rockbox/apps/codecs/libgme/ay_emu.c
Bertrik Sikken b127949860 libgme: make local functions static where possible
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@30280 a1c6a512-1295-4272-9138-f99709370657
2011-08-11 19:04:28 +00:00

783 lines
21 KiB
C

// Game_Music_Emu 0.6-pre. http://www.slack.net/~ant/
#include "ay_emu.h"
#include "blargg_endian.h"
/* Copyright (C) 2006-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
int const stereo = 2; // number of channels for stereo
int const silence_max = 6; // seconds
int const silence_threshold = 0x10;
long const fade_block_size = 512;
int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift)
const char* const gme_wrong_file_type = "Wrong file type for this emulator";
// TODO: probably don't need detailed errors as to why file is corrupt
int const spectrum_clock = 3546900; // 128K Spectrum
int const spectrum_period = 70908;
//int const spectrum_clock = 3500000; // 48K Spectrum
//int const spectrum_period = 69888;
int const cpc_clock = 2000000;
static void clear_track_vars( struct Ay_Emu *this )
{
this->current_track = -1;
this->out_time = 0;
this->emu_time = 0;
this->emu_track_ended_ = true;
this->track_ended = true;
this->fade_start = INT_MAX / 2 + 1;
this->fade_step = 1;
this->silence_time = 0;
this->silence_count = 0;
this->buf_remain = 0;
/* warning(); // clear warning */
}
void Ay_init( struct Ay_Emu *this )
{
this->sample_rate = 0;
this->mute_mask_ = 0;
this->tempo = (int)FP_ONE_TEMPO;
this->gain = (int)FP_ONE_GAIN;
this->track_count = 0;
// defaults
this->max_initial_silence = 2;
this->ignore_silence = false;
this->voice_count = 0;
clear_track_vars( this );
this->beeper_output = NULL;
disable_beeper( this );
Ay_apu_init( &this->apu );
Z80_init( &this->cpu );
this->silence_lookahead = 6 ;
}
// Track info
// Given pointer to 2-byte offset of data, returns pointer to data, or NULL if
// offset is 0 or there is less than min_size bytes of data available.
static byte const* get_data( struct file_t const* file, byte const ptr [], int min_size )
{
int offset = (int16_t) get_be16( ptr );
int pos = ptr - (byte const*) file->header;
int size = file->end - (byte const*) file->header;
assert( (unsigned) pos <= (unsigned) size - 2 );
int limit = size - min_size;
if ( limit < 0 || !offset || (unsigned) (pos + offset) > (unsigned) limit )
return NULL;
return ptr + offset;
}
static blargg_err_t parse_header( byte const in [], int size, struct file_t* out )
{
if ( size < header_size )
return gme_wrong_file_type;
out->header = (struct header_t const*) in;
out->end = in + size;
struct header_t const* h = (struct header_t const*) in;
if ( memcmp( h->tag, "ZXAYEMUL", 8 ) )
return gme_wrong_file_type;
out->tracks = get_data( out, h->track_info, (h->max_track + 1) * 4 );
if ( !out->tracks )
return "missing track data";
return 0;
}
long Track_get_length( struct Ay_Emu* this, int n )
{
long length = 0;
byte const* track_info = get_data( &this->file, this->file.tracks + n * 4 + 2, 6 );
if ( track_info )
length = get_be16( track_info + 4 ) * (1000 / 50); // frames to msec
if ( (this->m3u.size > 0) && (n < this->m3u.size) ) {
struct entry_t* entry = &this->m3u.entries [n];
length = entry->length;
}
if ( length <= 0 )
length = 120 * 1000; /* 2 minutes */
return length;
}
// Setup
static void change_clock_rate( struct Ay_Emu *this, long rate )
{
this->clock_rate_ = rate;
Buffer_clock_rate( &this->stereo_buf, rate );
}
blargg_err_t Ay_load_mem( struct Ay_Emu *this, byte const in [], int size )
{
assert( offsetof (struct header_t,track_info [2]) == header_size );
RETURN_ERR( parse_header( in, size, &this->file ) );
/* if ( file.header->vers > 2 )
warning( "Unknown file version" ); */
this->voice_count = ay_osc_count + 1; // +1 for beeper
Ay_apu_volume( &this->apu, this->gain);
// Setup buffer
change_clock_rate( this, spectrum_clock );
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
Sound_set_tempo( this, this->tempo );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
this->track_count = this->file.header->max_track + 1;
this->m3u.size = 0;
return 0;
}
static void set_beeper_output( struct Ay_Emu *this, struct Blip_Buffer* b )
{
this->beeper_output = b;
if ( b && !this->cpc_mode )
this->beeper_mask = 0x10;
else
disable_beeper( this );
}
static void set_voice( struct Ay_Emu *this, int i, struct Blip_Buffer* center )
{
if ( i >= ay_osc_count )
set_beeper_output( this, center );
else
Ay_apu_set_output( &this->apu, i, center );
}
static blargg_err_t run_clocks( struct Ay_Emu *this, blip_time_t* duration, int msec )
{
#if defined(ROCKBOX)
(void) msec;
#endif
cpu_time_t *end = duration;
struct Z80_Cpu* cpu = &this->cpu;
Z80_set_time( cpu, 0 );
// Since detection of CPC mode will halve clock rate during the frame
// and thus generate up to twice as much sound, we must generate half
// as much until mode is known.
