4e24bb9976
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@13300 a1c6a512-1295-4272-9138-f99709370657
438 lines
13 KiB
C
438 lines
13 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Rockbox driver for Sansa e200 LCDs
|
|
*
|
|
* Based on reverse engineering done my MrH
|
|
*
|
|
* Copyright (c) 2006 Daniel Ankers
|
|
*
|
|
* All files in this archive are subject to the GNU General Public License.
|
|
* See the file COPYING in the source tree root for full license agreement.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "lcd.h"
|
|
#include "system.h"
|
|
#include <string.h>
|
|
#include "backlight-target.h"
|
|
#include "pp5024.h"
|
|
|
|
#define LCD_DATA_IN_GPIO GPIOB_INPUT_VAL
|
|
#define LCD_DATA_IN_PIN 6
|
|
|
|
#define LCD_DATA_OUT_GPIO GPIOB_OUTPUT_VAL
|
|
#define LCD_DATA_OUT_PIN 7
|
|
|
|
#define LCD_CLOCK_GPIO GPIOB_OUTPUT_VAL
|
|
#define LCD_CLOCK_PIN 5
|
|
|
|
#define LCD_CS_GPIO GPIOD_OUTPUT_VAL
|
|
#define LCD_CS_PIN 6
|
|
|
|
#define LCD_REG_0 (*(volatile unsigned long *)(0xc2000000))
|
|
#define LCD_REG_1 (*(volatile unsigned long *)(0xc2000004))
|
|
#define LCD_REG_2 (*(volatile unsigned long *)(0xc2000008))
|
|
#define LCD_REG_3 (*(volatile unsigned long *)(0xc200000c))
|
|
#define LCD_REG_4 (*(volatile unsigned long *)(0xc2000010))
|
|
#define LCD_REG_5 (*(volatile unsigned long *)(0xc2000014))
|
|
#define LCD_REG_6 (*(volatile unsigned long *)(0xc2000018))
|
|
#define LCD_REG_7 (*(volatile unsigned long *)(0xc200001c))
|
|
#define LCD_REG_8 (*(volatile unsigned long *)(0xc2000020))
|
|
#define LCD_REG_9 (*(volatile unsigned long *)(0xc2000024))
|
|
#define LCD_FB_BASE_REG (*(volatile unsigned long *)(0xc2000028))
|
|
|
|
/* Taken from HD66789 datasheet and seems similar enough.
|
|
Definitely a Renesas chip though with a perfect register index
|
|
match but at least one bit seems to be set that that datasheet
|
|
doesn't show. It says T.B.D. on the regmap anyway. */
|
|
#define R_START_OSC 0x00
|
|
#define R_DRV_OUTPUT_CONTROL 0x01
|
|
#define R_DRV_WAVEFORM_CONTROL 0x02
|
|
#define R_ENTRY_MODE 0x03
|
|
#define R_COMPARE_REG1 0x04
|
|
#define R_COMPARE_REG2 0x05
|
|
#define R_DISP_CONTROL1 0x07
|
|
#define R_DISP_CONTROL2 0x08
|
|
#define R_DISP_CONTROL3 0x09
|
|
#define R_FRAME_CYCLE_CONTROL 0x0b
|
|
#define R_EXT_DISP_INTF_CONTROL 0x0c
|
|
#define R_POWER_CONTROL1 0x10
|
|
#define R_POWER_CONTROL2 0x11
|
|
#define R_POWER_CONTROL3 0x12
|
|
#define R_POWER_CONTROL4 0x13
|
|
#define R_RAM_ADDR_SET 0x21
|
|
#define R_RAM_READ_DATA 0x21
|
|
#define R_RAM_WRITE_DATA 0x22
|
|
#define R_RAM_WRITE_DATA_MASK1 0x23
|
|
#define R_RAM_WRITE_DATA_MASK2 0x24
|
|
#define R_GAMMA_FINE_ADJ_POS1 0x30
|
|
#define R_GAMMA_FINE_ADJ_POS2 0x31
|
|
