rockbox/firmware/target/mips/ingenic_jz47xx/usb-jz4740.c
Maurus Cuelenaere 09ba2bbf39 Onda VX7x7: commit working USB driver
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@19754 a1c6a512-1295-4272-9138-f99709370657
2009-01-12 18:13:53 +00:00

732 lines
18 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Maurus Cuelenaere
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "logf.h"
#include "system.h"
#include "usb_ch9.h"
#include "usb_drv.h"
#include "usb_core.h"
#include "usb-target.h"
#include "jz4740.h"
#include "thread.h"
/*
The Jz4740 USB controller is called MUSBHSFC in the datasheet.
It also seems to be a more generic controller, with support for
up to 15 endpoints (the Jz4740 only has 3).
*/
#define USB_EP0_IDLE 0
#define USB_EP0_RX 1
#define USB_EP0_TX 2
#define EP_BUF_LEFT(ep) ((ep)->length - (ep)->sent)
#define EP_PTR(ep) ((void*)((unsigned int)(ep)->buf + (ep)->sent))
#define EP_NUMBER(ep) (((int)(ep) - (int)&endpoints[0])/sizeof(struct usb_endpoint))
#define EP_NUMBER2(ep) (EP_NUMBER((ep))/2)
#define TOTAL_EP() (sizeof(endpoints)/sizeof(struct usb_endpoint))
#define EP_IS_IN(ep) (EP_NUMBER((ep))%2)
enum ep_type
{
ep_control, ep_bulk, ep_interrupt
};
struct usb_endpoint
{
void *buf;
unsigned int length;
union
{
unsigned int sent;
unsigned int received;
};
const enum ep_type type;
const bool use_dma;
const unsigned int fifo_addr;
unsigned short fifo_size;
};
static unsigned char ep0_rx_buf[64];
static unsigned char ep0state = USB_EP0_IDLE;
static struct usb_endpoint endpoints[] =
{/* buf length sent type use_dma fifo_addr fifo_size */
{&ep0_rx_buf, 0, {0}, ep_control, false, USB_FIFO_EP0, 64 },
{NULL, 0, {0}, ep_control, false, USB_FIFO_EP0, 64 },
{NULL, 0, {0}, ep_bulk, false, USB_FIFO_EP1, 512},
{NULL, 0, {0}, ep_bulk, false, USB_FIFO_EP1, 512},
{NULL, 0, {0}, ep_interrupt, false, USB_FIFO_EP2, 64 }
};
static inline void select_endpoint(int ep)
{
REG_USB_REG_INDEX = ep;
}
static void readFIFO(struct usb_endpoint *ep, unsigned int size)
{
logf("readFIFO(EP%d, %d)", EP_NUMBER2(ep), size);
register unsigned char *ptr = (unsigned char*)EP_PTR(ep);
register unsigned int *ptr32 = (unsigned int*)ptr;
register unsigned int s = size >> 2;
register unsigned int x;
if(size > 0)
{
if( ((unsigned int)ptr & 3) == 0 )
{
while(s--)
*ptr32++ = REG32(ep->fifo_addr);
ptr = (unsigned char*)ptr32;
}
else
{
while(s--)
{
x = REG32(ep->fifo_addr);
*ptr++ = (x >> 0) & 0xFF;
*ptr++ = (x >> 8) & 0xFF;
*ptr++ = (x >> 16) & 0xFF;
*ptr++ = (x >> 24) & 0xFF;
}
}
s = size & 3;
while(s--)
*ptr++ = REG8(ep->fifo_addr);
}
}
static void writeFIFO(struct usb_endpoint *ep, unsigned int size)
{
logf("writeFIFO(EP%d, %d)", EP_NUMBER2(ep), size);
register unsigned int *d = (unsigned int *)EP_PTR(ep);
register unsigned char *c;
register unsigned int s;
if(size > 0)
{
s = size >> 2;
while (s--)
