rockbox/firmware/common/dircache.c
Thomas Martitz 6eaab4d004 Ged rid of uisimulator/common/io.c for android builds.
Use host's functions for file i/o directly (open(), close() ,etc.), not the sim_* variants.
Some dir functions need to be wrapped still because we need to cache the parents dir's path (host's dirent doesn't let us know).
For the same reason (incompatibility) with host's dirent) detach some members from Rockbox' dirent struct and put it into an extra one,
the values can be retrieved via the new dir_get_info().

Get rid of the sim_ prefix for sleep as well and change the signature to unix sleep().

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@27968 a1c6a512-1295-4272-9138-f99709370657
2010-09-01 21:29:34 +00:00

1359 lines
34 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Miika Pekkarinen
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* TODO:
- Allow cache live updating while transparent rebuild is running.
*/
#include "config.h"
#include <stdio.h>
#include <errno.h>
#include "string-extra.h"
#include <stdbool.h>
#include <stdlib.h>
#include "debug.h"
#include "system.h"
#include "logf.h"
#include "dircache.h"
#include "thread.h"
#include "kernel.h"
#include "usb.h"
#include "file.h"
#include "buffer.h"
#include "dir.h"
#include "storage.h"
#if CONFIG_RTC
#include "time.h"
#include "timefuncs.h"
#endif
#include "rbpaths.h"
/* Queue commands. */
#define DIRCACHE_BUILD 1
#define DIRCACHE_STOP 2
#if ((defined(MEMORYSIZE) && (MEMORYSIZE > 8)) || MEM > 8)
#define MAX_OPEN_DIRS 12
#else
#define MAX_OPEN_DIRS 8
#endif
static DIR_CACHED opendirs[MAX_OPEN_DIRS];
static struct dircache_entry *fd_bindings[MAX_OPEN_FILES];
static struct dircache_entry *dircache_root;
#ifdef HAVE_MULTIVOLUME
static struct dircache_entry *append_position;
#endif
static bool dircache_initialized = false;
static bool dircache_initializing = false;
static bool thread_enabled = false;
static unsigned long allocated_size = DIRCACHE_LIMIT;
static unsigned long dircache_size = 0;
static unsigned long entry_count = 0;
static unsigned long reserve_used = 0;
static unsigned int cache_build_ticks = 0;
static unsigned long appflags = 0;
static struct event_queue dircache_queue;
static long dircache_stack[(DEFAULT_STACK_SIZE + 0x400)/sizeof(long)];
static const char dircache_thread_name[] = "dircache";
static struct fdbind_queue fdbind_cache[MAX_PENDING_BINDINGS];
static int fdbind_idx = 0;
/* --- Internal cache structure control functions --- */
#ifdef HAVE_EEPROM_SETTINGS
/**
* Open the dircache file to save a snapshot on disk
*/
static int open_dircache_file(unsigned flags, int permissions)
{
char path[MAX_PATH];
const char *file = get_user_file_path(DIRCACHE_FILE, IS_FILE|NEED_WRITE,
path, sizeof(path));
if (permissions != 0)
return open(file, flags, permissions);
return open(file, flags);
}
/**
* Remove the snapshot file
*/
static int remove_dircache_file(void)
{
char path[MAX_PATH];
return remove(get_user_file_path(DIRCACHE_FILE, IS_FILE|NEED_WRITE,
path, sizeof(path)));
}
#endif
/**
* Internal function to allocate a new dircache_entry from memory.
*/
static struct dircache_entry* allocate_entry(void)
{
struct dircache_entry *next_entry;
if (dircache_size > allocated_size - MAX_PATH*2)
{
logf("size limit reached");
return NULL;
}
next_entry = (struct dircache_entry *)((char *)dircache_root+dircache_size);
#ifdef ROCKBOX_STRICT_ALIGN
/* Make sure the entry is long aligned. */
if ((long)next_entry & 0x03)
{
dircache_size += 4 - ((long)next_entry & 0x03);
next_entry = (struct dircache_entry *)(((long)next_entry & ~0x03) + 0x04);
}
#endif
next_entry->name_len = 0;
next_entry->d_name = NULL;
next_entry->up = NULL;
next_entry->down = NULL;
next_entry->next = NULL;
dircache_size += sizeof(struct dircache_entry);
return next_entry;
}
/**
* Internal function to allocate a dircache_entry and set
* ->next entry pointers.
