rockbox/firmware/target/arm/imx233/ssp-imx233.c
Amaury Pouly eac1ca22bd imx233: generate register headers using headergen_v2 and update code for it
NOTE: this commit does not introduce any change, ideally even the binary should
be almost the same. I checked the disassembly by hand and there are only a few
differences here and there, mostly the compiler decides to compile very close
expressions slightly differently. I tried to run the new code on several targets
to make sure and saw no difference.

The major syntax changes of the new headers are as follows:
- BF_{WR,SET,CLR} are now superpowerful and allows to set several fileds at once:
  BF_WR(reg, field1(value1), field2(value2), ...)
- BF_CS (use like BF_WR) does a write to reg_CLR and then reg_SET instead of RMW
- there is no more need for macros like BF_{WR_,SET,CLR}_V, since one can simply
  BF_WR with field_V(name)
- the old BF_SETV macro has no trivial equivalent and is replaced with its
  its equivalent for BF_WR(reg_SET, ...)

I also rename the register headers: "regs/regs-x.h" -> "regs/x.h" to avoid the
redundant "regs".

Final note: the registers were generated using the following command:
./headergen_v2 -g imx -o ../../firmware/target/arm/imx233/regs/ desc/regs-stmp3{600,700,780}.xml

Change-Id: I7485e8b4315a0929a8edb63e7fa1edcaa54b1edc
2016-05-28 16:49:22 +02:00

477 lines
15 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "system.h"
#include "kernel.h"
#include "ssp-imx233.h"
#include "clkctrl-imx233.h"
#include "pinctrl-imx233.h"
#include "dma-imx233.h"
#include "regs/ssp.h"
#if IMX233_SUBTARGET < 3700
#define IMX233_NR_SSP 1
#else
#define IMX233_NR_SSP 2
#endif
/* ssp can value 1 or 2 */
#if IMX233_NR_SSP >= 2
#define __SSP_SELECT(ssp, ssp1, ssp2) ((ssp) == 1 ? (ssp1) : (ssp2))
#else
#define __SSP_SELECT(ssp, ssp1, ssp2) (ssp1)
#endif
#define INT_SRC_SSP_DMA(ssp) __SSP_SELECT(ssp, INT_SRC_SSP1_DMA, INT_SRC_SSP2_DMA)
#define INT_SRC_SSP_ERROR(ssp) __SSP_SELECT(ssp, INT_SRC_SSP1_ERROR, INT_SRC_SSP2_ERROR)
#if IMX233_SUBTARGET < 3700
#define ALL_IRQ \
SDIO_IRQ, RESP_ERR_IRQ, RESP_TIMEOUT_IRQ, DATA_TIMEOUT_IRQ, \
DATA_CRC_IRQ, RECV_TIMEOUT_IRQ, RECV_OVRFLW_IRQ
#define ALL_IRQ_EN \
SDIO_IRQ_EN, RESP_ERR_IRQ_EN, RESP_TIMEOUT_IRQ_EN, DATA_TIMEOUT_IRQ_EN, \
DATA_CRC_IRQ_EN, RECV_TIMEOUT_IRQ_EN, RECV_OVRFLW_IRQ_EN
#else
#define ALL_IRQ \
SDIO_IRQ, RESP_ERR_IRQ, RESP_TIMEOUT_IRQ, DATA_TIMEOUT_IRQ, \
DATA_CRC_IRQ, FIFO_UNDERRUN_IRQ, RECV_TIMEOUT_IRQ, FIFO_OVERRUN_IRQ
#define ALL_IRQ_EN \
SDIO_IRQ_EN, RESP_ERR_IRQ_EN, RESP_TIMEOUT_IRQ_EN, DATA_TIMEOUT_IRQ_EN, \
DATA_CRC_IRQ_EN, FIFO_UNDERRUN_EN, RECV_TIMEOUT_IRQ_EN, FIFO_OVERRUN_IRQ_EN
#endif
#define TIMEOUT_IRQ \
RESP_TIMEOUT_IRQ, DATA_TIMEOUT_IRQ, RECV_TIMEOUT_IRQ
/* for debug purpose */
#if 0
#define ASSERT_SSP(ssp) if(ssp < 1 || ssp > 2) panicf("ssp=%d in %s", ssp, __func__);
#else
#define ASSERT_SSP(ssp) (void) ssp;
