rockbox/firmware/target/arm/as3525/ata_sd_as3525.c
Frank Gevaerts af805be6cb revert accidental commit of unrelated files
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@19539 a1c6a512-1295-4272-9138-f99709370657
2008-12-21 16:32:13 +00:00

827 lines
23 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Daniel Ankers
* Copyright © 2008 Rafaël Carré
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* Driver for the ARM PL180 SD/MMC controller inside AS3525 SoC */
#include "config.h" /* for HAVE_MULTIVOLUME */
#include "fat.h"
#include "thread.h"
#include "hotswap.h"
#include "system.h"
#include "cpu.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "as3525.h"
#include "pl180.h" /* SD controller */
#include "pl081.h" /* DMA controller */
#include "dma-target.h" /* DMA request lines */
#include "clock-target.h"
#include "panic.h"
#include "stdbool.h"
#include "ata_idle_notify.h"
#include "sd.h"
#ifdef HAVE_HOTSWAP
#include "disk.h"
#endif
/* command flags */
#define MCI_NO_FLAGS (0<<0)
#define MCI_RESP (1<<0)
#define MCI_LONG_RESP (1<<1)
#define MCI_ARG (1<<2)
/* ARM PL180 registers */
#define MCI_POWER(i) (*(volatile unsigned char *) (pl180_base[i]+0x00))
#define MCI_CLOCK(i) (*(volatile unsigned long *) (pl180_base[i]+0x04))
#define MCI_ARGUMENT(i) (*(volatile unsigned long *) (pl180_base[i]+0x08))
#define MCI_COMMAND(i) (*(volatile unsigned long *) (pl180_base[i]+0x0C))
#define MCI_RESPCMD(i) (*(volatile unsigned long *) (pl180_base[i]+0x10))
#define MCI_RESP0(i) (*(volatile unsigned long *) (pl180_base[i]+0x14))
#define MCI_RESP1(i) (*(volatile unsigned long *) (pl180_base[i]+0x18))
#define MCI_RESP2(i) (*(volatile unsigned long *) (pl180_base[i]+0x1C))
#define MCI_RESP3(i) (*(volatile unsigned long *) (pl180_base[i]+0x20))
#define MCI_DATA_TIMER(i) (*(volatile unsigned long *) (pl180_base[i]+0x24))
#define MCI_DATA_LENGTH(i) (*(volatile unsigned short*) (pl180_base[i]+0x28))
#define MCI_DATA_CTRL(i) (*(volatile unsigned char *) (pl180_base[i]+0x2C))
#define MCI_DATA_CNT(i) (*(volatile unsigned short*) (pl180_base[i]+0x30))
#define MCI_STATUS(i) (*(volatile unsigned long *) (pl180_base[i]+0x34))
#define MCI_CLEAR(i) (*(volatile unsigned long *) (pl180_base[i]+0x38))
#define MCI_MASK0(i) (*(volatile unsigned long *) (pl180_base[i]+0x3C))
#define MCI_MASK1(i) (*(volatile unsigned long *) (pl180_base[i]+0x40))
#define MCI_SELECT(i) (*(volatile unsigned long *) (pl180_base[i]+0x44))
#define MCI_FIFO_CNT(i) (*(volatile unsigned long *) (pl180_base[i]+0x48))
#define MCI_FIFO(i) ((unsigned long *) (pl180_base[i]+0x80))
/* volumes */
#define INTERNAL_AS3525 0 /* embedded SD card */
#define SD_SLOT_AS3525 1 /* SD slot if present */
static const int pl180_base[NUM_VOLUMES] = {
NAND_FLASH_BASE
#ifdef HAVE_MULTIVOLUME
, SD_MCI_BASE
#endif
};
static int sd_init_card(const int drive);
static void init_pl180_controller(const int drive);
/* TODO : BLOCK_SIZE != SECTOR_SIZE ? */
#define BLOCK_SIZE 512
#define SECTOR_SIZE 512
static tSDCardInfo card_info[NUM_VOLUMES];
/* for compatibility */
static long last_disk_activity = -1;
#define MIN_YIELD_PERIOD 5 /* ticks */