REG32(ep->fifo_addr) = *d++;
if( (s = size & 3) )
{
c = (unsigned char *)d;
while (s--)
REG8(ep->fifo_addr) = *c++;
}
}
}
static void flushFIFO(struct usb_endpoint *ep)
{
logf("flushFIFO(%d)", EP_NUMBER(ep));
switch (ep->type)
{
case ep_control:
break;
case ep_bulk:
case ep_interrupt:
if(EP_IS_IN(ep))
REG_USB_REG_INCSR |= USB_INCSR_FF;
else
REG_USB_REG_OUTCSR |= USB_OUTCSR_FF;
break;
}
}
static void EP0_send(void)
{
struct usb_endpoint* ep = &endpoints[1];
unsigned int length;
unsigned char csr0;
select_endpoint(0);
csr0 = REG_USB_REG_CSR0;
if(ep->length == 0)
{
REG_USB_REG_CSR0 = (csr0 | USB_CSR0_SVDOUTPKTRDY | USB_CSR0_DATAEND);
return;
}
if(ep->sent == 0)
length = (ep->length <= ep->fifo_size ? ep->length : ep->fifo_size);
else
length = (EP_BUF_LEFT(ep) <= ep->fifo_size ? EP_BUF_LEFT(ep) : ep->fifo_size);
writeFIFO(ep, length);
ep->sent += length;
if(ep->sent >= ep->length)
{
REG_USB_REG_CSR0 = (csr0 | USB_CSR0_INPKTRDY | USB_CSR0_DATAEND); /* Set data end! */
ep0state = USB_EP0_IDLE;
}
else
REG_USB_REG_CSR0 = (csr0 | USB_CSR0_INPKTRDY);
}
static void EP0_handler(void)
{
logf("EP0_handler");
unsigned char csr0;
/* Read CSR0 */
select_endpoint(0);
csr0 = REG_USB_REG_CSR0;
/* Check for SentStall:
This bit is set when a STALL handshake is transmitted. The CPU should clear this bit.
*/
if(csr0 & USB_CSR0_SENTSTALL)
{
REG_USB_REG_CSR0 = csr0 & ~USB_CSR0_SENTSTALL;
ep0state = USB_EP0_IDLE;
return;
}
/* Check for SetupEnd:
This bit will be set when a control transaction ends before the DataEnd bit has been set.
An interrupt will be generated and the FIFO flushed at this time.
The bit is cleared by the CPU writing a 1 to the ServicedSetupEnd bit.
*/
if(csr0 & USB_CSR0_SETUPEND)
{
REG_USB_REG_CSR0 = csr0 | USB_CSR0_SVDSETUPEND;
ep0state = USB_EP0_IDLE;
return;
}
/* Call relevant routines for endpoint 0 state */
if(ep0state == USB_EP0_IDLE)
{
if(csr0 & USB_CSR0_OUTPKTRDY) /* There is data in the fifo */
{
readFIFO(&endpoints[0], REG_USB_REG_COUNT0);
REG_USB_REG_CSR0 = csr0 | USB_CSR0_SVDOUTPKTRDY; /* clear OUTPKTRDY bit */
usb_core_control_request((struct usb_ctrlrequest*)endpoints[0].buf);
}
}
else if(ep0state == USB_EP0_TX)
EP0_send();
}
static void EPIN_handler(unsigned int endpoint)
{
struct usb_endpoint* ep = &endpoints[endpoint*2+1];
unsigned int length, csr;
select_endpoint(endpoint);
csr = REG_USB_REG_INCSR;
logf("EPIN_handler(%d): 0x%x", endpoint, csr);
if(ep->buf == NULL || ep->length == 0)
return;
if(csr & USB_INCSR_SENTSTALL)
{
REG_USB_REG_INCSR = csr & ~USB_INCSR_SENTSTALL;
return;
}
if(ep->use_dma == true)
return;
if(csr & USB_INCSR_FFNOTEMPT)
{
logf("FIFO is not empty!");
return;
}
if(ep->sent == 0)
length = (ep->length <= ep->fifo_size ? ep->length : ep->fifo_size);
else
length = (EP_BUF_LEFT(ep) <= ep->fifo_size ? EP_BUF_LEFT(ep) : ep->fifo_size);
writeFIFO(ep, length);