#endif
/* Hack to handle both single and multi devices at once */
#if IMX233_SUBTARGET < 3700
#define SSP_SETn(reg, n, field) BF_SET(reg, field)
#define SSP_CLRn(reg, n, field) BF_CLR(reg, field)
#define SSP_RDn(reg, n, field) BF_RD(reg, field)
#define SSP_WRn(reg, n, field, val) BF_WR(reg, field(val))
#define SSP_REGn(reg, n) HW_##reg
#else
#define SSP_SETn(reg, n, field) BF_SET(reg(n), field)
#define SSP_CLRn(reg, n, field) BF_CLR(reg(n), field)
#define SSP_RDn(reg, n, field) BF_RD(reg(n), field)
#define SSP_WRn(reg, n, field, val) BF_WR(reg(n), field(val))
#define SSP_REGn(reg, n) HW_##reg(n)
#endif
/* Used for DMA */
struct ssp_dma_command_t
{
struct apb_dma_command_t dma;
/* PIO words */
uint32_t ctrl0;
uint32_t cmd0;
uint32_t cmd1;
/* padded to next multiple of cache line size (32 bytes) */
uint32_t pad[2];
} __attribute__((packed)) CACHEALIGN_ATTR;
__ENSURE_STRUCT_CACHE_FRIENDLY(struct ssp_dma_command_t)
static bool ssp_in_use[IMX233_NR_SSP];
static int ssp_nr_in_use = 0;
static struct mutex ssp_mutex[IMX233_NR_SSP];
static struct semaphore ssp_sema[IMX233_NR_SSP];
static struct ssp_dma_command_t ssp_dma_cmd[IMX233_NR_SSP];
static uint32_t ssp_bus_width[IMX233_NR_SSP];
static unsigned ssp_log_block_size[IMX233_NR_SSP];
static ssp_detect_cb_t ssp_detect_cb[IMX233_NR_SSP];
static bool ssp_detect_invert[IMX233_NR_SSP];
void INT_SSP(int ssp, bool err)
{
/* reset dma channel on error */
if(imx233_dma_is_channel_error_irq(APB_SSP(ssp)) || err)
imx233_dma_reset_channel(APB_SSP(ssp));
/* clear irq flags */
imx233_dma_clear_channel_interrupt(APB_SSP(ssp));
SSP_CLRn(SSP_CTRL1, ssp, ALL_IRQ_EN);
semaphore_release(&ssp_sema[ssp - 1]);
}
void INT_SSP1_DMA(void)
{
INT_SSP(1, false);
}
void INT_SSP2_DMA(void)
{
INT_SSP(2, false);
}
void INT_SSP1_ERROR(void)
{
INT_SSP(1, true);
}
void INT_SSP2_ERROR(void)
{
INT_SSP(2, true);
}
void imx233_ssp_init(void)
{
/* power down and init data structures */
ssp_nr_in_use = 0;
for(int i = 0; i < IMX233_NR_SSP; i++)
{
SSP_SETn(SSP_CTRL0, 1 + i, CLKGATE);
semaphore_init(&ssp_sema[i], 1, 0);
mutex_init(&ssp_mutex[i]);
ssp_bus_width[i] = BV_SSP_CTRL0_BUS_WIDTH__ONE_BIT;
}
}
static void start_ssp_clock(void)
{
/* If first block to start, start SSP clock */
if(ssp_nr_in_use == 0)
{
/** 2.3.1: the clk_ssp maximum frequency is 102.858 MHz */
/* fracdiv = 18 => clk_io = pll = 480Mhz
* intdiv = 5 => clk_ssp = 96Mhz */
imx233_clkctrl_enable(CLK_SSP, false);
imx233_clkctrl_set_div(CLK_SSP, 5);
#if IMX233_SUBTARGET >= 3700
imx233_clkctrl_set_bypass(CLK_SSP, false); /* use IO */
#endif
imx233_clkctrl_enable(CLK_SSP, true);
}
}
void imx233_ssp_start(int ssp)
{
ASSERT_SSP(ssp)
if(ssp_in_use[ssp - 1])
return;
ssp_in_use[ssp - 1] = true;
/* Enable SSP clock (need to start block) */
start_ssp_clock();
/* Gate block */
imx233_ssp_softreset(ssp);
/* Gate dma channel */
imx233_dma_clkgate_channel(APB_SSP(ssp), true);
