rockbox/firmware/kernel.c

1389 lines
36 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Björn Stenberg
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "kernel.h"
#include "thread.h"
#include "cpu.h"
#include "system.h"
#include "panic.h"
#if CONFIG_CPU == IMX31L
#include "avic-imx31.h"
#endif
/* Make this nonzero to enable more elaborate checks on objects */
#ifdef DEBUG
#define KERNEL_OBJECT_CHECKS 1 /* Always 1 for DEBUG */
#else
#define KERNEL_OBJECT_CHECKS 0
#endif
#if KERNEL_OBJECT_CHECKS
#define KERNEL_ASSERT(exp, msg...) \
({ if (!({ exp; })) panicf(msg); })
#else
#define KERNEL_ASSERT(exp, msg...) ({})
#endif
#if (!defined(CPU_PP) && (CONFIG_CPU != IMX31L)) || !defined(BOOTLOADER)
volatile long current_tick NOCACHEDATA_ATTR = 0;
#endif
void (*tick_funcs[MAX_NUM_TICK_TASKS])(void);
extern struct core_entry cores[NUM_CORES];
/* This array holds all queues that are initiated. It is used for broadcast. */
static struct
{
int count;
struct event_queue *queues[MAX_NUM_QUEUES];
#if NUM_CORES > 1
struct corelock cl;
#endif
} all_queues NOCACHEBSS_ATTR;
/****************************************************************************
* Standard kernel stuff
****************************************************************************/
void kernel_init(void)
{
/* Init the threading API */
init_threads();
/* Other processors will not reach this point in a multicore build.
* In a single-core build with multiple cores they fall-through and
* sleep in cop_main without returning. */
if (CURRENT_CORE == CPU)
{
memset(tick_funcs, 0, sizeof(tick_funcs));
memset(&all_queues, 0, sizeof(all_queues));
corelock_init(&all_queues.cl);
tick_start(1000/HZ);
}
}
void sleep(int ticks)
{
#if CONFIG_CPU == S3C2440 && defined(BOOTLOADER)
volatile int counter;
TCON &= ~(1 << 20); // stop timer 4
// TODO: this constant depends on dividers settings inherited from
// firmware. Set them explicitly somwhere.
TCNTB4 = 12193 * ticks / HZ;
TCON |= 1 << 21; // set manual bit
TCON &= ~(1 << 21); // reset manual bit
TCON &= ~(1 << 22); //autoreload Off
TCON |= (1 << 20); // start timer 4
do {
counter = TCNTO4;
} while(counter > 0);
#elif defined(CPU_PP) && defined(BOOTLOADER)
unsigned stop = USEC_TIMER + ticks * (1000000/HZ);
while (TIME_BEFORE(USEC_TIMER, stop))
switch_thread(NULL);
#else
sleep_thread(ticks);
#endif
}
void yield(void)
{
#if ((CONFIG_CPU == S3C2440 || defined(ELIO_TPJ1022) || CONFIG_CPU == IMX31L) && defined(BOOTLOADER))
/* Some targets don't like yielding in the bootloader */
#else
switch_thread(NULL);
#endif
}
/****************************************************************************
* Queue handling stuff
****************************************************************************/
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* Moves waiting thread's descriptor to the current sender when a
message is dequeued */
static void queue_fetch_sender(struct queue_sender_list *send,
unsigned int i)
{
struct thread_entry **spp = &send->senders[i];
if(*spp)
{
send->curr_sender = *spp;
*spp = NULL;
}
}
/* Puts the specified return value in the waiting thread's return value
* and wakes the thread.
* 1) A sender should be confirmed to exist before calling which makes it
* more efficent to reject the majority of cases that don't need this
called.
* 2) Requires interrupts disabled since queue overflows can cause posts
* from interrupt handlers to wake threads. Not doing so could cause
* an attempt at multiple wakes or other problems.
*/
static void queue_release_sender(struct thread_entry **sender,
intptr_t retval)
{
(*sender)->retval = retval;
wakeup_thread_no_listlock(sender);
/* This should _never_ happen - there must never be multiple
threads in this list and it is a corrupt state */
KERNEL_ASSERT(*sender == NULL, "queue->send slot ovf: %08X", (int)*sender);
}
/* Releases any waiting threads that are queued with queue_send -
* reply with 0.