*/
static struct dircache_entry* dircache_gen_next(struct dircache_entry *ce)
{
struct dircache_entry *next_entry;
if ( (next_entry = allocate_entry()) == NULL)
return NULL;
next_entry->up = ce->up;
ce->next = next_entry;
return next_entry;
}
/*
* Internal function to allocate a dircache_entry and set
* ->down entry pointers.
*/
static struct dircache_entry* dircache_gen_down(struct dircache_entry *ce)
{
struct dircache_entry *next_entry;
if ( (next_entry = allocate_entry()) == NULL)
return NULL;
next_entry->up = ce;
ce->down = next_entry;
return next_entry;
}
/**
* Returns true if there is an event waiting in the queue
* that requires the current operation to be aborted.
*/
static bool check_event_queue(void)
{
struct queue_event ev;
if(!queue_peek(&dircache_queue, &ev))
return false;
switch (ev.id)
{
case DIRCACHE_STOP:
case SYS_USB_CONNECTED:
#ifdef HAVE_HOTSWAP
case SYS_FS_CHANGED:
#endif
return true;
}
return false;
}
#if (CONFIG_PLATFORM & PLATFORM_NATIVE)
/* scan and build static data (avoid redundancy on stack) */
static struct
{
#ifdef HAVE_MULTIVOLUME
int volume;
#endif
struct fat_dir *dir;
struct fat_direntry *direntry;
}sab;
static int sab_process_dir(unsigned long startcluster, struct dircache_entry *ce)
{
/* normally, opendir expects a full fat_dir as parent but in our case,
* it's completely useless because we don't modify anything
* WARNING: this heavily relies on current FAT implementation ! */
/* those field are necessary to update the FAT entry in case of modification
here we don't touch anything so we put dummy values */
sab.dir->entry = 0;
sab.dir->entrycount = 0;
sab.dir->file.firstcluster = 0;
/* open directory */
int rc = fat_opendir(IF_MV2(sab.volume,) sab.dir, startcluster, sab.dir);
if(rc < 0)
{
logf("fat_opendir failed: %d", rc);
return rc;
}
/* first pass : read dir */
struct dircache_entry *first_ce = ce;
/* read through directory */
while((rc = fat_getnext(sab.dir, sab.direntry)) >= 0 && sab.direntry->name[0])
{
if(!strcmp(".", sab.direntry->name) ||
!strcmp("..", sab.direntry->name))
continue;
ce->name_len = strlen(sab.direntry->name) + 1;
ce->d_name = ((char *)dircache_root + dircache_size);
ce->startcluster = sab.direntry->firstcluster;
ce->info.size = sab.direntry->filesize;
ce->info.attribute = sab.direntry->attr;
ce->info.wrtdate = sab.direntry->wrtdate;
ce->info.wrttime = sab.direntry->wrttime;
memcpy(ce->d_name, sab.direntry->name, ce->name_len);
dircache_size += ce->name_len;
entry_count++;
if(ce->info.attribute & FAT_ATTR_DIRECTORY)
dircache_gen_down(ce);
ce = dircache_gen_next(ce);
if(ce == NULL)
return -5;
/* When simulator is used, it's only safe to yield here. */
if(thread_enabled)
{
/* Stop if we got an external signal. */
if(check_event_queue())
return -6;
yield();
}
}
/* add "." and ".." */
ce->d_name = ".";
ce->name_len = 2;
ce->info.attribute = FAT_ATTR_DIRECTORY;
ce->startcluster = startcluster;
ce->info.size = 0;
ce->down = first_ce;
ce = dircache_gen_next(ce);
ce->d_name = "..";
ce->name_len = 3;
ce->info.attribute = FAT_ATTR_DIRECTORY;
ce->startcluster = (first_ce->up ? first_ce->up->startcluster : 0);
ce->info.size = 0;
ce->down = first_ce->up;
/* second pass: recurse ! */
ce = first_ce;
while(rc >= 0 && ce)
{
if(ce->name_len != 0 && ce->down != NULL && strcmp(ce->d_name, ".") && strcmp(ce->d_name, ".."))