static long next_yield = 0;
static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)];
static const char sd_thread_name[] = "ata/sd";
static struct mutex sd_mtx SHAREDBSS_ATTR;
static struct event_queue sd_queue;
#ifndef BOOTLOADER
static bool sd_enabled = false;
#endif
static inline void mci_delay(void) { int i = 0xffff; while(i--) ; }
static void mci_set_clock_divider(const int drive, int divider)
{
int clock = MCI_CLOCK(drive);
if(divider > 1)
{
/* use divide logic */
clock &= ~MCI_CLOCK_BYPASS;
/* convert divider to MCI_CLOCK logic */
divider = (divider/2) - 1;
if(divider >= 256)
divider = 255;
}
else
{
/* bypass dividing logic */
clock |= MCI_CLOCK_BYPASS;
divider = 0;
}
MCI_CLOCK(drive) = clock | divider;
mci_delay();
}
static void sd_panic(IF_MV2(const int drive,) const int status)
{
char error[32];
error[0] = '\0';
#ifdef HAVE_MULTIVOLUME
snprintf(error, sizeof(error),
(drive == INTERNAL_AS3525) ? "Internal storage : " : "SD Slot : " );
#endif
panicf("SD : %s%s%s%s%s%s%s", error,
(status & MCI_DATA_CRC_FAIL) ? "DATA CRC FAIL, " : "",
(status & MCI_DATA_TIMEOUT) ? "DATA TIMEOUT, " : "",
(status & MCI_RX_OVERRUN) ? "RX OVERRUN, " : "",
(status & MCI_TX_UNDERRUN) ? "TX UNDERRUN, " : "",
(status & MCI_RX_FIFO_FULL) ? "RXR FIFO FULL, " : "",
(status & MCI_TX_FIFO_EMPTY) ? "TX FIFO EMPTY" : "");
}
#ifdef HAVE_HOTSWAP
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
static bool sd1_oneshot_callback(struct timeout *tmo)
{
(void)tmo;
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
if (card_detect_target())
{
queue_broadcast(SYS_HOTSWAP_INSERTED, 0);
}
else
queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0);
return false;
}
void INT_GPIOA(void)
{
static struct timeout sd1_oneshot;
/* reset irq */
GPIOA_IC = (1<<2);
timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0);
}
#endif
#endif
void INT_NAND(void)
{
sd_panic(IF_MV2(INTERNAL_AS3525,) MCI_STATUS(INTERNAL_AS3525));
}
#ifdef HAVE_MULTIVOLUME
void INT_MCI0(void)
{
sd_panic(SD_SLOT_AS3525, MCI_STATUS(SD_SLOT_AS3525));
}
#endif
static bool send_cmd(const int drive, const int cmd, const int arg,
const int flags, int *response)
{
int val, status;
while(MCI_STATUS(drive) & MCI_CMD_ACTIVE);
if(MCI_COMMAND(drive) & MCI_COMMAND_ENABLE) /* clears existing command */
{
MCI_COMMAND(drive) = 0;
mci_delay();
}
val = cmd | MCI_COMMAND_ENABLE;
if(flags & MCI_RESP)
{
val |= MCI_COMMAND_RESPONSE;
if(flags & MCI_LONG_RESP)
val |= MCI_COMMAND_LONG_RESPONSE;
}
MCI_CLEAR(drive) = 0x7ff;
MCI_ARGUMENT(drive) = (flags & MCI_ARG) ? arg : 0;
MCI_COMMAND(drive) = val;
while(MCI_STATUS(drive) & MCI_CMD_ACTIVE); /* wait for cmd completion */
MCI_COMMAND(drive) = 0;
MCI_ARGUMENT(drive) = ~0;
status = MCI_STATUS(drive);
MCI_CLEAR(drive) = 0x7ff;
if(flags & MCI_RESP)
{
if(status & MCI_CMD_TIMEOUT)
return false;
else if(status & (MCI_CMD_CRC_FAIL /* FIXME? */ | MCI_CMD_RESP_END))
{ /* resp received */
if(flags & MCI_LONG_RESP)
{
/* store the response in little endian order for the words */
response[0] = MCI_RESP3(drive);
response[1] = MCI_RESP2(drive);
response[2] = MCI_RESP1(drive);
response[3] = MCI_RESP0(drive);