* Disable IRQs and lock before calling since it uses
* queue_release_sender.
*/
static void queue_release_all_senders(struct event_queue *q)
{
if(q->send)
{
unsigned int i;
for(i = q->read; i != q->write; i++)
{
struct thread_entry **spp =
&q->send->senders[i & QUEUE_LENGTH_MASK];
if(*spp)
{
queue_release_sender(spp, 0);
}
}
}
}
/* Enables queue_send on the specified queue - caller allocates the extra
data structure. Only queues which are taken to be owned by a thread should
enable this. Public waiting is not permitted. */
void queue_enable_queue_send(struct event_queue *q,
struct queue_sender_list *send)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
q->send = NULL;
if(send != NULL)
{
memset(send, 0, sizeof(*send));
q->send = send;
}
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
}
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
/* Queue must not be available for use during this call */
void queue_init(struct event_queue *q, bool register_queue)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
if(register_queue)
{
corelock_lock(&all_queues.cl);
}
corelock_init(&q->cl);
thread_queue_init(&q->queue);
q->read = 0;
q->write = 0;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
q->send = NULL; /* No message sending by default */
#endif
if(register_queue)
{
if(all_queues.count >= MAX_NUM_QUEUES)
{
panicf("queue_init->out of queues");
}
/* Add it to the all_queues array */
all_queues.queues[all_queues.count++] = q;
corelock_unlock(&all_queues.cl);
}
set_irq_level(oldlevel);
}
/* Queue must not be available for use during this call */
void queue_delete(struct event_queue *q)
{
int oldlevel;
int i;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&all_queues.cl);
corelock_lock(&q->cl);
/* Find the queue to be deleted */
for(i = 0;i < all_queues.count;i++)
{
if(all_queues.queues[i] == q)
{
/* Move the following queues up in the list */
all_queues.count--;
for(;i < all_queues.count;i++)
{
all_queues.queues[i] = all_queues.queues[i+1];
}
break;
}
}
corelock_unlock(&all_queues.cl);
/* Release threads waiting on queue head */
thread_queue_wake(&q->queue);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* Release waiting threads for reply and reply to any dequeued
message waiting for one. */
queue_release_all_senders(q);
queue_reply(q, 0);
#endif
q->read = 0;
q->write = 0;
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
}
/* NOTE: multiple threads waiting on a queue head cannot have a well-
defined release order if timeouts are used. If multiple threads must
access the queue head, use a dispatcher or queue_wait only. */
void queue_wait(struct event_queue *q, struct queue_event *ev)
{
int oldlevel;
unsigned int rd;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send && q->send->curr_sender)
{
/* auto-reply */
queue_release_sender(&q->send->curr_sender, 0);
}
#endif
if (q->read == q->write)
{
do
{
#if CONFIG_CORELOCK == CORELOCK_NONE
cores[CURRENT_CORE].irq_level = oldlevel;
#elif CONFIG_CORELOCK == SW_CORELOCK
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.irq_level = oldlevel;
cores[core].blk_ops.flags = TBOP_UNLOCK_CORELOCK | TBOP_IRQ_LEVEL;
cores[core].blk_ops.cl_p = &q->cl;
#elif CONFIG_CORELOCK == CORELOCK_SWAP
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.irq_level = oldlevel;
cores[core].blk_ops.flags = TBOP_SET_VARu8 | TBOP_IRQ_LEVEL;
cores[core].blk_ops.var_u8p = &q->cl.locked;
cores[core].blk_ops.var_u8v = 0;
#endif /* CONFIG_CORELOCK */
block_thread(&q->queue);
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
}
/* A message that woke us could now be gone */
while (q->read == q->write);
}
rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send && q->send->senders[rd])
{
/* Get data for a waiting thread if one */
queue_fetch_sender(q->send, rd);
}
#endif
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
}
void queue_wait_w_tmo(struct event_queue *q, struct queue_event *ev, int ticks)
{
int oldlevel;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if (q->send && q->send->curr_sender)
{
/* auto-reply */
queue_release_sender(&q->send->curr_sender, 0);
}
#endif
if (q->read == q->write && ticks > 0)
{
#if CONFIG_CORELOCK == CORELOCK_NONE
cores[CURRENT_CORE].irq_level = oldlevel;
#elif CONFIG_CORELOCK == SW_CORELOCK
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.irq_level = oldlevel;
cores[core].blk_ops.flags = TBOP_UNLOCK_CORELOCK | TBOP_IRQ_LEVEL;
cores[core].blk_ops.cl_p = &q->cl;