rc = sab_process_dir(ce->startcluster, ce->down);
ce = ce->next;
}
return rc;
}
/* used during the generation */
static struct fat_dir sab_fat_dir;
static int dircache_scan_and_build(IF_MV2(int volume,) struct dircache_entry *ce)
{
memset(ce, 0, sizeof(struct dircache_entry));
#ifdef HAVE_MULTIVOLUME
if (volume > 0)
{
ce->d_name = ((char *)dircache_root+dircache_size);
snprintf(ce->d_name, VOL_ENUM_POS + 3, VOL_NAMES, volume);
ce->name_len = VOL_ENUM_POS + 3;
dircache_size += ce->name_len;
ce->info.attribute = FAT_ATTR_DIRECTORY | FAT_ATTR_VOLUME;
ce->info.size = 0;
append_position = dircache_gen_next(ce);
ce = dircache_gen_down(ce);
}
#endif
struct fat_direntry direntry; /* ditto */
#ifdef HAVE_MULTIVOLUME
sab.volume = volume;
#endif
sab.dir = &sab_fat_dir;
sab.direntry = &direntry;
return sab_process_dir(0, ce);
}
#elif (CONFIG_PLATFORM & PLATFORM_HOSTED) /* PLATFORM_HOSTED */
static char sab_path[MAX_PATH];
static int sab_process_dir(struct dircache_entry *ce)
{
struct dirent_uncached *entry;
struct dircache_entry *first_ce = ce;
DIR_UNCACHED *dir = opendir_uncached(sab_path);
if(dir == NULL)
{
logf("Failed to opendir_uncached(%s)", sab_path);
return -1;
}
while((entry = readdir_uncached(dir)))
{
if(!strcmp(".", entry->d_name) ||
!strcmp("..", entry->d_name))
continue;
ce->name_len = strlen(entry->d_name) + 1;
ce->d_name = ((char *)dircache_root + dircache_size);
ce->info = entry->info;
memcpy(ce->d_name, entry->d_name, ce->name_len);
dircache_size += ce->name_len;
entry_count++;
if(entry->info.attribute & ATTR_DIRECTORY)
{
dircache_gen_down(ce);
if(ce->down == NULL)
{
closedir_uncached(dir);
return -1;
}
/* save current paths size */
int pathpos = strlen(sab_path);
/* append entry */
strlcpy(&sab_path[pathpos], "/", sizeof(sab_path) - pathpos);
strlcpy(&sab_path[pathpos+1], entry->d_name, sizeof(sab_path) - pathpos - 1);
int rc = sab_process_dir(ce->down);
/* restore path */
sab_path[pathpos] = '\0';
if(rc < 0)
{
closedir_uncached(dir);
return rc;
}
}
ce = dircache_gen_next(ce);
if(ce == NULL)
return -5;
/* When simulator is used, it's only safe to yield here. */
if(thread_enabled)
{
/* Stop if we got an external signal. */
if(check_event_queue())
return -1;
yield();
}
}
/* add "." and ".." */
ce->d_name = ".";
ce->name_len = 2;
ce->info.attribute = ATTR_DIRECTORY;
ce->info.size = 0;
ce->down = first_ce;
ce = dircache_gen_next(ce);
ce->d_name = "..";
ce->name_len = 3;
ce->info.attribute = ATTR_DIRECTORY;
ce->info.size = 0;
ce->down = first_ce->up;
closedir_uncached(dir);
return 0;
}
static int dircache_scan_and_build(IF_MV2(int volume,) struct dircache_entry *ce)
{
#ifdef HAVE_MULTIVOLUME
(void) volume;
#endif
memset(ce, 0, sizeof(struct dircache_entry));
strlcpy(sab_path, "/", sizeof sab_path);
return sab_process_dir(ce);
}
#endif /* PLATFORM_NATIVE */
/**
* Internal function to get a pointer to dircache_entry for a given filename.
* path: Absolute path to a file or directory (see comment)
* go_down: Returns the first entry of the directory given by the path (see comment)
*
* As a a special case, accept path="" as an alias for "/".
* Also if the path omits the first '/', it will be accepted.
*
* * If get_down=true:
* If path="/", the returned entry is the first of root directory (ie dircache_root)
* Otherwise, if 'entry' is the returned value when get_down=false,
* the functions returns entry->down (which can be NULL)
*
* * If get_down=false:
* If path="/chunk_1/chunk_2/.../chunk_n" then this functions returns the entry
* root_entry()->chunk_1->chunk_2->...->chunk_(n-1)
* Which means that
* dircache_get_entry(path)->d_name == chunk_n
*
* If path="/", the returned entry is NULL.