#define R_GAMMA_FINE_ADJ_POS3 0x32
|
|
#define R_GAMMA_GRAD_ADJ_POS 0x33
|
|
#define R_GAMMA_FINE_ADJ_NEG1 0x34
|
|
#define R_GAMMA_FINE_ADJ_NEG2 0x35
|
|
#define R_GAMMA_FINE_ADJ_NEG3 0x36
|
|
#define R_GAMMA_GRAD_ADJ_NEG 0x37
|
|
#define R_GAMMA_AMP_ADJ_POS 0x38
|
|
#define R_GAMMA_AMP_ADJ_NEG 0x39
|
|
#define R_GATE_SCAN_START_POS 0x40
|
|
#define R_VERT_SCROLL_CONTROL 0x41
|
|
#define R_1ST_SCR_DRIVE_POS 0x42
|
|
#define R_2ND_SCR_DRIVE_POS 0x43
|
|
#define R_HORIZ_RAM_ADDR_POS 0x44
|
|
#define R_VERT_RAM_ADDR_POS 0x45
|
|
|
|
/* We don't know how to receive a DMA finished signal from the LCD controller
|
|
* To avoid problems with flickering, we double-buffer the framebuffer and turn
|
|
* off DMA while updates are taking place */
|
|
static fb_data lcd_driver_framebuffer[LCD_FBHEIGHT][LCD_FBWIDTH]
|
|
__attribute__((aligned(16))); /* Same alignment as in lcd-16bit.c */
|
|
|
|
static inline void lcd_init_gpio(void)
|
|
{
|
|
GPIOB_ENABLE |= (1<<7);
|
|
GPIOB_ENABLE |= (1<<5);
|
|
GPIOB_OUTPUT_EN |= (1<<7);
|
|
GPIOB_OUTPUT_EN |= (1<<5);
|
|
GPIOD_ENABLE |= (1<<6);
|
|
GPIOD_OUTPUT_EN |= (1<<6);
|
|
}
|
|
|
|
static inline void lcd_bus_idle(void)
|
|
{
|
|
LCD_CLOCK_GPIO |= (1 << LCD_CLOCK_PIN);
|
|
LCD_DATA_OUT_GPIO |= (1 << LCD_DATA_OUT_PIN);
|
|
}
|
|
|
|
static inline void lcd_send_byte(unsigned char byte)
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 7; i >=0 ; i--)
|
|
{
|
|
LCD_CLOCK_GPIO &= ~(1 << LCD_CLOCK_PIN);
|
|
if ((byte >> i) & 1)
|
|
{
|
|
LCD_DATA_OUT_GPIO |= (1 << LCD_DATA_OUT_PIN);
|
|
} else {
|
|
LCD_DATA_OUT_GPIO &= ~(1 << LCD_DATA_OUT_PIN);
|
|
}
|
|
udelay(1);
|
|
LCD_CLOCK_GPIO |= (1 << LCD_CLOCK_PIN);
|
|
udelay(1);
|
|
lcd_bus_idle();
|
|
udelay(3);
|
|
}
|
|
}
|
|
|
|
static inline void lcd_send_msg(unsigned char cmd, unsigned int data)
|
|
{
|
|
lcd_bus_idle();
|
|
udelay(1);
|
|
LCD_CS_GPIO &= ~(1 << LCD_CS_PIN);
|
|
udelay(10);
|
|
lcd_send_byte(cmd);
|
|
lcd_send_byte((unsigned char)(data >> 8));
|
|
lcd_send_byte((unsigned char)(data & 0xff));
|
|
LCD_CS_GPIO |= (1 << LCD_CS_PIN);
|
|
udelay(1);
|
|
lcd_bus_idle();
|
|
}
|
|
|
|
static inline void lcd_write_reg(unsigned int reg, unsigned int data)
|
|
{
|
|
lcd_send_msg(0x70, reg);
|
|
lcd_send_msg(0x72, data);
|
|
}
|
|
|
|
/* The LCD controller gets passed the address of the framebuffer, but can only
|
|
use the physical, not the remapped, address. This is a quick and dirty way
|
|
of correcting it */
|
|
static unsigned long phys_fb_address(unsigned long address)
|
|
{
|
|
if(address < 0x10000000)
|
|
{
|
|
return address + 0x10000000;
|
|
} else {
|
|
return address;
|
|
}
|
|
}
|
|
|
|
inline void lcd_init_device(void)
|
|
{
|
|
/* All this is magic worked out by MrH */
|