#elif CONFIG_CORELOCK == CORELOCK_SWAP
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.irq_level = oldlevel;
cores[core].blk_ops.flags = TBOP_SET_VARu8 | TBOP_IRQ_LEVEL;
cores[core].blk_ops.var_u8p = &q->cl.locked;
cores[core].blk_ops.var_u8v = 0;
#endif
block_thread_w_tmo(&q->queue, ticks);
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
}
/* no worry about a removed message here - status is checked inside
locks - perhaps verify if timeout or false alarm */
if (q->read != q->write)
{
unsigned int rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send && q->send->senders[rd])
{
/* Get data for a waiting thread if one */
queue_fetch_sender(q->send, rd);
}
#endif
}
else
{
ev->id = SYS_TIMEOUT;
}
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
}
void queue_post(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send)
{
struct thread_entry **spp = &q->send->senders[wr];
if (*spp)
{
/* overflow protect - unblock any thread waiting at this index */
queue_release_sender(spp, 0);
}
}
#endif
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
}
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* IRQ handlers are not allowed use of this function - we only aim to
protect the queue integrity by turning them off. */
intptr_t queue_send(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
if(q->send)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry **spp = &q->send->senders[wr];
if(*spp)
{
/* overflow protect - unblock any thread waiting at this index */
queue_release_sender(spp, 0);
}
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
#if CONFIG_CORELOCK == CORELOCK_NONE
cores[core].irq_level = oldlevel;
#elif CONFIG_CORELOCK == SW_CORELOCK
cores[core].blk_ops.irq_level = oldlevel;
cores[core].blk_ops.flags = TBOP_UNLOCK_CORELOCK | TBOP_IRQ_LEVEL;
cores[core].blk_ops.cl_p = &q->cl;
#elif CONFIG_CORELOCK == CORELOCK_SWAP
cores[core].blk_ops.irq_level = oldlevel;
cores[core].blk_ops.flags = TBOP_SET_VARu8 | TBOP_IRQ_LEVEL;
cores[core].blk_ops.var_u8p = &q->cl.locked;
cores[core].blk_ops.var_u8v = 0;
#endif
block_thread_no_listlock(spp);
return cores[core].running->retval;
}
/* Function as queue_post if sending is not enabled */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
return 0;
}
#if 0 /* not used now but probably will be later */
/* Query if the last message dequeued was added by queue_send or not */
bool queue_in_queue_send(struct event_queue *q)
{
bool in_send;
#if NUM_CORES > 1
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
#endif
in_send = q->send && q->send->curr_sender;
#if NUM_CORES > 1
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
#endif
return in_send;
}
#endif
/* Replies with retval to the last dequeued message sent with queue_send */
void queue_reply(struct event_queue *q, intptr_t retval)
{
if(q->send && q->send->curr_sender)
{
#if NUM_CORES > 1
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
/* Double-check locking */
if(q->send && q->send->curr_sender)
{
#endif
queue_release_sender(&q->send->curr_sender, retval);
#if NUM_CORES > 1
}
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
#endif
}
}
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
/* Poll queue to see if a message exists - careful in using the result if
* queue_remove_from_head is called when messages are posted - possibly use
* queue_wait_w_tmo(&q, 0) in that case or else a removed message that
* unsignals the queue may cause an unwanted block */
bool queue_empty(const struct event_queue* q)
{
return ( q->read == q->write );
}
void queue_clear(struct event_queue* q)
{
int oldlevel;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* Release all threads waiting in the queue for a reply -
dequeued sent message will be handled by owning thread */
queue_release_all_senders(q);
#endif
q->read = 0;
q->write = 0;
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
}
void queue_remove_from_head(struct event_queue *q, long id)
{
int oldlevel;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&q->cl);
while(q->read != q->write)
{
unsigned int rd = q->read & QUEUE_LENGTH_MASK;
if(q->events[rd].id != id)
{
break;
}
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send)
{
struct thread_entry **spp = &q->send->senders[rd];
if (*spp)
{
/* Release any thread waiting on this message */
queue_release_sender(spp, 0);
}
}
#endif
q->read++;
}
corelock_unlock(&q->cl);
set_irq_level(oldlevel);
}
/**
* The number of events waiting in the queue.
