAL);
|
|
lcd_bitmap(bitmap_icons_7x8[Icon_Record],
|
|
TRIG_WIDTH - ICON_PLAY_STATE_WIDTH, ypos,
|
|
ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false);
|
|
break;
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
int peak_meter_draw_get_btn(int x, int y, int width, int height)
|
|
{
|
|
int button;
|
|
long next_refresh = current_tick;
|
|
long next_big_refresh = current_tick + HZ / 10;
|
|
button = BUTTON_NONE;
|
|
while (!TIME_AFTER(current_tick, next_big_refresh)) {
|
|
button = button_get(false);
|
|
if (button != BUTTON_NONE) {
|
|
break;
|
|
}
|
|
peak_meter_peek();
|
|
yield();
|
|
|
|
if (TIME_AFTER(current_tick, next_refresh)) {
|
|
peak_meter_draw(x, y, width, height);
|
|
lcd_update_rect(x, y, width, height);
|
|
next_refresh = current_tick + HZ / peak_meter_fps;
|
|
}
|
|
}
|
|
return button;
|
|
}
|
|
|
|
#ifdef PM_DEBUG
|
|
static void peak_meter_clear_histogram(void) {
|
|
int i = 0;
|
|
for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) {
|
|
ticks_per_redraw[i] = (unsigned int)0;
|
|
}
|
|
|
|
for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) {
|
|
peeks_per_redraw[i] = (unsigned int)0;
|
|
}
|
|
}
|
|
|
|
bool peak_meter_histogram(void) {
|
|
int i;
|
|
int btn = BUTTON_NONE;
|
|
while ((btn & BUTTON_OFF) != BUTTON_OFF )
|
|
{
|
|
unsigned int max = 0;
|
|
int y = 0;
|
|
int x = 0;
|
|
lcd_clear_display();
|
|
|
|
for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) {
|
|
max = MAX(max, peeks_per_redraw[i]);
|
|
}
|
|
|
|
for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) {
|
|
x = peeks_per_redraw[i] * (LCD_WIDTH - 1)/ max;
|
|
lcd_drawline(0, y + i, x, y + i);
|
|
}
|
|
|
|
y = PEEKS_PER_DRAW_SIZE + 1;
|
|
max = 0;
|
|
|
|
for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) {
|
|
max = MAX(max, ticks_per_redraw[i]);
|
|
}
|
|
|
|
for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) {
|
|
x = ticks_per_redraw[i] * (LCD_WIDTH - 1)/ max;
|
|
lcd_drawline(0, y + i, x, y + i);
|
|
}
|
|
lcd_update();
|
|
|
|
btn = button_get(true);
|
|
if (btn == BUTTON_PLAY) {
|
|
peak_meter_clear_histogram();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|