rockbox/apps/codecs/libgme/sms_apu.c
Andree Buschmann 631d22b8e5 4th part of FS#12176. Volume settings migrated to fixed point for libgme.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@30278 a1c6a512-1295-4272-9138-f99709370657
2011-08-11 06:18:39 +00:00

310 lines
7.5 KiB
C

// Sms_Snd_Emu 0.1.1. http://www.slack.net/~ant/
#include "sms_apu.h"
/* Copyright (C) 2003-2008 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
int const noise_osc = 3;
void Sms_apu_volume( struct Sms_Apu* this, int vol )
{
vol = (vol - (vol*3)/20) / sms_osc_count / 64;
Synth_volume( &this->synth, vol );
}
inline int calc_output( struct Sms_Apu* this, int i )
{
int flags = this->ggstereo >> i;
return (flags >> 3 & 2) | (flags & 1);
}
void Sms_apu_set_output( struct Sms_Apu* this, int i, struct Blip_Buffer* center, struct Blip_Buffer* left, struct Blip_Buffer* right )
{
#if defined(ROCKBOX)
(void) left;
(void) right;
#endif
// Must be silent (all NULL), mono (left and right NULL), or stereo (none NULL)
require( !center || (center && !left && !right) || (center && left && right) );
require( (unsigned) i < sms_osc_count ); // fails if you pass invalid osc index
if ( center )
{
unsigned const divisor = 16384 * 16 * 2;
this->min_tone_period = ((unsigned) Blip_clock_rate( center ) + divisor/2) / divisor;
}
if ( !center || !left || !right )
{
left = center;
right = center;
}
struct Osc* o = &this->oscs [i];
o->outputs [0] = NULL;
o->outputs [1] = right;
o->outputs [2] = left;
o->outputs [3] = center;
o->output = o->outputs [calc_output( this, i )];
}
static inline unsigned fibonacci_to_galois_lfsr( unsigned fibonacci, int width )
{
unsigned galois = 0;
while ( --width >= 0 )
{
galois = (galois << 1) | (fibonacci & 1);
fibonacci >>= 1;
}
return galois;
}
void Sms_apu_reset( struct Sms_Apu* this, unsigned feedback, int noise_width )
{
this->last_time = 0;
this->latch = 0;
this->ggstereo = 0;
// Calculate noise feedback values
if ( !feedback || !noise_width )
{
feedback = 0x0009;
noise_width = 16;
}
this->looped_feedback = 1 << (noise_width - 1);
this->noise_feedback = fibonacci_to_galois_lfsr( feedback, noise_width );
// Reset oscs
int i;
for ( i = sms_osc_count; --i >= 0; )
{
struct Osc* o = &this->oscs [i];
o->output = NULL;
o->last_amp = 0;
o->delay = 0;
o->phase = 0;
o->period = 0;
o->volume = 15; // silent
}
this->oscs [noise_osc].phase = 0x8000;
Sms_apu_write_ggstereo( this, 0, 0xFF );
}
void Sms_apu_init( struct Sms_Apu* this )
{
this->min_tone_period = 7;
Synth_init( &this->synth );
// Clear outputs to NULL FIRST
this->ggstereo = 0;
int i;
for ( i = sms_osc_count; --i >= 0; )
Sms_apu_set_output( this, i, NULL, NULL, NULL );
Sms_apu_volume( this, (int)FP_ONE_VOLUME );
Sms_apu_reset( this, 0, 0 );
}
static void run_until( struct Sms_Apu* this, blip_time_t end_time )
{
require( end_time >= this->last_time );
if ( end_time <= this->last_time )
return;
// Synthesize each oscillator
int idx;
for ( idx = sms_osc_count; --idx >= 0; )
{
struct Osc* osc = &this->oscs [idx];
int vol = 0;
int amp = 0;
// Determine what will be generated
struct Blip_Buffer* const out = osc->output;
if ( out )
{
// volumes [i] ~= 64 * pow( 1.26, 15 - i ) / pow( 1.26, 15 )
static unsigned char const volumes [16] ICONST_ATTR = {
64, 50, 40, 32, 25, 20, 16, 13, 10, 8, 6, 5, 4, 3, 2, 0