*
* @param struct of event_queue
* @return number of events in the queue
*/
int queue_count(const struct event_queue *q)
{
return q->write - q->read;
}
int queue_broadcast(long id, intptr_t data)
{
int i;
#if NUM_CORES > 1
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
corelock_lock(&all_queues.cl);
#endif
for(i = 0;i < all_queues.count;i++)
{
queue_post(all_queues.queues[i], id, data);
}
#if NUM_CORES > 1
corelock_unlock(&all_queues.cl);
set_irq_level(oldlevel);
#endif
return i;
}
/****************************************************************************
* Timer tick
****************************************************************************/
#if CONFIG_CPU == SH7034
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
count = CPU_FREQ * interval_in_ms / 1000 / 8;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
/* We are using timer 0 */
TSTR &= ~0x01; /* Stop the timer */
TSNC &= ~0x01; /* No synchronization */
TMDR &= ~0x01; /* Operate normally */
TCNT0 = 0; /* Start counting at 0 */
GRA0 = (unsigned short)(count - 1);
TCR0 = 0x23; /* Clear at GRA match, sysclock/8 */
/* Enable interrupt on level 1 */
IPRC = (IPRC & ~0x00f0) | 0x0010;
TSR0 &= ~0x01;
TIER0 = 0xf9; /* Enable GRA match interrupt */
TSTR |= 0x01; /* Start timer 1 */
}
void IMIA0(void) __attribute__ ((interrupt_handler));
void IMIA0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TSR0 &= ~0x01;
}
#elif defined(CPU_COLDFIRE)
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
int prescale;
count = CPU_FREQ/2 * interval_in_ms / 1000 / 16;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
prescale = cpu_frequency / CPU_FREQ;
/* Note: The prescaler is later adjusted on-the-fly on CPU frequency
changes within timer.c */
/* We are using timer 0 */
TRR0 = (unsigned short)(count - 1); /* The reference count */
TCN0 = 0; /* reset the timer */
TMR0 = 0x001d | ((unsigned short)(prescale - 1) << 8);
/* restart, CLK/16, enabled, prescaler */
TER0 = 0xff; /* Clear all events */
ICR1 = 0x8c; /* Interrupt on level 3.0 */
IMR &= ~0x200;
}
void TIMER0(void) __attribute__ ((interrupt_handler));
void TIMER0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TER0 = 0xff; /* Clear all events */
}
#elif defined(CPU_PP)
#ifndef BOOTLOADER
void TIMER1(void)
{
int i;
/* Run through the list of tick tasks (using main core) */
TIMER1_VAL; /* Read value to ack IRQ */
/* Run through the list of tick tasks using main CPU core -
wake up the COP through its control interface to provide pulse */
for (i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if (tick_funcs[i])
{
tick_funcs[i]();
}
}
#if NUM_CORES > 1
/* Pulse the COP */
core_wake(COP);
#endif /* NUM_CORES */
current_tick++;
}
#endif
/* Must be last function called init kernel/thread initialization */
void tick_start(unsigned int interval_in_ms)
{
#ifndef BOOTLOADER
TIMER1_CFG = 0x0;
TIMER1_VAL;
/* enable timer */