* If the entry doesn't exist, return NULL
*
* NOTE: this functions silently handles double '/'
*/
static struct dircache_entry* dircache_get_entry(const char *path, bool go_down)
{
char namecopy[MAX_PATH];
char* part;
char* end;
bool at_root = true;
struct dircache_entry *cache_entry = dircache_root;
strlcpy(namecopy, path, sizeof(namecopy));
for(part = strtok_r(namecopy, "/", &end); part; part = strtok_r(NULL, "/", &end))
{
/* If request another chunk, the current entry has to be directory
* and so cache_entry->down has to be non-NULL/
* Special case of root because it's already the first entry of the root directory
*
* NOTE: this is safe even if cache_entry->down is NULL */
if(!at_root)
cache_entry = cache_entry->down;
else
at_root = false;
/* scan dir for name */
while(cache_entry != NULL)
{
/* skip unused entries */
if(cache_entry->name_len == 0)
{
cache_entry = cache_entry->next;
continue;
}
/* compare names */
if(!strcasecmp(part, cache_entry->d_name))
break;
/* go to next entry */
cache_entry = cache_entry->next;
}
/* handle not found case */
if(cache_entry == NULL)
return NULL;
}
/* NOTE: here cache_entry!=NULL so taking ->down is safe */
if(go_down)
return at_root ? cache_entry : cache_entry->down;
else
return at_root ? NULL : cache_entry;
}
#ifdef HAVE_EEPROM_SETTINGS
/**
* Function to load the internal cache structure from disk to initialize
* the dircache really fast and little disk access.
*/
int dircache_load(void)
{
struct dircache_maindata maindata;
int bytes_read;
int fd;
if (dircache_initialized)
return -1;
logf("Loading directory cache");
dircache_size = 0;
fd = open_dircache_file(O_RDONLY, 0);
if (fd < 0)
return -2;
bytes_read = read(fd, &maindata, sizeof(struct dircache_maindata));
if (bytes_read != sizeof(struct dircache_maindata)
|| maindata.size <= 0)
{
logf("Dircache file header error");
close(fd);
remove_dircache_file();
return -3;
}
dircache_root = buffer_alloc(0);
if ((long)maindata.root_entry != (long)dircache_root)
{
logf("Position missmatch");
close(fd);
remove_dircache_file();
return -4;
}
dircache_root = buffer_alloc(maindata.size + DIRCACHE_RESERVE);
entry_count = maindata.entry_count;
appflags = maindata.appflags;
bytes_read = read(fd, dircache_root, MIN(DIRCACHE_LIMIT, maindata.size));
close(fd);
remove_dircache_file();
if (bytes_read != maindata.size)
{
logf("Dircache read failed");
return -6;
}
/* Cache successfully loaded. */
dircache_size = maindata.size;
allocated_size = dircache_size + DIRCACHE_RESERVE;
reserve_used = 0;
logf("Done, %ld KiB used", dircache_size / 1024);
dircache_initialized = true;
memset(fd_bindings, 0, sizeof(fd_bindings));
return 0;
}
/**
* Function to save the internal cache stucture to disk for fast loading
* on boot.
*/
int dircache_save(void)
{
struct dircache_maindata maindata;
int fd;
unsigned long bytes_written;
remove_dircache_file();
if (!dircache_initialized)
return -1;
logf("Saving directory cache");
fd = open_dircache_file(O_WRONLY | O_CREAT | O_TRUNC, 0666);
maindata.magic = DIRCACHE_MAGIC;
maindata.size = dircache_size;
maindata.root_entry = dircache_root;
maindata.entry_count = entry_count;
maindata.appflags = appflags;
/* Save the info structure */
bytes_written = write(fd, &maindata, sizeof(struct dircache_maindata));
if (bytes_written != sizeof(struct dircache_maindata))
{
close(fd);
logf("dircache: write failed #1");
return -2;
}
/* Dump whole directory cache to disk */
bytes_written = write(fd, dircache_root, dircache_size);
close(fd);
if (bytes_written != dircache_size)
{
logf("dircache: write failed #2");
return -3;
}
return 0;
}
#endif /* HAVE_EEPROM_SETTINGS */
/**
* Internal function which scans the disk and creates the dircache structure.