REG_USB_REG_INCSR = csr | USB_INCSR_INPKTRDY;
ep->sent += length;
if(ep->sent >= ep->length)
{
usb_core_transfer_complete(endpoint, USB_DIR_IN, 0, ep->sent);
ep->sent = 0;
ep->length = 0;
ep->buf = NULL;
}
}
static void EPOUT_handler(unsigned int endpoint)
{
struct usb_endpoint* ep = &endpoints[endpoint*2];
unsigned int size, csr;
select_endpoint(endpoint);
csr = REG_USB_REG_OUTCSR;
logf("EPOUT_handler(%d): 0x%x", endpoint, csr);
if(ep->buf == NULL || ep->length == 0)
return;
if(csr & USB_OUTCSR_SENTSTALL)
{
REG_USB_REG_OUTCSR = csr & ~USB_OUTCSR_SENTSTALL;
return;
}
size = REG_USB_REG_OUTCOUNT;
readFIFO(ep, size);
ep->received += size;
REG_USB_REG_OUTCSR = csr & ~USB_OUTCSR_OUTPKTRDY;
logf("received: %d length: %d", ep->received, ep->length);
if(size < ep->fifo_size || ep->received >= ep->length)
{
usb_core_transfer_complete(endpoint, USB_DIR_OUT, 0, ep->received);
logf("receive transfer_complete");
ep->received = 0;
ep->length = 0;
ep->buf = NULL;
}
}
static void setup_endpoint(struct usb_endpoint *ep)
{
int csr;
ep->sent = 0;
ep->length = 0;
select_endpoint(EP_NUMBER2(ep));
if(ep->type == ep_bulk)
{
if(REG_USB_REG_POWER & USB_POWER_HSMODE)
ep->fifo_size = 512;
else
ep->fifo_size = 64;
}
if(EP_IS_IN(ep))
{
REG_USB_REG_INMAXP = ep->fifo_size;
csr = (USB_INCSR_FF | USB_INCSR_CDT | USB_INCSRH_MODE);
if(ep->use_dma)
csr |= (USB_INCSRH_DMAREQENAB | USB_INCSRH_AUTOSET);
REG_USB_REG_INTRINE |= USB_INTR_EP(EP_NUMBER2(ep));
REG_USB_REG_INCSR = csr;
}
else
{
REG_USB_REG_OUTMAXP = ep->fifo_size;
csr = (USB_OUTCSR_FF | USB_OUTCSR_CDT);
if(ep->type == ep_interrupt)
csr |= USB_OUTCSRH_DNYT;
if(ep->use_dma)
csr |= (USB_OUTCSRH_DMAREQENAB | USB_OUTCSRH_AUTOCLR | USB_OUTCSRH_DMAREQMODE);
REG_USB_REG_INTROUTE |= USB_INTR_EP(EP_NUMBER2(ep));
REG_USB_REG_OUTCSR = csr;
}
}
static void udc_reset(void)
{
/* From the datasheet:
When a reset condition is detected on the USB, the controller performs the following actions:
* Sets FAddr to 0.
* Sets Index to 0.
* Flushes all endpoint FIFOs.
* Clears all control/status registers.
* Enables all endpoint interrupts.
* Generates a Reset interrupt.
*/
logf("udc_reset()");
unsigned int i;
/* EP0 init */
ep0state = USB_EP0_IDLE;
/* Disable interrupts */
REG_USB_REG_INTRINE = 0;
REG_USB_REG_INTROUTE = 0;
REG_USB_REG_INTRUSBE = 0;
/* Disable DMA */
REG_USB_REG_CNTL1 = 0;
REG_USB_REG_CNTL2 = 0;
/* Reset address */
REG_USB_REG_FADDR = 0;
/* High speed, softconnect and suspend/resume */
REG_USB_REG_POWER = (USB_POWER_SOFTCONN | USB_POWER_HSENAB | USB_POWER_SUSPENDM);
/* Reset EP0 */
select_endpoint(0);
REG_USB_REG_CSR0 = (USB_CSR0_SVDOUTPKTRDY | USB_CSR0_SVDSETUPEND);
for(i=2; i<TOTAL_EP(); i++) /* Skip EP0 */
setup_endpoint(&endpoints[i]);
/* Enable interrupts */
REG_USB_REG_INTRINE |= USB_INTR_EP0;
REG_USB_REG_INTRUSBE |= USB_INTR_RESET;
usb_core_bus_reset();
}