TIMER1_CFG = 0xc0000000 | (interval_in_ms*1000 - 1);
/* unmask interrupt source */
CPU_INT_EN = TIMER1_MASK;
#else
/* We don't enable interrupts in the bootloader */
(void)interval_in_ms;
#endif
}
#elif CONFIG_CPU == PNX0101
void timer_handler(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
tick_funcs[i]();
}
current_tick++;
TIMER0.clr = 0;
}
void tick_start(unsigned int interval_in_ms)
{
TIMER0.ctrl &= ~0x80; /* Disable the counter */
TIMER0.ctrl |= 0x40; /* Reload after counting down to zero */
TIMER0.load = 3000000 * interval_in_ms / 1000;
TIMER0.ctrl &= ~0xc; /* No prescaler */
TIMER0.clr = 1; /* Clear the interrupt request */
irq_set_int_handler(IRQ_TIMER0, timer_handler);
irq_enable_int(IRQ_TIMER0);
TIMER0.ctrl |= 0x80; /* Enable the counter */
}
#elif CONFIG_CPU == IMX31L
void tick_start(unsigned int interval_in_ms)
{
EPITCR1 &= ~0x1; /* Disable the counter */
EPITCR1 &= ~0xE; /* Disable interrupt, count down from 0xFFFFFFFF */
EPITCR1 &= ~0xFFF0; /* Clear prescaler */
#ifdef BOOTLOADER
EPITCR1 |= (2700 << 2); /* Prescaler = 2700 */
#endif
EPITCR1 &= ~(0x3 << 24);
EPITCR1 |= (0x2 << 24); /* Set clock source to external clock (27mhz) */
EPITSR1 = 1; /* Clear the interrupt request */
#ifndef BOOTLOADER
EPITLR1 = 27000000 * interval_in_ms / 1000;
EPITCMPR1 = 27000000 * interval_in_ms / 1000;
#else
(void)interval_in_ms;
#endif
//avic_enable_int(EPIT1, IRQ, EPIT_HANDLER);
EPITCR1 |= 0x1; /* Enable the counter */
}
#ifndef BOOTLOADER
void EPIT_HANDLER(void) __attribute__((interrupt("IRQ")));
void EPIT_HANDLER(void) {
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
tick_funcs[i]();
}
current_tick++;
EPITSR1 = 1; /* Clear the interrupt request */
}
#endif
#endif
int tick_add_task(void (*f)(void))
{
int i;
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
/* Add a task if there is room */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == NULL)
{
tick_funcs[i] = f;
set_irq_level(oldlevel);
return 0;
}
}
set_irq_level(oldlevel);
panicf("Error! tick_add_task(): out of tasks");
return -1;
}
int tick_remove_task(void (*f)(void))
{
int i;
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
/* Remove a task if it is there */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == f)
{
tick_funcs[i] = NULL;
set_irq_level(oldlevel);
return 0;
}
}
set_irq_level(oldlevel);
return -1;
}
/****************************************************************************
* Tick-based interval timers/one-shots - be mindful this is not really
* intended for continuous timers but for events that need to run for a short
* time and be cancelled without further software intervention.
****************************************************************************/
#ifdef INCLUDE_TIMEOUT_API
static struct timeout *tmo_list = NULL; /* list of active timeout events */
/* timeout tick task - calls event handlers when they expire
* Event handlers may alter ticks, callback and data during operation.
