rockbox/firmware/target/arm/imx31/gigabeat-s/lcd-gigabeat-s.c
Michael Sevakis 62facd1ff2 Collect some of the memory frame LCD C code.
For this commit: Sansa e200v1, Gigabeat F, Gigabeat S and Mini2440 are
changed over. Quite a number of other targets probably can be as well.

General LCD code is moved out of the target drivers into
drivers/lcd-memframe.c.


git-svn-id: svn://svn.rockbox.org/rockbox/trunk@31311 a1c6a512-1295-4272-9138-f99709370657
2011-12-15 23:07:11 +00:00

247 lines
5.8 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 by Will Robertson
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "lcd.h"
#include "lcd-target.h"
#include "backlight-target.h"
#include "spi-imx31.h"
#include "mc13783.h"
extern void lcd_set_active(bool active);
#define MAIN_LCD_IDMAC_CHANNEL 14
static bool lcd_powered = true;
/* Settings shadow regs */
#ifdef HAVE_LCD_CONTRAST
static uint8_t reg0x0b = 0x2f;
#endif
#ifdef HAVE_LCD_INVERT
static uint8_t reg0x27 = 0x00;
#endif
#ifdef HAVE_LCD_FLIP
static uint8_t reg0x06 = 0x04;
#endif
#if 0
/* Initialization data from OF bootloader. Identical to Gigabeat F/X. */
static const unsigned char lcd_init_data[50] =
{
/* Reg Val */
0x0f, 0x01,
0x09, 0x06,
0x16, 0xa6,
0x1e, 0x49,
0x1f, 0x26,
0x0b, 0x2f, /* Set contrast 0-63 */
0x0c, 0x2b,
0x19, 0x5e,
0x1a, 0x15,
0x1b, 0x15,
0x1d, 0x01,
0x00, 0x03,
0x01, 0x10,
0x02, 0x0a,
0x06, 0x04, /* Set the orientation 0x02=upside down, 0x04=normal */
0x08, 0x2e,
0x24, 0x12,
0x25, 0x3f,
0x26, 0x0b,
0x27, 0x00, /* Invert display 0x00=normal, 0x10=inverted */
0x28, 0x00,
0x29, 0xf6,
0x2a, 0x03,
0x2b, 0x0a,
0x04, 0x01, /* Display ON */
};
#endif
static const struct spi_node lcd_spi_node =
{
/* Original firmware settings for LCD panel communication */
CSPI3_NUM, /* CSPI module 3 */
CSPI_CONREG_CHIP_SELECT_SS1 | /* Chip select 1 */
CSPI_CONREG_DRCTL_DONT_CARE | /* Don't care about CSPI_RDY */
CSPI_CONREG_DATA_RATE_DIV_16 | /* Clock = IPG_CLK/16 = 4,125,000Hz. */
CSPI_BITCOUNT(32-1) | /* All 32 bits are to be transferred */
CSPI_CONREG_SSPOL | /* SS active high */
CSPI_CONREG_PHA | /* Phase 1 operation */
CSPI_CONREG_POL | /* Active low polarity */
CSPI_CONREG_MODE, /* Master mode */
0, /* SPI clock - no wait states */
};
static void lcd_write_reg(unsigned reg, unsigned val)
{
/* packet: |00|rr|01|vv| */
uint32_t packet = ((reg & 0xff) << 16) | 0x0100 | (val & 0xff);
struct spi_transfer_desc xfer;
xfer.node = &lcd_spi_node;
xfer.txbuf = &packet;
xfer.rxbuf = NULL;
xfer.count = 1;
xfer.callback = NULL;
xfer.next = NULL;
if (spi_transfer(&xfer))
{
/* Just busy wait; the interface is not used very much */
while (!spi_transfer_complete(&xfer));
}
}
static void lcd_enable_interface(bool enable)
{
if (enable)
{
spi_enable_module(&lcd_spi_node);
}
else
{
spi_disable_module(&lcd_spi_node);
}
}
static void lcd_set_power(bool powered)
{
if (powered)
{
lcd_powered = false;
lcd_write_reg(0x04, 0x00);
lcd_enable_interface(false);
bitclr32(&GPIO3_DR, (1 << 12));
mc13783_clear(MC13783_REGULATOR_MODE1, MC13783_VCAMEN);
}
else
{
mc13783_set(MC13783_REGULATOR_MODE1, MC13783_VCAMEN);
bitset32(&GPIO3_DR, (1 << 12));
lcd_enable_interface(true);
lcd_write_reg(0x04, 0x01);
lcd_powered = true;
}
}
static void lcd_sync_settings(void)
{
#ifdef HAVE_LCD_CONTRAST
lcd_write_reg(0x0b, reg0x0b);
#endif
#ifdef HAVE_LCD_INVERT
lcd_write_reg(0x27, reg0x27);
#endif
#ifdef HAVE_LCD_FLIP
lcd_write_reg(0x06, reg0x06);
#endif
}
/* LCD init */
void INIT_ATTR lcd_init_device(void)
{
/* Move the framebuffer */
#ifdef BOOTLOADER
/* Only do this once to avoid flicker */
memset(FRAME, 0x00, FRAME_SIZE);
#endif
IPU_IPU_IMA_ADDR = ((0x1 << 16) | (MAIN_LCD_IDMAC_CHANNEL << 4)) + (1 << 3);
IPU_IPU_IMA_DATA = FRAME_PHYS_ADDR;
lcd_enable_interface(true);
lcd_sync_settings();
}
void lcd_sleep(void)
{
if (!lcd_powered)
return;
IPU_IDMAC_CHA_EN &= ~(1ul << MAIN_LCD_IDMAC_CHANNEL);
lcd_enable(false);
lcd_set_power(false);
_backlight_lcd_sleep();
}
void lcd_enable(bool state)
{
if (state == lcd_active())
return;
if (state)
{
if (!lcd_powered)
lcd_set_power(true);
IPU_IDMAC_CHA_EN |= 1ul << MAIN_LCD_IDMAC_CHANNEL;
lcd_sync_settings();
sleep(HZ/50);
lcd_set_active(true);
lcd_update();
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else
{
lcd_set_active(false);
}
}
#ifdef HAVE_LCD_CONTRAST
void lcd_set_contrast(int val)
{
reg0x0b = val & 0x3f;
if (!lcd_active())
return;
lcd_write_reg(0x0b, reg0x0b);
}
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
#endif /* HAVE_LCD_CONTRAST */
#ifdef HAVE_LCD_INVERT
void lcd_set_invert_display(bool yesno)
{
reg0x27 = yesno ? 0x10 : 0x00;
if (!lcd_active())
return;
lcd_write_reg(0x27, reg0x27);
}
#endif /* HAVE_LCD_INVERT */
#ifdef HAVE_LCD_FLIP
void lcd_set_flip(bool yesno)
{
reg0x06 = yesno ? 0x02 : 0x04;
if (!lcd_active())
return;
lcd_write_reg(0x06, reg0x06);
}
#endif /* HAVE_LCD_FLIP */