}
else
response[0] = MCI_RESP0(drive);
return true;
}
}
else if(status & MCI_CMD_SENT)
return true;
return false;
}
static int sd_init_card(const int drive)
{
unsigned int c_size;
unsigned long c_mult;
int response;
int max_tries = 100; /* max acmd41 attemps */
bool sdhc;
if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_FLAGS, NULL))
return -1;
mci_delay();
sdhc = false;
if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP|MCI_ARG, &response))
if((response & 0xFFF) == 0x1AA)
sdhc = true;
do {
mci_delay();
/* app_cmd */
if( !send_cmd(drive, SD_APP_CMD, 0, MCI_RESP|MCI_ARG, &response) ||
!(response & (1<<5)) )
{
return -2;
}
/* acmd41 */
if(!send_cmd(drive, SD_APP_OP_COND, (sdhc ? 0x40FF8000 : (1<<23)),
MCI_RESP|MCI_ARG, &card_info[drive].ocr))
return -3;
} while(!(card_info[drive].ocr & (1<<31)) && max_tries--);
if(!max_tries)
return -4;
/* send CID */
if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP|MCI_ARG,
card_info[drive].cid))
return -5;
/* send RCA */
if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP|MCI_ARG,
&card_info[drive].rca))
return -6;
/* send CSD */
if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca,
MCI_RESP|MCI_LONG_RESP|MCI_ARG, card_info[drive].csd))
return -7;
/* These calculations come from the Sandisk SD card product manual */
if( (card_info[drive].csd[3]>>30) == 0)
{
/* CSD version 1.0 */
c_size = ((card_info[drive].csd[2] & 0x3ff) << 2) + (card_info[drive].csd[1]>>30) + 1;
c_mult = 4 << ((card_info[drive].csd[1] >> 15) & 7);
card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 15);
card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */
card_info[drive].numblocks = c_size * c_mult * (card_info[drive].max_read_bl_len/512);
card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size;
}
#ifdef HAVE_MULTIVOLUME
else if( (card_info[drive].csd[3]>>30) == 1)
{
/* CSD version 2.0 */
c_size = ((card_info[drive].csd[2] & 0x3f) << 16) + (card_info[drive].csd[1]>>16) + 1;
card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 0xf);
card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */
card_info[drive].numblocks = c_size << 10;
card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size;
}
#endif
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_ARG, NULL))
return -9;
if(!send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_ARG, NULL))
return -10;
if(!send_cmd(drive, SD_SET_BUS_WIDTH, card_info[drive].rca | 2, MCI_ARG, NULL))
return -11;
if(!send_cmd(drive, SD_SET_BLOCKLEN, card_info[drive].block_size, MCI_ARG,
NULL))
return -12;
card_info[drive].initialized = 1;
mci_set_clock_divider(drive, 1); /* full speed */
return 0;
}
static void sd_thread(void) __attribute__((noreturn));
static void sd_thread(void)
{
struct queue_event ev;
bool idle_notified = false;
while (1)
{
queue_wait_w_tmo(&sd_queue, &ev, HZ);
switch ( ev.id )
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
fat_lock(); /* lock-out FAT activity first -
prevent deadlocking via disk_mount that
would cause a reverse-order attempt with
another thread */
mutex_lock(&sd_mtx); /* lock-out card activity - direct calls