*/
static void timeout_tick(void)
{
unsigned long tick = current_tick;
struct timeout *curr, *next;
for (curr = tmo_list; curr != NULL; curr = next)
{
next = (struct timeout *)curr->next;
if (TIME_BEFORE(tick, curr->expires))
continue;
/* this event has expired - call callback */
if (curr->callback(curr))
*(long *)&curr->expires = tick + curr->ticks; /* reload */
else
timeout_cancel(curr); /* cancel */
}
}
/* Cancels a timeout callback - can be called from the ISR */
void timeout_cancel(struct timeout *tmo)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
if (tmo_list != NULL)
{
struct timeout *curr = tmo_list;
struct timeout *prev = NULL;
while (curr != tmo && curr != NULL)
{
prev = curr;
curr = (struct timeout *)curr->next;
}
if (curr != NULL)
{
/* in list */
if (prev == NULL)
tmo_list = (struct timeout *)curr->next;
else
*(const struct timeout **)&prev->next = curr->next;
if (tmo_list == NULL)
tick_remove_task(timeout_tick); /* last one - remove task */
}
/* not in list or tmo == NULL */
}
set_irq_level(oldlevel);
}
/* Adds a timeout callback - calling with an active timeout resets the
interval - can be called from the ISR */
void timeout_register(struct timeout *tmo, timeout_cb_type callback,
int ticks, intptr_t data)
{
int oldlevel;
struct timeout *curr;
if (tmo == NULL)
return;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
/* see if this one is already registered */
curr = tmo_list;
while (curr != tmo && curr != NULL)
curr = (struct timeout *)curr->next;
if (curr == NULL)
{
/* not found - add it */
if (tmo_list == NULL)
tick_add_task(timeout_tick); /* first one - add task */
*(struct timeout **)&tmo->next = tmo_list;
tmo_list = tmo;
}
tmo->callback = callback;
tmo->ticks = ticks;
tmo->data = data;
*(long *)&tmo->expires = current_tick + ticks;
set_irq_level(oldlevel);
}
#endif /* INCLUDE_TIMEOUT_API */
/****************************************************************************
* Simple mutex functions ;)
****************************************************************************/
void mutex_init(struct mutex *m)
{
m->queue = NULL;
m->thread = NULL;
m->count = 0;
m->locked = 0;
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_init(&m->cl);
#endif
}
void mutex_lock(struct mutex *m)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *const thread = cores[core].running;
if(thread == m->thread)
{
m->count++;
return;
}
/* Repeat some stuff here or else all the variation is too difficult to
read */
#if CONFIG_CORELOCK == CORELOCK_SWAP
/* peek at lock until it's no longer busy */
unsigned int locked;
while ((locked = xchg8(&m->locked, STATE_BUSYu8)) == STATE_BUSYu8);
if(locked == 0)
{
m->thread = thread;
m->locked = 1;
return;
}
/* Block until the lock is open... */
cores[core].blk_ops.flags = TBOP_SET_VARu8;
cores[core].blk_ops.var_u8p = &m->locked;
cores[core].blk_ops.var_u8v = 1;
#else
corelock_lock(&m->cl);
if (m->locked == 0)
{
m->locked = 1;
m->thread = thread;
corelock_unlock(&m->cl);
return;
}
/* Block until the lock is open... */
#if CONFIG_CORELOCK == SW_CORELOCK
cores[core].blk_ops.flags = TBOP_UNLOCK_CORELOCK;
cores[core].blk_ops.cl_p = &m->cl;
#endif
#endif /* CONFIG_CORELOCK */
block_thread_no_listlock(&m->queue);
}
void mutex_unlock(struct mutex *m)
{
/* unlocker not being the owner is an unlocking violation */
KERNEL_ASSERT(m->thread == cores[CURRENT_CORE].running,
"mutex_unlock->wrong thread (recurse)");
if(m->count > 0)
{
/* this thread still owns lock */
m->count--;
return;
}
#if CONFIG_CORELOCK == SW_CORELOCK
/* lock out other cores */
corelock_lock(&m->cl);
#elif CONFIG_CORELOCK == CORELOCK_SWAP
/* wait for peeker to move on */
while (xchg8(&m->locked, STATE_BUSYu8) == STATE_BUSYu8);
#endif
/* transfer to next queued thread if any */