};
vol = volumes [osc->volume];
amp = (osc->phase & 1) * vol;
// Square freq above 16 kHz yields constant amplitude at half volume
if ( idx != noise_osc && osc->period < this->min_tone_period )
{
amp = vol >> 1;
vol = 0;
}
// Update amplitude
int delta = amp - osc->last_amp;
if ( delta )
{
osc->last_amp = amp;
/* norm_synth.offset( last_time, delta, out ); */
Synth_offset( &this->synth, this->last_time, delta, out );
/* out->set_modified(); */
Blip_set_modified( out );
}
}
// Generate wave
blip_time_t time = this->last_time + osc->delay;
if ( time < end_time )
{
// Calculate actual period
int period = osc->period;
if ( idx == noise_osc )
{
period = 0x20 << (period & 3);
if ( period == 0x100 )
period = this->oscs [2].period * 2;
}
period *= 0x10;
if ( !period )
period = 0x10;
// Maintain phase when silent
int phase = osc->phase;
if ( !vol )
{
int count = (end_time - time + period - 1) / period;
time += count * period;
if ( idx != noise_osc ) // TODO: maintain noise LFSR phase?
phase ^= count & 1;
}
else
{
int delta = amp * 2 - vol;
if ( idx != noise_osc )
{
// Square
do
{
delta = -delta;
/* norm_synth.offset( time, delta, out ); */
Synth_offset( &this->synth, time, delta, out );
time += period;
}
while ( time < end_time );
phase = (delta >= 0);
}
else
{
// Noise
unsigned const feedback = (osc->period & 4 ? this->noise_feedback : this->looped_feedback);
do
{
unsigned changed = phase + 1;
phase = ((phase & 1) * feedback) ^ (phase >> 1);
if ( changed & 2 ) // true if bits 0 and 1 differ
{
delta = -delta;
/* fast_synth.offset_inline( time, delta, out ); */
Synth_offset_inline( &this->synth, time, delta, out );
}
time += period;
}
while ( time < end_time );
check( phase );
}
osc->last_amp = (phase & 1) * vol;
Blip_set_modified( out );
}
osc->phase = phase;
}
osc->delay = time - end_time;
}
this->last_time = end_time;
}
void Sms_apu_write_ggstereo( struct Sms_Apu* this, blip_time_t time, int data )
{
require( (unsigned) data <= 0xFF );
run_until( this, time );
this->ggstereo = data;
int i;
for ( i = sms_osc_count; --i >= 0; )
{
struct Osc* osc = &this->oscs [i];
struct Blip_Buffer* old = osc->output;
osc->output = osc->outputs [calc_output( this, i )];
if ( osc->output != old )
{
int delta = -osc->last_amp;
if ( delta )
{
osc->last_amp = 0;
if ( old )
{
Blip_set_modified( old );
Synth_offset( &this->synth, this->last_time, delta, old );
}
}
}
}
}
void Sms_apu_write_data( struct Sms_Apu* this, blip_time_t time, int data )
{
require( (unsigned) data <= 0xFF );
run_until( this, time );
if ( data & 0x80 )
this->latch = data;
// We want the raw values written so our save state format can be
// as close to hardware as possible and unspecific to any emulator.
int idx = this->latch >> 5 & 3;
struct Osc* osc = &this->oscs [idx];
if ( this->latch & 0x10 )
{
osc->volume = data & 0x0F;
}
else
{
if ( idx == noise_osc )
osc->phase = 0x8000; // reset noise LFSR
// Replace high 6 bits/low 4 bits of register with data
int lo = osc->period;
int hi = data << 4;
if ( idx == noise_osc || (data & 0x80) )
{
hi = lo;
lo = data;
}
osc->period = (hi & 0x3F0) | (lo & 0x00F);
}
}
void Sms_apu_end_frame( struct Sms_Apu* this, blip_time_t end_time )
{
if ( end_time > this->last_time )
run_until( this, end_time );
this->last_time -= end_time;
assert( this->last_time >= 0 );
}