into driver that bypass the fat cache */
/* We now have exclusive control of fat cache and ata */
disk_unmount(1); /* release "by force", ensure file
descriptors aren't leaked and any busy
ones are invalid if mounting */
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
card_info[1].initialized = 0;
if (ev.id == SYS_HOTSWAP_INSERTED)
{
sd_enable(true);
init_pl180_controller(SD_SLOT_AS3525);
disk_mount(1);
}
queue_broadcast(SYS_FS_CHANGED, 0);
/* Access is now safe */
mutex_unlock(&sd_mtx);
fat_unlock();
break;
#endif
case SYS_TIMEOUT:
if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ)))
{
idle_notified = false;
}
else
{
/* never let a timer wrap confuse us */
next_yield = current_tick;
if (!idle_notified)
{
call_storage_idle_notifys(false);
idle_notified = true;
}
}
break;
#if 0
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&sd_queue);
break;
case SYS_USB_DISCONNECTED:
usb_acknowledge(SYS_USB_DISCONNECTED_ACK);
break;
#endif
}
}
}
static void init_pl180_controller(const int drive)
{
MCI_COMMAND(drive) = MCI_DATA_CTRL(drive) = 0;
MCI_CLEAR(drive) = 0x7ff;
MCI_MASK0(drive) = MCI_MASK1(drive) =
MCI_DATA_CRC_FAIL | MCI_DATA_TIMEOUT | MCI_RX_OVERRUN | MCI_TX_UNDERRUN;
#ifdef HAVE_MULTIVOLUME
VIC_INT_ENABLE |=
(drive == INTERNAL_AS3525) ? INTERRUPT_NAND : INTERRUPT_MCI0;
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
/* setup isr for microsd monitoring */
VIC_INT_ENABLE |= (INTERRUPT_GPIOA);
/* clear previous irq */
GPIOA_IC |= (1<<2);
/* enable edge detecting */
GPIOA_IS &= ~(1<<2);
/* detect both raising and falling edges */
GPIOA_IBE |= (1<<2);
#endif
#else
VIC_INT_ENABLE |= INTERRUPT_NAND;
#endif
MCI_POWER(drive) = MCI_POWER_UP|(10 /*voltage*/ << 2); /* use OF voltage */
mci_delay();
MCI_POWER(drive) |= MCI_POWER_ON;
mci_delay();
MCI_SELECT(drive) = 0;
MCI_CLOCK(drive) = MCI_CLOCK_ENABLE;
MCI_CLOCK(drive) &= ~MCI_CLOCK_POWERSAVE;
/* set MCLK divider */
mci_set_clock_divider(drive,
CLK_DIV(AS3525_PCLK_FREQ, AS3525_SD_IDENT_FREQ));
}
int sd_init(void)
{
int ret;
CGU_IDE = (1<<7) /* AHB interface enable */ |
(1<<6) /* interface enable */ |
((CLK_DIV(AS3525_PLLA_FREQ, AS3525_IDE_FREQ) - 1) << 2) |
1 /* clock source = PLLA */;
CGU_PERI |= CGU_NAF_CLOCK_ENABLE;
#ifdef HAVE_MULTIVOLUME
CGU_PERI |= CGU_MCI_CLOCK_ENABLE;
#endif
init_pl180_controller(INTERNAL_AS3525);
ret = sd_init_card(INTERNAL_AS3525);
if(ret < 0)
return ret;
#ifdef HAVE_MULTIVOLUME
CCU_IO &= ~8; /* bits 3:2 = 01, xpd is SD interface */
CCU_IO |= 4;
init_pl180_controller(SD_SLOT_AS3525);
sd_init_card(SD_SLOT_AS3525);
#endif
/* init mutex */
#ifndef BOOTLOADER
sd_enable(false);
#endif
mutex_init(&sd_mtx);
queue_init(&sd_queue, true);
create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0,
sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU));
return 0;
}
#ifdef STORAGE_GET_INFO
void sd_get_info(IF_MV2(int drive,) struct storage_info *info)
{
#ifndef HAVE_MULTIVOLUME
const int drive=0;
#endif
info->sector_size=card_info[drive].block_size;
info->num_sectors=card_info[drive].numblocks;
info->vendor="Rockbox";
info->product = (drive == 0) ? "Internal Storage" : "SD Card Slot";