/* This can become busy using SWP but is safe since only one thread
will be changing things at a time. Allowing timeout waits will
change that however but not now. There is also a hazard the thread
could be killed before performing the wakeup but that's just
irresponsible. :-) */
m->thread = m->queue;
if(m->thread == NULL)
{
m->locked = 0; /* release lock */
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_unlock(&m->cl);
#endif
}
else /* another thread is waiting - remain locked */
{
wakeup_thread_no_listlock(&m->queue);
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_unlock(&m->cl);
#elif CONFIG_CORELOCK == CORELOCK_SWAP
m->locked = 1;
#endif
}
}
/****************************************************************************
* Simpl-er mutex functions ;)
****************************************************************************/
void spinlock_init(struct spinlock *l IF_COP(, unsigned int flags))
{
l->locked = 0;
l->thread = NULL;
l->count = 0;
#if NUM_CORES > 1
l->task_switch = flags & SPINLOCK_TASK_SWITCH;
corelock_init(&l->cl);
#endif
}
void spinlock_lock(struct spinlock *l)
{
struct thread_entry *const thread = cores[CURRENT_CORE].running;
if (l->thread == thread)
{
l->count++;
return;
}
#if NUM_CORES > 1
if (l->task_switch != 0)
#endif
{
/* Let other threads run until the lock is free */
while(test_and_set(&l->locked, 1, &l->cl) != 0)
{
/* spin and switch until the lock is open... */
switch_thread(NULL);
}
}
#if NUM_CORES > 1
else
{
/* Use the corelock purely */
corelock_lock(&l->cl);
}
#endif
l->thread = thread;
}
void spinlock_unlock(struct spinlock *l)
{
/* unlocker not being the owner is an unlocking violation */
KERNEL_ASSERT(l->thread == cores[CURRENT_CORE].running,
"spinlock_unlock->wrong thread");
if (l->count > 0)
{
/* this thread still owns lock */
l->count--;
return;
}
/* clear owner */
l->thread = NULL;
#if NUM_CORES > 1
if (l->task_switch != 0)
#endif
{
/* release lock */
#if CONFIG_CORELOCK == SW_CORELOCK
/* This must be done since our unlock could be missed by the
test_and_set and leave the object locked permanently */
corelock_lock(&l->cl);
#endif
l->locked = 0;
}
#if NUM_CORES > 1
corelock_unlock(&l->cl);
#endif
}
/****************************************************************************
* Simple semaphore functions ;)
****************************************************************************/
#ifdef HAVE_SEMAPHORE_OBJECTS
void semaphore_init(struct semaphore *s, int max, int start)
{
KERNEL_ASSERT(max > 0 && start >= 0 && start <= max,
"semaphore_init->inv arg");
s->queue = NULL;
s->max = max;
s->count = start;
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_init(&s->cl);
#endif
}
void semaphore_wait(struct semaphore *s)
{
#if CONFIG_CORELOCK == CORELOCK_NONE || CONFIG_CORELOCK == SW_CORELOCK
corelock_lock(&s->cl);
if(--s->count >= 0)
{
corelock_unlock(&s->cl);
return;
}
#elif CONFIG_CORELOCK == CORELOCK_SWAP
int count;
while ((count = xchg32(&s->count, STATE_BUSYi)) == STATE_BUSYi);
if(--count >= 0)
{
s->count = count;
return;
}
#endif
/* too many waits - block until dequeued */
#if CONFIG_CORELOCK == SW_CORELOCK
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.flags = TBOP_UNLOCK_CORELOCK;
cores[core].blk_ops.cl_p = &s->cl;
#elif CONFIG_CORELOCK == CORELOCK_SWAP
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.flags = TBOP_SET_VARi;
cores[core].blk_ops.var_ip = &s->count;
cores[core].blk_ops.var_iv = count;
#endif
block_thread_no_listlock(&s->queue);
}
void semaphore_release(struct semaphore *s)
{
#if CONFIG_CORELOCK == CORELOCK_NONE || CONFIG_CORELOCK == SW_CORELOCK
corelock_lock(&s->cl);
if (s->count < s->max)
{
if (++s->count <= 0)
{
#elif CONFIG_CORELOCK == CORELOCK_SWAP
int count;
while ((count = xchg32(&s->count, STATE_BUSYi)) == STATE_BUSYi);
if(count < s->max)
{