*/
static int dircache_do_rebuild(void)
{
unsigned int start_tick;
int i;
/* Measure how long it takes build the cache. */
start_tick = current_tick;
dircache_initializing = true;
appflags = 0;
entry_count = 0;
dircache_size = sizeof(struct dircache_entry);
#ifdef HAVE_MULTIVOLUME
append_position = dircache_root;
for (i = NUM_VOLUMES; i >= 0; i--)
{
if (fat_ismounted(i))
{
#endif
cpu_boost(true);
#ifdef HAVE_MULTIVOLUME
if (dircache_scan_and_build(IF_MV2(i,) append_position) < 0)
#else
if (dircache_scan_and_build(IF_MV2(0,) dircache_root) < 0)
#endif /* HAVE_MULTIVOLUME */
{
logf("dircache_scan_and_build failed");
cpu_boost(false);
dircache_size = 0;
dircache_initializing = false;
return -2;
}
cpu_boost(false);
#ifdef HAVE_MULTIVOLUME
}
}
#endif
logf("Done, %ld KiB used", dircache_size / 1024);
dircache_initialized = true;
dircache_initializing = false;
cache_build_ticks = current_tick - start_tick;
/* Initialized fd bindings. */
memset(fd_bindings, 0, sizeof(fd_bindings));
for (i = 0; i < fdbind_idx; i++)
dircache_bind(fdbind_cache[i].fd, fdbind_cache[i].path);
fdbind_idx = 0;
if (thread_enabled)
{
if (allocated_size - dircache_size < DIRCACHE_RESERVE)
reserve_used = DIRCACHE_RESERVE - (allocated_size - dircache_size);
}
else
{
/* We have to long align the audiobuf to keep the buffer access fast. */
audiobuf += (long)((dircache_size & ~0x03) + 0x04);
audiobuf += DIRCACHE_RESERVE;
allocated_size = dircache_size + DIRCACHE_RESERVE;
reserve_used = 0;
}
return 1;
}
/**
* Internal thread that controls transparent cache building.
*/
static void dircache_thread(void)
{
struct queue_event ev;
while (1)
{
queue_wait(&dircache_queue, &ev);
switch (ev.id)
{
#ifdef HAVE_HOTSWAP
case SYS_FS_CHANGED:
if (!dircache_initialized)
break;
dircache_initialized = false;
#endif
case DIRCACHE_BUILD:
thread_enabled = true;
dircache_do_rebuild();
thread_enabled = false;
break ;
case DIRCACHE_STOP:
logf("Stopped the rebuilding.");
dircache_initialized = false;
break ;
#if (CONFIG_PLATFORM & PLATFORM_NATIVE)
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
usb_wait_for_disconnect(&dircache_queue);
break ;
#endif
}
}
}
/**
* Start scanning the disk to build the dircache.
* Either transparent or non-transparent build method is used.
*/
int dircache_build(int last_size)
{
if (dircache_initialized || thread_enabled)
return -3;
logf("Building directory cache");
#ifdef HAVE_EEPROM_SETTINGS
remove_dircache_file();
#endif
/* Background build, dircache has been previously allocated */
if (dircache_size > 0)
{
thread_enabled = true;
dircache_initializing = true;
queue_post(&dircache_queue, DIRCACHE_BUILD, 0);
return 2;
}
if (last_size > DIRCACHE_RESERVE && last_size < DIRCACHE_LIMIT )
{
allocated_size = last_size + DIRCACHE_RESERVE;
dircache_root = buffer_alloc(allocated_size);
thread_enabled = true;
/* Start a transparent rebuild. */
queue_post(&dircache_queue, DIRCACHE_BUILD, 0);
return 3;
}
dircache_root = (struct dircache_entry *)(((long)audiobuf & ~0x03) + 0x04);
/* Start a non-transparent rebuild. */
return dircache_do_rebuild();
}
/**
* Steal the allocated dircache buffer and disable dircache.
*/
void* dircache_steal_buffer(long *size)
{
dircache_disable();
if (dircache_size == 0)
{
*size = 0;
return NULL;
}
*size = dircache_size + (DIRCACHE_RESERVE-reserve_used);
return dircache_root;
}
/**
* Main initialization function that must be called before any other
* operations within the dircache.