ssp_nr_in_use++;
}
void imx233_ssp_stop(int ssp)
{
ASSERT_SSP(ssp)
if(!ssp_in_use[ssp - 1])
return;
ssp_in_use[ssp - 1] = false;
/* Gate off */
SSP_SETn(SSP_CTRL0, ssp, CLKGATE);
/* Gate off dma */
imx233_dma_clkgate_channel(APB_SSP(ssp), false);
/* If last block to stop, stop SSP clock */
ssp_nr_in_use--;
if(ssp_nr_in_use == 0)
imx233_clkctrl_enable(CLK_SSP, false);
}
void imx233_ssp_softreset(int ssp)
{
ASSERT_SSP(ssp)
imx233_reset_block(&SSP_REGn(SSP_CTRL0, ssp));
}
void imx233_ssp_set_timings(int ssp, int divide, int rate, int timeout)
{
ASSERT_SSP(ssp)
if(divide == 0 || (divide % 2) == 1)
panicf("SSP timing divide must be event");
SSP_REGn(SSP_TIMING, ssp) = BF_OR(SSP_TIMING, CLOCK_DIVIDE(divide),
CLOCK_RATE(rate), TIMEOUT(timeout));
}
void imx233_ssp_setup_ssp1_sd_mmc_pins(bool enable_pullups, unsigned bus_width, bool use_alt)
{
(void) use_alt;
unsigned clk_drive = PINCTRL_DRIVE_8mA;
unsigned dat_drive = PINCTRL_DRIVE_4mA;
/* SSP_{CMD,SCK} */
imx233_pinctrl_setup_vpin(VPIN_SSP1_CMD, "ssp1_cmd", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_SCK, "ssp1_sck", clk_drive, false);
/* SSP_DATA{0-3} */
imx233_pinctrl_setup_vpin(VPIN_SSP1_D0, "ssp1_d0", dat_drive, enable_pullups);
if(bus_width >= 4)
{
imx233_pinctrl_setup_vpin(VPIN_SSP1_D1, "ssp1_d1", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D2, "ssp1_d2", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D3, "ssp1_d3", dat_drive, enable_pullups);
}
if(bus_width >= 8)
{
#ifdef VPIN_SSP1_D4
if(use_alt)
{
#ifdef VPIN_SSP1_D4_ALT
imx233_pinctrl_setup_vpin(VPIN_SSP1_D4_ALT, "ssp1_d4", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D5_ALT, "ssp1_d5", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D6_ALT, "ssp1_d6", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D7_ALT, "ssp1_d7", dat_drive, enable_pullups);
#else
panicf("there is ssp1 alt on this soc!");
#endif
}
else
{
imx233_pinctrl_setup_vpin(VPIN_SSP1_D4, "ssp1_d4", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D5, "ssp1_d5", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D6, "ssp1_d6", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP1_D7, "ssp1_d7", dat_drive, enable_pullups);
}
#else
panicf("ssp1 bus width is limited to 4 on this soc!");
#endif
}
}
void imx233_ssp_setup_ssp2_sd_mmc_pins(bool enable_pullups, unsigned bus_width)
{
(void) enable_pullups;
(void) bus_width;
unsigned clk_drive = PINCTRL_DRIVE_8mA;
unsigned dat_drive = PINCTRL_DRIVE_4mA;
#ifdef VPIN_SSP2_CMD
/* SSP_{CMD,SCK} */
imx233_pinctrl_setup_vpin(VPIN_SSP2_CMD, "ssp2_cmd", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP2_SCK, "ssp2_sck", clk_drive, false);
/* SSP_DATA{0-3} */
imx233_pinctrl_setup_vpin(VPIN_SSP2_D0, "ssp2_d0", dat_drive, enable_pullups);
if(bus_width >= 4)
{
imx233_pinctrl_setup_vpin(VPIN_SSP2_D1, "ssp2_d1", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP2_D2, "ssp2_d2", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP2_D3, "ssp2_d3", dat_drive, enable_pullups);