if ( !(this->spectrum_mode | this->cpc_mode) )
*end /= 2;
while ( Z80_time( cpu ) < *end )
{
run_cpu( this, min( *end, this->next_play ) );
if ( Z80_time( cpu ) >= this->next_play )
{
// next frame
this->next_play += this->play_period;
if ( cpu->r.iff1 )
{
// interrupt enabled
if ( this->mem.ram [cpu->r.pc] == 0x76 )
cpu->r.pc++; // advance past HALT instruction
cpu->r.iff1 = 0;
cpu->r.iff2 = 0;
this->mem.ram [--cpu->r.sp] = (byte) (cpu->r.pc >> 8);
this->mem.ram [--cpu->r.sp] = (byte) (cpu->r.pc);
// fixed interrupt
cpu->r.pc = 0x38;
Z80_adjust_time( cpu, 12 );
if ( cpu->r.im == 2 )
{
// vectored interrupt
addr_t addr = cpu->r.i * 0x100 + 0xFF;
cpu->r.pc = this->mem.ram [(addr + 1) & 0xFFFF] * 0x100 + this->mem.ram [addr];
Z80_adjust_time( cpu, 6 );
}
}
}
}
// End time frame
*end = Z80_time( cpu );
this->next_play -= *end;
check( this->next_play >= 0 );
Z80_adjust_time( cpu, -*end );
Ay_apu_end_frame( &this->apu, *end );
return 0;
}
// Emulation
void cpu_out_( struct Ay_Emu *this, cpu_time_t time, addr_t addr, int data )
{
// Spectrum
if ( !this->cpc_mode )
{
switch ( addr & 0xFEFF )
{
case 0xFEFD:
this->spectrum_mode = true;
Ay_apu_write_addr( &this->apu, data );
return;
case 0xBEFD:
this->spectrum_mode = true;
Ay_apu_write_data( &this->apu, time, data );
return;
}
}
// CPC
if ( !this->spectrum_mode )
{
switch ( addr >> 8 )
{
case 0xF6:
switch ( data & 0xC0 )
{
case 0xC0:
Ay_apu_write_addr( &this->apu, this->cpc_latch );
goto enable_cpc;
case 0x80:
Ay_apu_write_data( &this->apu, time, this->cpc_latch );
goto enable_cpc;
}
break;
case 0xF4:
this->cpc_latch = data;
goto enable_cpc;
}
}
/* dprintf( "Unmapped OUT: $%04X <- $%02X\n", addr, data ); */
return;
enable_cpc:
if ( !this->cpc_mode )
{
this->cpc_mode = true;
disable_beeper( this );
change_clock_rate( this, cpc_clock );
Sound_set_tempo( this, this->tempo );
}
}
blargg_err_t Ay_set_sample_rate( struct Ay_Emu *this, long rate )
{
require( !this->sample_rate ); // sample rate can't be changed once set
Buffer_init( &this->stereo_buf );
RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) );
// Set buffer bass
Buffer_bass_freq( &this->stereo_buf, 160 );
this->sample_rate = rate;
return 0;
}
void Sound_mute_voice( struct Ay_Emu *this, int index, bool mute )
{
require( (unsigned) index < (unsigned) this->voice_count );
int bit = 1 << index;
int mask = this->mute_mask_ | bit;
if ( !mute )
mask ^= bit;
Sound_mute_voices( this, mask );
}
void Sound_mute_voices( struct Ay_Emu *this, int mask )
{
require( this->sample_rate ); // sample rate must be set first
this->mute_mask_ = mask;
int i;
for ( i = this->voice_count; i--; )
{
if ( mask & (1 << i) )
{
set_voice( this, i, 0 );
}
else
{
struct channel_t ch = Buffer_channel( &this->stereo_buf );
assert( (ch.center && ch.left && ch.right) ||
(!ch.center && !ch.left && !ch.right) ); // all or nothing
set_voice( this, i, ch.center );
}
}
}
void Sound_set_tempo( struct Ay_Emu *this, int t )
{
require( this->sample_rate ); // sample rate must be set first
int const min = (int)(FP_ONE_TEMPO*0.02);
int const max = (int)(FP_ONE_TEMPO*4.00);
if ( t < min ) t = min;
if ( t > max ) t = max;
this->tempo = t;
int p = spectrum_period;
if ( this->clock_rate_ != spectrum_clock )
p = this->clock_rate_ / 50;
this->play_period = (blip_time_t) ((p * FP_ONE_TEMPO) / t);
}
void fill_buf( struct Ay_Emu *this ) ICODE_ATTR;;
blargg_err_t Ay_start_track( struct Ay_Emu *this, int track )