*/
void dircache_init(void)
{
int i;
int thread_id;
dircache_initialized = false;
dircache_initializing = false;
memset(opendirs, 0, sizeof(opendirs));
for (i = 0; i < MAX_OPEN_DIRS; i++)
{
opendirs[i].theent.d_name = buffer_alloc(MAX_PATH);
}
queue_init(&dircache_queue, true);
thread_id = create_thread(dircache_thread, dircache_stack,
sizeof(dircache_stack), 0, dircache_thread_name
IF_PRIO(, PRIORITY_BACKGROUND)
IF_COP(, CPU));
#ifdef HAVE_IO_PRIORITY
thread_set_io_priority(thread_id,IO_PRIORITY_BACKGROUND);
#endif
}
/**
* Returns true if dircache has been initialized and is ready to be used.
*/
bool dircache_is_enabled(void)
{
return dircache_initialized;
}
/**
* Returns true if dircache is being initialized.
*/
bool dircache_is_initializing(void)
{
return dircache_initializing || thread_enabled;
}
/**
* Set application flags used to determine if dircache is still intact.
*/
void dircache_set_appflag(long mask)
{
appflags |= mask;
}
/**
* Get application flags used to determine if dircache is still intact.
*/
bool dircache_get_appflag(long mask)
{
return dircache_is_enabled() && (appflags & mask);
}
/**
* Returns the current number of entries (directories and files) in the cache.
*/
int dircache_get_entry_count(void)
{
return entry_count;
}
/**
* Returns the allocated space for dircache (without reserve space).
*/
int dircache_get_cache_size(void)
{
return dircache_is_enabled() ? dircache_size : 0;
}
/**
* Returns how many bytes of the reserve allocation for live cache
* updates have been used.
*/
int dircache_get_reserve_used(void)
{
return dircache_is_enabled() ? reserve_used : 0;
}
/**
* Returns the time in kernel ticks that took to build the cache.
*/
int dircache_get_build_ticks(void)
{
return dircache_is_enabled() ? cache_build_ticks : 0;
}
/**
* Disables the dircache. Usually called on shutdown or when
* accepting a usb connection.
*/
void dircache_disable(void)
{
int i;
bool cache_in_use;
if (thread_enabled)
queue_post(&dircache_queue, DIRCACHE_STOP, 0);
while (thread_enabled)
sleep(1);
dircache_initialized = false;
logf("Waiting for cached dirs to release");
do {
cache_in_use = false;
for (i = 0; i < MAX_OPEN_DIRS; i++) {
if (!opendirs[i].regulardir && opendirs[i].busy)
{
cache_in_use = true;
sleep(1);
break ;
}
}
} while (cache_in_use) ;
logf("Cache released");
entry_count = 0;
}
/**
* Usermode function to return dircache_entry pointer to the given path.
*/
const struct dircache_entry *dircache_get_entry_ptr(const char *filename)
{
if (!dircache_initialized || filename == NULL)
return NULL;
return dircache_get_entry(filename, false);
}
/**
* Function to copy the full absolute path from dircache to the given buffer
* using the given dircache_entry pointer.