|
|
|
/* Stop any DMA which is in progress */
|
|
LCD_REG_6 &= ~1;
|
|
udelay(100000);
|
|
|
|
/* Init GPIO ports */
|
|
lcd_init_gpio();
|
|
/* Controller init */
|
|
outl((inl(0x70000084) | (1 << 28)), 0x70000084);
|
|
outl((inl(0x70000080) & ~(1 << 28)), 0x70000080);
|
|
outl(((inl(0x70000010) & (0x03ffffff)) | (0x15 << 26)), 0x70000010);
|
|
outl(((inl(0x70000014) & (0x0fffffff)) | (0x5 << 28)), 0x70000014);
|
|
outl((inl(0x70000020) & ~(0x3 << 10)), 0x70000020);
|
|
DEV_EN |= DEV_LCD; /* Enable controller */
|
|
outl(0x6, 0x600060d0);
|
|
DEV_RS |= DEV_LCD; /* Reset controller */
|
|
outl((inl(0x70000020) & ~(1 << 14)), 0x70000020);
|
|
lcd_bus_idle();
|
|
DEV_RS &=~DEV_LCD; /* Clear reset */
|
|
udelay(1000);
|
|
|
|
LCD_REG_0 = (LCD_REG_0 & (0x00ffffff)) | (0x22 << 24);
|
|
LCD_REG_0 = (LCD_REG_0 & (0xff00ffff)) | (0x14 << 16);
|
|
LCD_REG_0 = (LCD_REG_0 & (0xffffc0ff)) | (0x3 << 8);
|
|
LCD_REG_0 = (LCD_REG_0 & (0xffffffc0)) | (0xa);
|
|
|
|
LCD_REG_1 &= 0x00ffffff;
|
|
LCD_REG_1 &= 0xff00ffff;
|
|
LCD_REG_1 = (LCD_REG_1 & 0xffff03ff) | (0x2 << 10);
|
|
LCD_REG_1 = (LCD_REG_1 & 0xfffffc00) | (0xdd);
|
|
|
|
LCD_REG_2 |= (1 << 5);
|
|
LCD_REG_2 |= (1 << 6);
|
|
LCD_REG_2 = (LCD_REG_2 & 0xfffffcff) | (0x2 << 8);
|
|
|
|
LCD_REG_7 &= (0xf800ffff);
|
|
LCD_REG_7 &= (0xfffff800);
|
|
|
|
LCD_REG_8 = (LCD_REG_8 & (0xf800ffff)) | (0xb0 << 16);
|
|
LCD_REG_8 = (LCD_REG_8 & (0xfffff800)) | (0xde); /* X-Y Geometry? */
|
|
|
|
LCD_REG_5 |= 0xc;
|
|
LCD_REG_5 = (LCD_REG_5 & ~(0x70)) | (0x3 << 4);
|
|
LCD_REG_5 |= 2;
|
|
|
|
LCD_REG_6 &= ~(1 << 15);
|
|
LCD_REG_6 |= (0xe00);
|
|
LCD_REG_6 = (LCD_REG_6 & (0xffffff1f)) | (0x4 << 5);
|
|
LCD_REG_6 |= (1 << 4);
|
|
|
|
LCD_REG_5 &= ~(1 << 7);
|
|
LCD_FB_BASE_REG = phys_fb_address((unsigned long)lcd_driver_framebuffer);
|
|
|
|
udelay(100000);
|
|
|
|
/* LCD init */
|
|
|
|
/* TODO: Eliminate some of this outside the bootloader since this
|
|
will already be setup and that will eliminate white-screen */
|
|
|
|
/* Pull RESET low, then high */
|
|
outl((inl(0x70000080) & ~(1 << 28)), 0x70000080);
|
|
udelay(10000);
|
|
outl((inl(0x70000080) | (1 << 28)), 0x70000080);
|
|
udelay(10000);
|
|
|
|
lcd_write_reg(R_POWER_CONTROL1, 0x4444);
|
|
lcd_write_reg(R_POWER_CONTROL2, 0x0001);
|
|
lcd_write_reg(R_POWER_CONTROL3, 0x0003);
|
|
lcd_write_reg(R_POWER_CONTROL4, 0x1119);
|
|
lcd_write_reg(R_POWER_CONTROL3, 0x0013);
|
|
udelay(50000);
|
|
|
|
lcd_write_reg(R_POWER_CONTROL1, 0x4440);
|
|
lcd_write_reg(R_POWER_CONTROL4, 0x3119);
|
|
udelay(150000);
|
|
|
|
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x101b);
|
|
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);
|
|
lcd_write_reg(R_ENTRY_MODE, 0x6020);
|
|