{
clear_track_vars( this );
// Remap track if playlist available
if ( this->m3u.size > 0 ) {
struct entry_t* e = &this->m3u.entries[track];
track = e->track;
}
this->current_track = track;
Buffer_clear( &this->stereo_buf );
byte* const mem = this->mem.ram;
memset( mem + 0x0000, 0xC9, 0x100 ); // fill RST vectors with RET
memset( mem + 0x0100, 0xFF, 0x4000 - 0x100 );
memset( mem + ram_addr, 0x00, mem_size - ram_addr );
// locate data blocks
byte const* const data = get_data( &this->file, this->file.tracks + track * 4 + 2, 14 );
if ( !data )
return "file data missing";
byte const* const more_data = get_data( &this->file, data + 10, 6 );
if ( !more_data )
return "file data missing";
byte const* blocks = get_data( &this->file, data + 12, 8 );
if ( !blocks )
return "file data missing";
// initial addresses
unsigned addr = get_be16( blocks );
if ( !addr )
return "file data missing";
unsigned init = get_be16( more_data + 2 );
if ( !init )
init = addr;
// copy blocks into memory
do
{
blocks += 2;
unsigned len = get_be16( blocks ); blocks += 2;
if ( addr + len > mem_size )
{
/* warning( "Bad data block size" ); */
len = mem_size - addr;
}
check( len );
byte const* in = get_data( &this->file, blocks, 0 ); blocks += 2;
if ( len > (unsigned) (this->file.end - in) )
{
/* warning( "File data missing" ); */
len = this->file.end - in;
}
memcpy( mem + addr, in, len );
if ( this->file.end - blocks < 8 )
{
/* warning( "File data missing" ); */
break;
}
}
while ( (addr = get_be16( blocks )) != 0 );
// copy and configure driver
static byte const passive [] = {
0xF3, // DI
0xCD, 0, 0, // CALL init
0xED, 0x5E, // LOOP: IM 2
0xFB, // EI
0x76, // HALT
0x18, 0xFA // JR LOOP
};
static byte const active [] = {
0xF3, // DI
0xCD, 0, 0, // CALL init
0xED, 0x56, // LOOP: IM 1
0xFB, // EI
0x76, // HALT
0xCD, 0, 0, // CALL play
0x18, 0xF7 // JR LOOP
};
memcpy( mem, passive, sizeof passive );
int const play_addr = get_be16( more_data + 4 );
if ( play_addr )
{
memcpy( mem, active, sizeof active );
mem [ 9] = play_addr;
mem [10] = play_addr >> 8;
}
mem [2] = init;
mem [3] = init >> 8;
mem [0x38] = 0xFB; // Put EI at interrupt vector (followed by RET)
// start at spectrum speed
change_clock_rate( this, spectrum_clock );
Sound_set_tempo( this, this->tempo );
struct registers_t r;
memset( &r, 0, sizeof(struct registers_t) );
r.sp = get_be16( more_data );
r.b.a = r.b.b = r.b.d = r.b.h = data [8];
r.b.flags = r.b.c = r.b.e = r.b.l = data [9];
r.alt.w = r.w;
r.ix = r.iy = r.w.hl;
memset( this->mem.padding1, 0xFF, sizeof this->mem.padding1 );
int const mirrored = 0x80; // this much is mirrored after end of memory
memset( this->mem.ram + mem_size + mirrored, 0xFF, sizeof this->mem.ram - mem_size - mirrored );
memcpy( this->mem.ram + mem_size, this->mem.ram, mirrored ); // some code wraps around (ugh)
Z80_reset( &this->cpu, this->mem.padding1, this->mem.padding1 );
Z80_map_mem( &this->cpu, 0, mem_size, this->mem.ram, this->mem.ram );
this->cpu.r = r;
this->beeper_delta = (int) ((ay_amp_range*4)/5);
this->last_beeper = 0;
this->next_play = this->play_period;
this->spectrum_mode = false;
this->cpc_mode = false;
this->cpc_latch = 0;
set_beeper_output( this, this->beeper_output );
Ay_apu_reset( &this->apu );
// a few tunes rely on channels having tone enabled at the beginning
Ay_apu_write_addr( &this->apu, 7 );
Ay_apu_write_data( &this->apu, 0, 0x38 );
this->emu_track_ended_ = false;