*/
void dircache_copy_path(const struct dircache_entry *entry, char *buf, int size)
{
int path_size = 0;
int idx;
const struct dircache_entry *temp = entry;
if (size <= 0)
return ;
/* first compute the necessary size */
while(temp != NULL)
{
path_size += temp->name_len; /* '/' + d_name */
temp = temp->up;
}
/* now copy the path */
/* doesn't matter with trailing 0 because it's added later */
idx = path_size;
while(entry != NULL)
{
idx -= entry->name_len;
/* available size */
int rem = size - idx;
if(rem >= 1)
{
buf[idx] = '/';
memcpy(buf + idx + 1, entry->d_name, MIN((size_t)(rem - 1), (size_t)(entry->name_len - 1)));
}
entry = entry->up;
}
/* add trailing 0 */
buf[MIN(path_size, size-1)] = 0;
}
/* --- Directory cache live updating functions --- */
static int block_until_ready(void)
{
/* Block until dircache has been built. */
while (!dircache_initialized && dircache_is_initializing())
sleep(1);
if (!dircache_initialized)
return -1;
return 0;
}
static struct dircache_entry* dircache_new_entry(const char *path, int attribute)
{
struct dircache_entry *entry;
char basedir[MAX_PATH*2];
char *new;
long last_cache_size = dircache_size;
strlcpy(basedir, path, sizeof(basedir));
new = strrchr(basedir, '/');
if (new == NULL)
{
logf("error occurred");
dircache_initialized = false;
return NULL;
}
*new = '\0';
new++;
entry = dircache_get_entry(basedir, true);
if (entry == NULL)
{
logf("basedir not found!");
logf("%s", basedir);
dircache_initialized = false;
return NULL;
}
if (reserve_used + 2*sizeof(struct dircache_entry) + strlen(new)+1
>= DIRCACHE_RESERVE)
{
logf("not enough space");
dircache_initialized = false;
return NULL;
}
while (entry->next != NULL)
entry = entry->next;
if (entry->name_len > 0)
entry = dircache_gen_next(entry);
if (entry == NULL)
{
dircache_initialized = false;
return NULL;
}
entry->name_len = MIN(254, strlen(new)) + 1;
entry->d_name = ((char *)dircache_root+dircache_size);
entry->startcluster = 0;
memset(&entry->info, 0, sizeof(entry->info));
entry->info.attribute = attribute;
memcpy(entry->d_name, new, entry->name_len);
dircache_size += entry->name_len;
if (attribute & ATTR_DIRECTORY)
{
logf("gen_down");
dircache_gen_down(entry);
}
reserve_used += dircache_size - last_cache_size;
return entry;
}
void dircache_bind(int fd, const char *path)
{
struct dircache_entry *entry;
/* Queue requests until dircache has been built. */
if (!dircache_initialized && dircache_is_initializing())
{
if (fdbind_idx >= MAX_PENDING_BINDINGS)
return ;
strlcpy(fdbind_cache[fdbind_idx].path, path,
sizeof(fdbind_cache[fdbind_idx].path));
fdbind_cache[fdbind_idx].fd = fd;
fdbind_idx++;
return ;
}
if (!dircache_initialized)
return ;
logf("bind: %d/%s", fd, path);
entry = dircache_get_entry(path, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
fd_bindings[fd] = entry;
}
void dircache_update_filesize(int fd, long newsize, long startcluster)
{
if (!dircache_initialized || fd < 0)
return ;
if (fd_bindings[fd] == NULL)
{
logf("dircache fd(%d) access error", fd);
dircache_initialized = false;
return ;
}
fd_bindings[fd]->info.size = newsize;
fd_bindings[fd]->startcluster = startcluster;
}
void dircache_update_filetime(int fd)
{
#if CONFIG_RTC == 0
(void)fd;
#else
short year;
struct tm *now = get_time();
if (!dircache_initialized || fd < 0)
return ;
if (fd_bindings[fd] == NULL)
{
logf("dircache fd access error");
dircache_initialized = false;
return ;
}
year = now->tm_year+1900-1980;
fd_bindings[fd]->info.wrtdate = (((year)&0x7f)<<9) |
(((now->tm_mon+1)&0xf)<<5) |
(((now->tm_mday)&0x1f));
fd_bindings[fd]->info.wrttime = (((now->tm_hour)&0x1f)<<11) |
(((now->tm_min)&0x3f)<<5) |
(((now->tm_sec/2)&0x1f));
#endif
}
void dircache_mkdir(const char *path)
{ /* Test ok. */
if (block_until_ready())
return ;
logf("mkdir: %s", path);
dircache_new_entry(path, ATTR_DIRECTORY);
}
void dircache_rmdir(const char *path)
{ /* Test ok. */
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("rmdir: %s", path);
entry = dircache_get_entry(path, false);
if (entry == NULL || entry->down == NULL)
{
logf("not found or not a directory!");
dircache_initialized = false;
return ;
}
entry->down = NULL;