info->revision="0.00";
}
#endif
#ifdef HAVE_HOTSWAP
bool sd_removable(IF_MV_NONVOID(int drive))
{
#ifndef HAVE_MULTIVOLUME
const int drive=0;
#endif
return (drive==1);
}
bool sd_present(IF_MV_NONVOID(int drive))
{
#ifndef HAVE_MULTIVOLUME
const int drive=0;
#endif
return (card_info[drive].initialized && card_info[drive].numblocks > 0);
}
#endif
static int sd_wait_for_state(const int drive, unsigned int state)
{
unsigned int response = 0;
unsigned int timeout = 100; /* ticks */
long t = current_tick;
while (1)
{
long tick;
if(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca,
MCI_RESP|MCI_ARG, &response))
return -1;
if (((response >> 9) & 0xf) == state)
return 0;
if(TIME_AFTER(current_tick, t + timeout))
return -1;
if (TIME_AFTER((tick = current_tick), next_yield))
{
yield();
timeout += current_tick - tick;
next_yield = tick + MIN_YIELD_PERIOD;
}
}
}
static int sd_transfer_sectors(IF_MV2(int drive,) unsigned long start,
int count, void* buf, bool write)
{
#ifndef HAVE_MULTIVOLUME
const int drive = 0;
#endif
int ret = 0;
/* skip SanDisk OF */
if (drive == INTERNAL_AS3525)
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
start += 61440;
#else
start += 20480;
#endif
mutex_lock(&sd_mtx);
#ifndef BOOTLOADER
sd_enable(true);
#endif
#ifdef HAVE_MULTIVOLUME
if (drive != 0 && !card_detect_target())
{
/* no external sd-card inserted */
ret = -88;
goto sd_transfer_error;
}
#endif
if (card_info[drive].initialized <= 0)
{
sd_init_card(drive);
if (!(card_info[drive].initialized))
{
panicf("card not initialised");
goto sd_transfer_error;
}
}
last_disk_activity = current_tick;
ret = sd_wait_for_state(drive, SD_TRAN);
if (ret < 0)
{
panicf("wait for state failed on drive %d", drive);
goto sd_transfer_error;
}
dma_retain();
while(count)
{
/* 128 * 512 = 2^16, and doesn't fit in the 16 bits of DATA_LENGTH
* register, so we have to transfer maximum 127 sectors at a time. */
unsigned int transfer = (count >= 128) ? 127 : count; /* sectors */
const int cmd =
write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK;
if(card_info[drive].ocr & (1<<30) ) /* SDHC */
ret = send_cmd(drive, cmd, start, MCI_ARG, NULL);
else
ret = send_cmd(drive, cmd, start * BLOCK_SIZE,
MCI_ARG, NULL);
if (ret < 0)
{
panicf("transfer multiple blocks failed");
goto sd_transfer_error;
}
if(write)
dma_enable_channel(0, buf, MCI_FIFO(drive),
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL);
else
dma_enable_channel(0, MCI_FIFO(drive), buf,
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL);
MCI_DATA_TIMER(drive) = 0x1000000; /* FIXME: arbitrary */
MCI_DATA_LENGTH(drive) = transfer * card_info[drive].block_size;
MCI_DATA_CTRL(drive) = (1<<0) /* enable */ |
(!write<<1) /* transfer direction */ |
(1<<3) /* DMA */ |
(9<<4) /* 2^9 = 512 */ ;
dma_wait_transfer(0);
buf += transfer * SECTOR_SIZE;
start += transfer;
count -= transfer;
last_disk_activity = current_tick;
if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_NO_FLAGS, NULL))
{
ret = -666;
panicf("STOP TRANSMISSION failed");
goto sd_transfer_error;
}
ret = sd_wait_for_state(drive, SD_TRAN);
if (ret < 0)
{