/* Interrupt handler */
void UDC(void)
{
/* Read interrupt registers */
unsigned char intrUSB = REG_USB_REG_INTRUSB & 0x07; /* Mask SOF */
unsigned short intrIn = REG_USB_REG_INTRIN;
unsigned short intrOut = REG_USB_REG_INTROUT;
unsigned char intrDMA = REG_USB_REG_INTR;
if(UNLIKELY(intrUSB == 0 && intrIn == 0 && intrOut == 0 && intrDMA == 0))
return;
/* EPIN & EPOUT are all handled in DMA */
if(intrIn & USB_INTR_EP0)
EP0_handler();
if(intrIn & USB_INTR_INEP1)
EPIN_handler(1);
if(intrIn & USB_INTR_INEP2)
EPIN_handler(2);
if(intrOut & USB_INTR_OUTEP1)
EPOUT_handler(1);
if(intrOut & USB_INTR_OUTEP2)
EPOUT_handler(2);
if(intrUSB & USB_INTR_RESET)
udc_reset();
if(intrUSB & USB_INTR_SUSPEND)
{
logf("USB suspend");
}
if(intrUSB & USB_INTR_RESUME)
{
logf("USB resume");
}
#if 0
if(intrDMA & USB_INTR_DMA_BULKIN)
{
logf("DMA_BULKIN %d", ((REG_USB_REG_CNTL1 >> 4) & 0xF));
unsigned int size = (unsigned int)endpoints[3].buf - REG_USB_REG_ADDR2;
if(size < endpoints[3].length)
{
select_endpoint(1);
writeFIFO(endpoints[3], endpoints[3].length - size);
REG_USB_REG_INCSR |= USB_INCSR_INPKTRDY;
}
usb_core_transfer_complete(1, USB_DIR_IN, 0, endpoints[3].length);
}
if(intrDMA & USB_INTR_DMA_BULKOUT)
{
logf("DMA_BULKOUT %d", ((REG_USB_REG_CNTL2 >> 4) & 0xF));
select_endpoint(1);
REG_USB_REG_OUTCSR &= ~(USB_OUTCSRH_DMAREQENAB | USB_OUTCSR_OUTPKTRDY);
usb_core_transfer_complete(1, USB_DIR_OUT, 0, 0);
}
#endif
}
bool usb_drv_stalled(int endpoint, bool in)
{
logf("usb_drv_stalled(%d, %s)", endpoint, in?"IN":"OUT");
select_endpoint(endpoint & 0x7F);
if(endpoint == 0)
return (REG_USB_REG_CSR0 & USB_CSR0_SENDSTALL) != 0;
else
{
if(in)
return (REG_USB_REG_INCSR & USB_INCSR_SENDSTALL) != 0;
else
return (REG_USB_REG_OUTCSR & USB_OUTCSR_SENDSTALL) != 0;
}
}
void usb_drv_stall(int endpoint, bool stall, bool in)
{
logf("usb_drv_stall(%d,%s,%s)", endpoint, stall?"Y":"N", in?"IN":"OUT");
select_endpoint(endpoint);
if(endpoint == EP_CONTROL)
{
if(stall)
REG_USB_REG_CSR0 |= USB_CSR0_SENDSTALL;
else
REG_USB_REG_CSR0 &= ~USB_CSR0_SENDSTALL;
}
else
{
if(in)
{
if(stall)
REG_USB_REG_INCSR |= USB_INCSR_SENDSTALL;
else
REG_USB_REG_INCSR = (REG_USB_REG_INCSR & ~USB_INCSR_SENDSTALL) | USB_INCSR_CDT;
}
else
{
if(stall)
REG_USB_REG_OUTCSR |= USB_OUTCSR_SENDSTALL;
else
REG_USB_REG_OUTCSR = (REG_USB_REG_OUTCSR & ~USB_OUTCSR_SENDSTALL) | USB_OUTCSR_CDT;
}
}
}
bool usb_drv_connected(void)
{
return USB_DRV_CONNECTED();
}
int usb_detect(void)
{
return usb_drv_connected() ? USB_INSERTED : USB_EXTRACTED;
}
void usb_init_device(void)
{
USB_INIT_GPIO();
system_enable_irq(IRQ_UDC);
}
void usb_enable(bool on)
{
if(on)
usb_core_init();
else
usb_core_exit();
}
void usb_drv_init(void)
{
logf("usb_drv_init()");
/* Set this bit to allow the UDC entering low-power mode when
* there are no actions on the USB bus.
* UDC still works during this bit was set.