lcd_write_reg(R_COMPARE_REG1, 0x0000);
|
|
lcd_write_reg(R_COMPARE_REG2, 0x0000);
|
|
lcd_write_reg(R_DISP_CONTROL2, 0x0102);
|
|
lcd_write_reg(R_DISP_CONTROL3, 0x0000);
|
|
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x4400);
|
|
lcd_write_reg(R_EXT_DISP_INTF_CONTROL, 0x0110);
|
|
|
|
lcd_write_reg(R_GATE_SCAN_START_POS, 0x0000);
|
|
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0x0000);
|
|
lcd_write_reg(R_1ST_SCR_DRIVE_POS, (219 << 8));
|
|
lcd_write_reg(R_2ND_SCR_DRIVE_POS, 0x0000);
|
|
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (175 << 8));
|
|
lcd_write_reg(R_VERT_RAM_ADDR_POS, (219 << 8));
|
|
|
|
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0000);
|
|
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0704);
|
|
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0107);
|
|
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0704);
|
|
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0107);
|
|
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0002);
|
|
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0707);
|
|
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0503);
|
|
lcd_write_reg(R_GAMMA_AMP_ADJ_POS, 0x0000);
|
|
lcd_write_reg(R_GAMMA_AMP_ADJ_NEG, 0x0000);
|
|
|
|
lcd_write_reg(R_RAM_ADDR_SET, 175);
|
|
|
|
lcd_write_reg(R_EXT_DISP_INTF_CONTROL, 0x0110);
|
|
|
|
lcd_write_reg(R_POWER_CONTROL1, 0x4740);
|
|
|
|
lcd_write_reg(R_DISP_CONTROL1, 0x0045);
|
|
|
|
udelay(50000);
|
|
|
|
lcd_write_reg(R_DISP_CONTROL1, 0x0065);
|
|
lcd_write_reg(R_DISP_CONTROL1, 0x0067);
|
|
|
|
udelay(50000);
|
|
|
|
lcd_write_reg(R_DISP_CONTROL1, 0x0077);
|
|
|
|
lcd_send_msg(0x70, R_RAM_WRITE_DATA);
|
|
}
|
|
|
|
void lcd_enable(bool on)
|
|
{
|
|
if(on)
|
|
{
|
|
DEV_EN |= DEV_LCD; /* Enable LCD controller */
|
|
LCD_REG_6 |= 1; /* Enable DMA */
|
|
}
|
|
else
|
|
{
|
|
if(DEV_EN & DEV_LCD)
|
|
{
|
|
LCD_REG_6 &= ~1; /* Disable DMA */
|
|
udelay(20000); /* Wait for dma end (assuming 50Hz) */
|
|
DEV_EN &= ~DEV_LCD; /* Disable LCD controller */
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void lcd_update_rect(int x, int y, int width, int height)
|
|
{
|
|
(void)x;
|
|
(void)width;
|
|
|
|
if(__backlight_is_on())
|
|
{
|
|
/* Turn off DMA and wait for the transfer to complete */
|
|
/* TODO: Work out the proper delay */
|
|
LCD_REG_6 &= ~1;
|
|
udelay(1000);
|
|
|
|
/* Copy the Rockbox framebuffer to the second framebuffer */
|
|
/* TODO: Move the second framebuffer into uncached SDRAM */
|
|
memcpy(((char*)&lcd_driver_framebuffer)+(y * sizeof(fb_data) * LCD_WIDTH),
|
|
((char *)&lcd_framebuffer)+(y * sizeof(fb_data) * LCD_WIDTH),
|
|
((height * sizeof(fb_data) * LCD_WIDTH)));
|
|
flush_icache();
|
|
|
|
/* Restart DMA */
|
|
LCD_REG_6 |= 1;