panicf(" wait for state TRAN failed");
goto sd_transfer_error;
}
}
while (1)
{
dma_release();
#ifndef BOOTLOADER
sd_enable(false);
#endif
mutex_unlock(&sd_mtx);
return ret;
sd_transfer_error:
panicf("transfer error : %d",ret);
card_info[drive].initialized = 0;
}
}
int sd_read_sectors(IF_MV2(int drive,) unsigned long start, int count,
void* buf)
{
return sd_transfer_sectors(IF_MV2(drive,) start, count, buf, false);
}
int sd_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
const void* buf)
{
#ifdef BOOTLOADER /* we don't need write support in bootloader */
#ifdef HAVE_MULTIVOLUME
(void) drive;
#endif
(void) start;
(void) count;
(void) buf;
return -1;
#else
return sd_transfer_sectors(IF_MV2(drive,) start, count, (void*)buf, true);
#endif
}
#ifndef BOOTLOADER
void sd_sleep(void)
{
}
void sd_spin(void)
{
}
void sd_spindown(int seconds)
{
(void)seconds;
}
long sd_last_disk_activity(void)
{
return last_disk_activity;
}
void sd_enable(bool on)
{
if (sd_enabled == on)
return; /* nothing to do */
if(on)
{
CGU_PERI |= CGU_NAF_CLOCK_ENABLE;
#ifdef HAVE_MULTIVOLUME
CGU_PERI |= CGU_MCI_CLOCK_ENABLE;
#endif
CGU_IDE |= (1<<7) /* AHB interface enable */ |
(1<<6) /* interface enable */;
sd_enabled = true;
}
else
{
CGU_PERI &= ~CGU_NAF_CLOCK_ENABLE;
#ifdef HAVE_MULTIVOLUME
CGU_PERI &= ~CGU_MCI_CLOCK_ENABLE;
#endif
CGU_IDE &= ~((1<<7)|(1<<6));
sd_enabled = false;
}
}
/* move the sd-card info to mmc struct */
tCardInfo *card_get_info_target(int card_no)
{
int i, temp;
static tCardInfo card;
static const char mantissa[] = { /* *10 */
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
static const int exponent[] = { /* use varies */
1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 };
card.initialized = card_info[card_no].initialized;
card.ocr = card_info[card_no].ocr;
for(i=0; i<4; i++) card.csd[i] = card_info[card_no].csd[i];
for(i=0; i<4; i++) card.cid[i] = card_info[card_no].cid[i];
card.numblocks = card_info[card_no].numblocks;
card.blocksize = card_info[card_no].block_size;
temp = card_extract_bits(card.csd, 29, 3);
card.speed = mantissa[card_extract_bits(card.csd, 25, 4)]
* exponent[temp > 2 ? 7 : temp + 4];
card.nsac = 100 * card_extract_bits(card.csd, 16, 8);
temp = card_extract_bits(card.csd, 13, 3);
card.tsac = mantissa[card_extract_bits(card.csd, 9, 4)]
* exponent[temp] / 10;
card.cid[0] = htobe32(card.cid[0]); /* ascii chars here */
card.cid[1] = htobe32(card.cid[1]); /* ascii chars here */
temp = *((char*)card.cid+13); /* adjust year<=>month, 1997 <=> 2000 */
*((char*)card.cid+13) = (unsigned char)((temp >> 4) | (temp << 4)) + 3;
return &card;
}
bool card_detect_target(void)
{
#ifdef HAVE_HOTSWAP
/* TODO: add e200/c200 */
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
return !(GPIOA_PIN(2));
#endif
#endif
return false;
}
#ifdef HAVE_HOTSWAP
void card_enable_monitoring_target(bool on)
{
if (on)
{
/* add e200v2/c200v2 here */
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
/* enable isr*/
GPIOA_IE |= (1<<2);
#endif
}
else
{
#if defined(SANSA_E200V2) || defined(SANSA_FUZE)
/* edisable isr*/
GPIOA_IE &= ~(1<<2);
#endif
}
}
#endif
#endif /* BOOTLOADER */