}
if(bus_width >= 8)
{
imx233_pinctrl_setup_vpin(VPIN_SSP2_D4, "ssp2_d4", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP2_D5, "ssp2_d5", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP2_D6, "ssp2_d6", dat_drive, enable_pullups);
imx233_pinctrl_setup_vpin(VPIN_SSP2_D7, "ssp2_d7", dat_drive, enable_pullups);
}
#else
panicf("there is no ssp2 on this soc!");
#endif
}
void imx233_ssp_set_mode(int ssp, unsigned mode)
{
ASSERT_SSP(ssp)
/* set mode */
SSP_WRn(SSP_CTRL1, ssp, SSP_MODE, mode);
/* set mode specific settings */
switch(mode)
{
case BV_SSP_CTRL1_SSP_MODE__SD_MMC:
SSP_WRn(SSP_CTRL1, ssp, WORD_LENGTH_V, EIGHT_BITS);
SSP_SETn(SSP_CTRL1, ssp, POLARITY);
SSP_SETn(SSP_CTRL1, ssp, DMA_ENABLE);
break;
default: return;
}
}
void imx233_ssp_set_bus_width(int ssp, unsigned width)
{
ASSERT_SSP(ssp)
switch(width)
{
case 1: ssp_bus_width[ssp - 1] = BV_SSP_CTRL0_BUS_WIDTH__ONE_BIT; break;
case 4: ssp_bus_width[ssp - 1] = BV_SSP_CTRL0_BUS_WIDTH__FOUR_BIT; break;
/* STMP3600 cannot do 8-bit bus */
#if IMX233_SUBTARGET >= 3700
case 8: ssp_bus_width[ssp - 1] = BV_SSP_CTRL0_BUS_WIDTH__EIGHT_BIT; break;
#endif
default: panicf("ssp: target doesn't handle %d-bits bus", width);
}
}
void imx233_ssp_set_block_size(int ssp, unsigned log_block_size)
{
ASSERT_SSP(ssp)
/* STMP3600 cannot change block size */
#if IMX233_SUBTARGET < 3600
if(log_block_size != 9)
panicf("ssp: target doesn't block size %d", 1 << log_block_size);
#endif
ssp_log_block_size[ssp - 1] = log_block_size;
}
enum imx233_ssp_error_t imx233_ssp_sd_mmc_transfer(int ssp, uint8_t cmd,
uint32_t cmd_arg, enum imx233_ssp_resp_t resp, void *buffer, unsigned block_count,
bool wait4irq, bool read, uint32_t *resp_ptr)
{
ASSERT_SSP(ssp)
mutex_lock(&ssp_mutex[ssp - 1]);
/* Enable all interrupts */
imx233_dma_reset_channel(APB_SSP(ssp));
imx233_icoll_enable_interrupt(INT_SRC_SSP_DMA(ssp), true);
imx233_icoll_enable_interrupt(INT_SRC_SSP_ERROR(ssp), true);
imx233_dma_enable_channel_interrupt(APB_SSP(ssp), true);
unsigned xfer_size = block_count * (1 << ssp_log_block_size[ssp - 1]);
#if IMX233_SUBTARGET < 3700
ssp_dma_cmd[ssp - 1].cmd0 = BF_OR(SSP_CMD0, CMD(cmd));
#else
ssp_dma_cmd[ssp - 1].cmd0 = BF_OR(SSP_CMD0, CMD(cmd), APPEND_8CYC(1),
BLOCK_SIZE(ssp_log_block_size[ssp - 1]), BLOCK_COUNT(block_count - 1));
#endif
ssp_dma_cmd[ssp - 1].cmd1 = cmd_arg;
/* setup all flags and run */
ssp_dma_cmd[ssp - 1].ctrl0 = BF_OR(SSP_CTRL0, XFER_COUNT(xfer_size),
ENABLE(1), IGNORE_CRC(buffer == NULL), WAIT_FOR_IRQ(wait4irq),
GET_RESP(resp != SSP_NO_RESP), LONG_RESP(resp == SSP_LONG_RESP),
BUS_WIDTH(ssp_bus_width[ssp - 1]), DATA_XFER(buffer != NULL),
READ(read));
/* setup the dma parameters */
ssp_dma_cmd[ssp - 1].dma.buffer = buffer;
ssp_dma_cmd[ssp - 1].dma.next = NULL;
ssp_dma_cmd[ssp - 1].dma.cmd = BF_OR(APB_CHx_CMD,