this->track_ended = false;
if ( !this->ignore_silence )
{
// play until non-silence or end of track
long end;
for ( end = this->max_initial_silence * stereo * this->sample_rate; this->emu_time < end; )
{
fill_buf( this );
if ( this->buf_remain | (int) this->emu_track_ended_ )
break;
}
this->emu_time = this->buf_remain;
this->out_time = 0;
this->silence_time = 0;
this->silence_count = 0;
}
/* return track_ended() ? warning() : 0; */
return 0;
}
// Tell/Seek
static blargg_long msec_to_samples( blargg_long msec, long sample_rate )
{
blargg_long sec = msec / 1000;
msec -= sec * 1000;
return (sec * sample_rate + msec * sample_rate / 1000) * stereo;
}
long Track_tell( struct Ay_Emu *this )
{
blargg_long rate = this->sample_rate * stereo;
blargg_long sec = this->out_time / rate;
return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate;
}
blargg_err_t Track_seek( struct Ay_Emu *this, long msec )
{
blargg_long time = msec_to_samples( msec, this->sample_rate );
if ( time < this->out_time )
RETURN_ERR( Ay_start_track( this, this->current_track ) );
return Track_skip( this, time - this->out_time );
}
blargg_err_t play_( struct Ay_Emu *this, long count, sample_t* out ) ICODE_ATTR;
static blargg_err_t skip_( struct Ay_Emu *this, long count )
{
// for long skip, mute sound
const long threshold = 30000;
if ( count > threshold )
{
int saved_mute = this->mute_mask_;
Sound_mute_voices( this, ~0 );
while ( count > threshold / 2 && !this->emu_track_ended_ )
{
RETURN_ERR( play_( this, buf_size, this->buf ) );
count -= buf_size;
}
Sound_mute_voices( this, saved_mute );
}
while ( count && !this->emu_track_ended_ )
{
long n = buf_size;
if ( n > count )
n = count;
count -= n;
RETURN_ERR( play_( this, n, this->buf ) );
}
return 0;
}
blargg_err_t Track_skip( struct Ay_Emu *this, long count )
{
require( this->current_track >= 0 ); // start_track() must have been called already
this->out_time += count;
// remove from silence and buf first
{
long n = min( count, this->silence_count );
this->silence_count -= n;
count -= n;
n = min( count, this->buf_remain );
this->buf_remain -= n;
count -= n;
}
if ( count && !this->emu_track_ended_ )
{
this->emu_time += count;
// End track if error
if ( skip_( this, count ) )
this->emu_track_ended_ = true;
}
if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended
this->track_ended |= this->emu_track_ended_;
return 0;
}
// Fading
void Track_set_fade( struct Ay_Emu *this, long start_msec, long length_msec )
{
this->fade_step = this->sample_rate * length_msec / (fade_block_size * fade_shift * 1000 / stereo);
this->fade_start = msec_to_samples( start_msec, this->sample_rate );
}
// unit / pow( 2.0, (double) x / step )
static int int_log( blargg_long x, int step, int unit )
{
int shift = x / step;
int fraction = (x - shift * step) * unit / step;
return ((unit - fraction) + (fraction >> 1)) >> shift;
}
static void handle_fade( struct Ay_Emu *this, long out_count, sample_t* out )
{
int i;
for ( i = 0; i < out_count; i += fade_block_size )
{
int const shift = 14;
int const unit = 1 << shift;
int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size,
this->fade_step, unit );
if ( gain < (unit >> fade_shift) )
this->track_ended = this->emu_track_ended_ = true;
sample_t* io = &out [i];
int count;
for ( count = min( fade_block_size, out_count - i ); count; --count )
{
*io = (sample_t) ((*io * gain) >> shift);
++io;
}
}
}
// Silence detection