if(++count <= 0)
{
#endif /* CONFIG_CORELOCK */
/* there should be threads in this queue */
KERNEL_ASSERT(s->queue.queue != NULL, "semaphore->wakeup");
/* a thread was queued - wake it up */
wakeup_thread_no_listlock(&s->queue);
}
}
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_unlock(&s->cl);
#elif CONFIG_CORELOCK == CORELOCK_SWAP
s->count = count;
#endif
}
#endif /* HAVE_SEMAPHORE_OBJECTS */
/****************************************************************************
* Simple event functions ;)
****************************************************************************/
#ifdef HAVE_EVENT_OBJECTS
void event_init(struct event *e, unsigned int flags)
{
e->queues[STATE_NONSIGNALED] = NULL;
e->queues[STATE_SIGNALED] = NULL;
e->state = flags & STATE_SIGNALED;
e->automatic = (flags & EVENT_AUTOMATIC) ? 1 : 0;
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_init(&e->cl);
#endif
}
void event_wait(struct event *e, unsigned int for_state)
{
unsigned int last_state;
#if CONFIG_CORELOCK == CORELOCK_NONE || CONFIG_CORELOCK == SW_CORELOCK
corelock_lock(&e->cl);
last_state = e->state;
#elif CONFIG_CORELOCK == CORELOCK_SWAP
while ((last_state = xchg8(&e->state, STATE_BUSYu8)) == STATE_BUSYu8);
#endif
if(e->automatic != 0)
{
/* wait for false always satisfied by definition
or if it just changed to false */
if(last_state == STATE_SIGNALED || for_state == STATE_NONSIGNALED)
{
/* automatic - unsignal */
e->state = STATE_NONSIGNALED;
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_unlock(&e->cl);
#endif
return;
}
/* block until state matches */
}
else if(for_state == last_state)
{
/* the state being waited for is the current state */
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_unlock(&e->cl);
#elif CONFIG_CORELOCK == CORELOCK_SWAP
e->state = last_state;
#endif
return;
}
{
/* current state does not match wait-for state */
#if CONFIG_CORELOCK == SW_CORELOCK
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.flags = TBOP_UNLOCK_CORELOCK;
cores[core].blk_ops.cl_p = &e->cl;
#elif CONFIG_CORELOCK == CORELOCK_SWAP
const unsigned int core = CURRENT_CORE;
cores[core].blk_ops.flags = TBOP_SET_VARu8;
cores[core].blk_ops.var_u8p = &e->state;
cores[core].blk_ops.var_u8v = last_state;
#endif
block_thread_no_listlock(&e->queues[for_state]);
}
}
void event_set_state(struct event *e, unsigned int state)
{
unsigned int last_state;
#if CONFIG_CORELOCK == CORELOCK_NONE || CONFIG_CORELOCK == SW_CORELOCK
corelock_lock(&e->cl);
last_state = e->state;
#elif CONFIG_CORELOCK == CORELOCK_SWAP
while ((last_state = xchg8(&e->state, STATE_BUSYu8)) == STATE_BUSYu8);
#endif
if(last_state == state)
{
/* no change */
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_unlock(&e->cl);
#elif CONFIG_CORELOCK == CORELOCK_SWAP
e->state = last_state;
#endif
return;
}
if(state == STATE_SIGNALED)
{
if(e->automatic != 0)
{
struct thread_entry *thread;
/* no thread should have ever blocked for unsignaled */
KERNEL_ASSERT(e->queues[STATE_NONSIGNALED].queue == NULL,
"set_event_state->queue[NS]:S");
/* pass to next thread and keep unsignaled - "pulse" */
thread = wakeup_thread_no_listlock(&e->queues[STATE_SIGNALED]);
e->state = thread != NULL ? STATE_NONSIGNALED : STATE_SIGNALED;
}
else
{
/* release all threads waiting for signaled */
thread_queue_wake_no_listlock(&e->queues[STATE_SIGNALED]);
e->state = STATE_SIGNALED;
}
}
else
{
/* release all threads waiting for unsignaled */
/* no thread should have ever blocked if automatic */
KERNEL_ASSERT(e->queues[STATE_NONSIGNALED].queue == NULL ||
e->automatic == 0, "set_event_state->queue[NS]:NS");
thread_queue_wake_no_listlock(&e->queues[STATE_NONSIGNALED]);
e->state = STATE_NONSIGNALED;
}
#if CONFIG_CORELOCK == SW_CORELOCK
corelock_unlock(&e->cl);
#endif
}
#endif /* HAVE_EVENT_OBJECTS */