COMMAND(buffer == NULL ? BV_APB_CHx_CMD_COMMAND__NO_XFER :
read ? BV_APB_CHx_CMD_COMMAND__WRITE : BV_APB_CHx_CMD_COMMAND__READ),
IRQONCMPLT(1), SEMAPHORE(1), WAIT4ENDCMD(1), CMDWORDS(3), XFER_COUNT(xfer_size));
SSP_CLRn(SSP_CTRL1, ssp, ALL_IRQ);
SSP_SETn(SSP_CTRL1, ssp, ALL_IRQ_EN);
imx233_dma_start_command(APB_SSP(ssp), &ssp_dma_cmd[ssp - 1].dma);
/* the SSP hardware already has a timeout but we never know; 1 sec is a maximum
* for all operations */
enum imx233_ssp_error_t ret;
if(semaphore_wait(&ssp_sema[ssp - 1], HZ) == OBJ_WAIT_TIMEDOUT)
{
imx233_dma_reset_channel(APB_SSP(ssp));
ret = SSP_TIMEOUT;
}
else if((SSP_REGn(SSP_CTRL1, ssp) & BM_OR(SSP_CTRL1, ALL_IRQ)) == 0)
ret = SSP_SUCCESS;
else if((SSP_REGn(SSP_CTRL1, ssp) & BM_OR(SSP_CTRL1, TIMEOUT_IRQ)))
ret = SSP_TIMEOUT;
else
ret = SSP_ERROR;
if(resp_ptr != NULL)
{
if(resp != SSP_NO_RESP)
*resp_ptr++ = SSP_REGn(SSP_SDRESP0, ssp);
if(resp == SSP_LONG_RESP)
{
*resp_ptr++ = SSP_REGn(SSP_SDRESP1, ssp);
*resp_ptr++ = SSP_REGn(SSP_SDRESP2, ssp);
*resp_ptr++ = SSP_REGn(SSP_SDRESP3, ssp);
}
}
mutex_unlock(&ssp_mutex[ssp - 1]);
return ret;
}
void imx233_ssp_sd_mmc_power_up_sequence(int ssp)
{
ASSERT_SSP(ssp)
#if IMX233_SUBTARGET >= 3780
SSP_CLRn(SSP_CMD0, ssp, SLOW_CLKING_EN);
SSP_SETn(SSP_CMD0, ssp, CONT_CLKING_EN);
mdelay(1);
SSP_CLRn(SSP_CMD0, ssp, CONT_CLKING_EN);
#endif
}
static int ssp_detect_oneshot_callback(struct timeout *tmo)
{
int ssp = tmo->data;
ASSERT_SSP(ssp)
if(ssp_detect_cb[ssp - 1])
ssp_detect_cb[ssp - 1](ssp);
return 0;
}
static struct timeout ssp_detect_oneshot[2];
static void detect_irq(int bank, int pin, intptr_t ssp)
{
(void) bank;
(void) pin;
timeout_register(&ssp_detect_oneshot[ssp - 1], ssp_detect_oneshot_callback, (3*HZ/10), ssp);
}
void imx233_ssp_sdmmc_setup_detect(int ssp, bool enable, ssp_detect_cb_t fn,
bool first_time, bool invert)
{
ASSERT_SSP(ssp)
vpin_t vpin = VPIN_SSP1_DET;
if(ssp == 2)
{
#ifdef VPIN_SSP2_DET
vpin = VPIN_SSP2_DET;
#else
panicf("there is no ssp2 det on this soc!");
#endif
}
unsigned bank = VPIN_UNPACK_BANK(vpin), pin = VPIN_UNPACK_PIN(vpin);
ssp_detect_cb[ssp - 1] = fn;
ssp_detect_invert[ssp - 1] = invert;
if(enable)
{
imx233_pinctrl_acquire(bank, pin, ssp == 1 ? "ssp1_det" : "ssp2_det");
imx233_pinctrl_set_function(bank, pin, PINCTRL_FUNCTION_GPIO);
imx233_pinctrl_enable_gpio(bank, pin, false);
}
if(first_time && imx233_ssp_sdmmc_detect(ssp))
detect_irq(bank, pin, ssp);
imx233_pinctrl_setup_irq(bank, pin, enable,
true, !imx233_ssp_sdmmc_detect_raw(ssp), detect_irq, ssp);
}
bool imx233_ssp_sdmmc_is_detect_inverted(int ssp)
{
ASSERT_SSP(ssp)
return ssp_detect_invert[ssp - 1];
}
bool imx233_ssp_sdmmc_detect_raw(int ssp)
{
ASSERT_SSP(ssp)
return SSP_RDn(SSP_STATUS, ssp, CARD_DETECT);
}
bool imx233_ssp_sdmmc_detect(int ssp)
{
ASSERT_SSP(ssp)
return imx233_ssp_sdmmc_detect_raw(ssp) != ssp_detect_invert[ssp - 1];
}