static void emu_play( struct Ay_Emu *this, long count, sample_t* out )
{
check( current_track_ >= 0 );
this->emu_time += count;
if ( this->current_track >= 0 && !this->emu_track_ended_ ) {
if ( play_( this, count, out ) )
this->emu_track_ended_ = true;
}
else
memset( out, 0, count * sizeof *out );
}
// number of consecutive silent samples at end
static long count_silence( sample_t* begin, long size )
{
sample_t first = *begin;
*begin = silence_threshold; // sentinel
sample_t* p = begin + size;
while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { }
*begin = first;
return size - (p - begin);
}
// fill internal buffer and check it for silence
void fill_buf( struct Ay_Emu *this )
{
assert( !this->buf_remain );
if ( !this->emu_track_ended_ )
{
emu_play( this, buf_size, this->buf );
long silence = count_silence( this->buf, buf_size );
if ( silence < buf_size )
{
this->silence_time = this->emu_time - silence;
this->buf_remain = buf_size;
return;
}
}
this->silence_count += buf_size;
}
blargg_err_t Ay_play( struct Ay_Emu *this, long out_count, sample_t* out )
{
if ( this->track_ended )
{
memset( out, 0, out_count * sizeof *out );
}
else
{
require( this->current_track >= 0 );
require( out_count % stereo == 0 );
assert( this->emu_time >= this->out_time );
// prints nifty graph of how far ahead we are when searching for silence
//debug_printf( "%*s \n", int ((emu_time - out_time) * 7 / sample_rate()), "*" );
long pos = 0;
if ( this->silence_count )
{
// during a run of silence, run emulator at >=2x speed so it gets ahead
long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time;
while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) )
fill_buf( this );
// fill with silence
pos = min( this->silence_count, out_count );
memset( out, 0, pos * sizeof *out );
this->silence_count -= pos;
if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate )
{
this->track_ended = this->emu_track_ended_ = true;
this->silence_count = 0;
this->buf_remain = 0;
}
}
if ( this->buf_remain )
{
// empty silence buf
long n = min( this->buf_remain, out_count - pos );
memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out );
this->buf_remain -= n;
pos += n;
}
// generate remaining samples normally
long remain = out_count - pos;
if ( remain )
{
emu_play( this, remain, out + pos );
this->track_ended |= this->emu_track_ended_;
if ( !this->ignore_silence || this->out_time > this->fade_start )
{
// check end for a new run of silence
long silence = count_silence( out + pos, remain );
if ( silence < remain )
this->silence_time = this->emu_time - silence;
if ( this->emu_time - this->silence_time >= buf_size )
fill_buf( this ); // cause silence detection on next play()
}
}
if ( this->out_time > this->fade_start )
handle_fade( this, out_count, out );
}
this->out_time += out_count;
return 0;
}
blargg_err_t play_( struct Ay_Emu *this, long count, sample_t* out )
{
long remain = count;
while ( remain )
{
remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain );
if ( remain )
{
if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) )
{
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
}
int msec = Buffer_length( &this->stereo_buf );
blip_time_t clocks_emulated = (blargg_long) msec * this->clock_rate_ / 1000 - 100;
RETURN_ERR( run_clocks( this, &clocks_emulated, msec ) );
assert( clocks_emulated );
Buffer_end_frame( &this->stereo_buf, clocks_emulated );
}
}
return 0;
}