|
|
}
|
|
}
|
|
|
|
inline void lcd_update(void)
|
|
{
|
|
if(__backlight_is_on())
|
|
{
|
|
/* TODO: It may be faster to swap the addresses of lcd_driver_framebuffer
|
|
* and lcd_framebuffer */
|
|
/* Turn off DMA and wait for the transfer to complete */
|
|
LCD_REG_6 &= ~1;
|
|
udelay(1000);
|
|
|
|
/* Copy the Rockbox framebuffer to the second framebuffer */
|
|
memcpy(lcd_driver_framebuffer, lcd_framebuffer,
|
|
sizeof(fb_data) * LCD_WIDTH * LCD_HEIGHT);
|
|
flush_icache();
|
|
|
|
/* Restart DMA */
|
|
LCD_REG_6 |= 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*** hardware configuration ***/
|
|
|
|
void lcd_set_contrast(int val)
|
|
{
|
|
/* TODO: Implement lcd_set_contrast() */
|
|
(void)val;
|
|
}
|
|
|
|
void lcd_set_invert_display(bool yesno)
|
|
{
|
|
/* TODO: Implement lcd_set_invert_display() */
|
|
(void)yesno;
|
|
}
|
|
|
|
/* turn the display upside down (call lcd_update() afterwards) */
|
|
void lcd_set_flip(bool yesno)
|
|
{
|
|
/* TODO: Implement lcd_set_flip() */
|
|
(void)yesno;
|
|
}
|
|
|
|
/* Blitting functions */
|
|
|
|
void lcd_blit(const fb_data* data, int x, int by, int width,
|
|
int bheight, int stride)
|
|
{
|
|
/* TODO: Implement lcd_blit() */
|
|
(void)data;
|
|
(void)x;
|
|
(void)by;
|
|
(void)width;
|
|
(void)bheight;
|
|
(void)stride;
|
|
}
|
|
|
|
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
|
|
extern void lcd_write_yuv420_lines(fb_data *dst,
|
|
unsigned char chroma_buf[LCD_HEIGHT/2*3],
|
|
unsigned char const * const src[3],
|
|
int width,
|
|
int stride);
|
|
/* Performance function to blit a YUV bitmap directly to the LCD */
|
|
/* For the e200 - show it rotated */
|
|
/* So the LCD_WIDTH is now the height */
|
|
void lcd_yuv_blit(unsigned char * const src[3],
|
|
int src_x, int src_y, int stride,
|
|
int x, int y, int width, int height)
|
|
{
|
|
/* Caches for chroma data so it only need be recaculated every other
|
|
line */
|
|
static unsigned char chroma_buf[LCD_HEIGHT/2*3]; /* 330 bytes */
|
|
unsigned char const * yuv_src[3];
|
|
off_t z;
|
|
|
|
/* Sorry, but width and height must be >= 2 or else */
|
|
width &= ~1;
|
|
height >>= 1;
|
|
|
|
fb_data *dst = (fb_data*)lcd_driver_framebuffer +
|
|
x * LCD_WIDTH + (LCD_WIDTH - y) - 1;
|
|
|
|
z = stride*src_y;
|
|
yuv_src[0] = src[0] + z + src_x;
|
|
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
|
|
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
|
|
|
|
do
|
|
{
|
|
lcd_write_yuv420_lines(dst, chroma_buf, yuv_src, width,
|
|
stride);
|
|
yuv_src[0] += stride << 1; /* Skip down two luma lines */
|
|
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
|
|
yuv_src[2] += stride >> 1;
|
|
dst -= 2;
|
|
}
|
|
while (--height > 0);
|
|
}
|