*/
//__cpm_stop_udc();
__cpm_start_udc();
/* Enable the USB PHY */
REG_CPM_SCR |= CPM_SCR_USBPHY_ENABLE;
udc_reset();
}
void usb_drv_exit(void)
{
logf("usb_drv_exit()");
/* Disable interrupts */
REG_USB_REG_INTRINE = 0;
REG_USB_REG_INTROUTE = 0;
REG_USB_REG_INTRUSBE = 0;
/* Disable DMA */
REG_USB_REG_CNTL1 = 0;
REG_USB_REG_CNTL2 = 0;
/* Disconnect from USB */
REG_USB_REG_POWER &= ~USB_POWER_SOFTCONN;
/* Disable the USB PHY */
REG_CPM_SCR &= ~CPM_SCR_USBPHY_ENABLE;
__cpm_stop_udc();
}
void usb_drv_set_address(int address)
{
logf("set adr: %d", address);
REG_USB_REG_FADDR = address;
}
int usb_drv_send(int endpoint, void* ptr, int length)
{
int flags;
endpoint &= 0x7F;
logf("usb_drv_send(%d, 0x%x, %d)", endpoint, (int)ptr, length);
if(endpoint == EP_CONTROL && ptr == NULL && length == 0)
return 0; /* ACK request, handled by the USB controller */
if(endpoint == EP_CONTROL)
{
flags = disable_irq_save();
endpoints[1].buf = ptr;
endpoints[1].sent = 0;
endpoints[1].length = length;
ep0state = USB_EP0_TX;
EP0_send();
restore_irq(flags);
return 0;
}
else
{
flags = disable_irq_save();
endpoints[endpoint*2+1].buf = ptr;
endpoints[endpoint*2+1].sent = 0;
endpoints[endpoint*2+1].length = length;
#if 0
select_endpoint(endpoint);
REG_USB_REG_ADDR2 = ((unsigned long)ptr) & 0x7fffffff;
REG_USB_REG_COUNT2 = length;
REG_USB_REG_CNTL2 = (USB_CNTL_INTR_EN | USB_CNTL_MODE_1 | USB_CNTL_DIR_IN | USB_CNTL_ENA);
#else
EPIN_handler(endpoint);
#endif
restore_irq(flags);
return 0;
}
}
int usb_drv_send_nonblocking(int endpoint, void* ptr, int length)
{
return usb_drv_send(endpoint, ptr, length);
}
int usb_drv_recv(int endpoint, void* ptr, int length)
{
int flags;
endpoint &= 0x7F;
logf("usb_drv_recv(%d, 0x%x, %d)", endpoint, (int)ptr, length);
if(endpoint == EP_CONTROL && ptr == NULL && length == 0)
return 0; /* ACK request, handled by the USB controller */
else
{
flags = disable_irq_save();
endpoints[endpoint*2].buf = ptr;
endpoints[endpoint*2].received = 0;
endpoints[endpoint*2].length = length;
restore_irq(flags);
return 0;
}
}
void usb_drv_set_test_mode(int mode)
{
logf("usb_drv_set_test_mode(%d)", mode);
switch(mode)
{
case 0:
REG_USB_REG_TESTMODE &= ~USB_TEST_ALL;
break;
case 1:
REG_USB_REG_TESTMODE |= USB_TEST_J;
break;
case 2:
REG_USB_REG_TESTMODE |= USB_TEST_K;
break;
case 3:
REG_USB_REG_TESTMODE |= USB_TEST_SE0NAK;
break;
case 4:
REG_USB_REG_TESTMODE |= USB_TEST_PACKET;
break;
}
}
int usb_drv_port_speed(void)
{
return (REG_USB_REG_POWER & USB_POWER_HSMODE) ? 1 : 0;
}
void usb_drv_cancel_all_transfers(void)
{
logf("usb_drv_cancel_all_transfers()");
unsigned int i, flags;
flags = disable_irq_save();
for(i=0; i<TOTAL_EP(); i++)
{
if(i > 2)
endpoints[i].buf = NULL;
endpoints[i].sent = 0;
endpoints[i].length = 0;
select_endpoint(i/2);
flushFIFO(&endpoints[i]);
}
restore_irq(flags);
ep0state = USB_EP0_IDLE;
}
void usb_drv_release_endpoint(int ep)
{
(void)ep;
logf("usb_drv_release_endpoint(%d, %s)", (ep & 0x7F), (ep >> 7) ? "IN" : "OUT");
}
int usb_drv_request_endpoint(int dir)
{
logf("usb_drv_request_endpoint(%s)", (dir == USB_DIR_IN) ? "IN" : "OUT");
/* There are only 3+2 endpoints, so hardcode this ... */
/* Currently only BULK endpoints ... */
if(dir == USB_DIR_OUT)
return (1 | USB_DIR_OUT);
else if(dir == USB_DIR_IN)
return (1 | USB_DIR_IN);
else
return -1;
}