entry->name_len = 0;
}
/* Remove a file from cache */
void dircache_remove(const char *name)
{ /* Test ok. */
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("remove: %s", name);
entry = dircache_get_entry(name, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
entry->name_len = 0;
}
void dircache_rename(const char *oldpath, const char *newpath)
{ /* Test ok. */
struct dircache_entry *entry, *newentry;
struct dircache_entry oldentry;
char absolute_path[MAX_PATH*2];
char *p;
if (block_until_ready())
return ;
logf("rename: %s->%s", oldpath, newpath);
entry = dircache_get_entry(oldpath, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
/* Delete the old entry. */
entry->name_len = 0;
/** If we rename the same filename twice in a row, we need to
* save the data, because the entry will be re-used. */
oldentry = *entry;
/* Generate the absolute path for destination if necessary. */
if (newpath[0] != '/')
{
strlcpy(absolute_path, oldpath, sizeof(absolute_path));
p = strrchr(absolute_path, '/');
if (!p)
{
logf("Invalid path");
dircache_initialized = false;
return ;
}
*p = '\0';
strlcpy(p, absolute_path, sizeof(absolute_path)-strlen(p));
newpath = absolute_path;
}
newentry = dircache_new_entry(newpath, entry->info.attribute);
if (newentry == NULL)
{
dircache_initialized = false;
return ;
}
newentry->down = oldentry.down;
newentry->startcluster = oldentry.startcluster;
newentry->info.size = oldentry.info.size;
newentry->info.wrtdate = oldentry.info.wrtdate;
newentry->info.wrttime = oldentry.info.wrttime;
}
void dircache_add_file(const char *path, long startcluster)
{
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("add file: %s", path);
entry = dircache_new_entry(path, 0);
if (entry == NULL)
return ;
entry->startcluster = startcluster;
}
static bool is_disable_msg_pending(void)
{
return check_event_queue();
}
DIR_CACHED* opendir_cached(const char* name)
{
int dd;
DIR_CACHED* pdir = opendirs;
if ( name[0] != '/' )
{
DEBUGF("Only absolute paths supported right now\n");
return NULL;
}
/* find a free dir descriptor */
for ( dd=0; dd<MAX_OPEN_DIRS; dd++, pdir++)
if ( !pdir->busy )
break;
if ( dd == MAX_OPEN_DIRS )
{
DEBUGF("Too many dirs open\n");
errno = EMFILE;
return NULL;
}
pdir->busy = true;
if (!dircache_initialized || is_disable_msg_pending())
{
pdir->internal_entry = NULL;
pdir->regulardir = opendir_uncached(name);
}
else
{
pdir->regulardir = NULL;
pdir->internal_entry = dircache_get_entry(name, true);
pdir->theent.info.attribute = -1; /* used to make readdir_cached aware of the first call */
}
if (pdir->internal_entry == NULL && pdir->regulardir == NULL)
{
pdir->busy = false;
return NULL;
}
return pdir;
}
struct dirent_cached* readdir_cached(DIR_CACHED* dir)
{
struct dircache_entry *ce = dir->internal_entry;
struct dirent_uncached *regentry;
if (!dir->busy)
return NULL;
if (dir->regulardir != NULL)
{
regentry = readdir_uncached(dir->regulardir);
if (regentry == NULL)
return NULL;
strlcpy(dir->theent.d_name, regentry->d_name, MAX_PATH);
dir->theent.startcluster = regentry->startcluster;
dir->theent.info = regentry->info;
return &dir->theent;
}
/* if theent.attribute=-1 then this is the first call */
/* otherwise, this is is not so we first take the entry's ->next */
/* NOTE: normal file can't have attribute=-1 */
if(dir->theent.info.attribute != -1)
ce = ce->next;
/* skip unused entries */
while(ce != NULL && ce->name_len == 0)
ce = ce->next;
if (ce == NULL)
return NULL;
strlcpy(dir->theent.d_name, ce->d_name, MAX_PATH);
/* Can't do `dir->theent = *ce`
because that modifies the d_name pointer. */
dir->theent.startcluster = ce->startcluster;
dir->theent.info = ce->info;
dir->internal_entry = ce;
//logf("-> %s", ce->name);
return &dir->theent;
}
int closedir_cached(DIR_CACHED* dir)
{
if (!dir->busy)
return -1;
dir->busy=false;
if (dir->regulardir != NULL)
return closedir_uncached(dir->regulardir);
return 0;
}
int mkdir_cached(const char *name)
{
int rc=mkdir_uncached(name);
if (rc >= 0)
dircache_mkdir(name);
return(rc);
}
int rmdir_cached(const char* name)
{
int rc=rmdir_uncached(name);
if(rc >= 0)
dircache_rmdir(name);
return(rc);
}