rockbox/firmware/target/arm/imx233/power-imx233.c
Amaury Pouly 5d2d747247 imx233: update comment about vbusvalid
Change-Id: Ice1ece716657fa7f78f69736e5e733e1b7f67b59
2017-08-27 17:48:39 +02:00

588 lines
20 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "power.h"
#include "string.h"
#include "usb.h"
#include "system-target.h"
#include "power-imx233.h"
#include "pinctrl-imx233.h"
#include "fmradio_i2c.h"
#include "rtc-imx233.h"
#include "regs/power.h"
#define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__10mA (1 << 0)
#define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__20mA (1 << 1)
#define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__50mA (1 << 2)
#define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__100mA (1 << 3)
#define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__200mA (1 << 4)
#define BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__400mA (1 << 5)
#define BV_POWER_CHARGE_BATTCHRG_I__10mA (1 << 0)
#define BV_POWER_CHARGE_BATTCHRG_I__20mA (1 << 1)
#define BV_POWER_CHARGE_BATTCHRG_I__50mA (1 << 2)
#define BV_POWER_CHARGE_BATTCHRG_I__100mA (1 << 3)
#define BV_POWER_CHARGE_BATTCHRG_I__200mA (1 << 4)
#define BV_POWER_CHARGE_BATTCHRG_I__400mA (1 << 5)
#define BV_POWER_CHARGE_STOP_ILIMIT__10mA (1 << 0)
#define BV_POWER_CHARGE_STOP_ILIMIT__20mA (1 << 1)
#define BV_POWER_CHARGE_STOP_ILIMIT__50mA (1 << 2)
#define BV_POWER_CHARGE_STOP_ILIMIT__100mA (1 << 3)
#if IMX233_SUBTARGET >= 3700
#define HW_POWER_VDDDCTRL__TRG_STEP 25 /* mV */
#define HW_POWER_VDDDCTRL__TRG_MIN 800 /* mV */
#define HW_POWER_VDDACTRL__TRG_STEP 25 /* mV */
#define HW_POWER_VDDACTRL__TRG_MIN 1500 /* mV */
#define HW_POWER_VDDIOCTRL__TRG_STEP 25 /* mV */
#define HW_POWER_VDDIOCTRL__TRG_MIN 2800 /* mV */
#define HW_POWER_VDDMEMCTRL__TRG_STEP 50 /* mV */
#define HW_POWER_VDDMEMCTRL__TRG_MIN 1700 /* mV */
#else
/* don't use the full available range because of the weird encodings for
* extreme values which are useless anyway */
#define HW_POWER_VDDDCTRL__TRG_STEP 32 /* mV */
#define HW_POWER_VDDDCTRL__TRG_MIN 1280 /* mV */
#define HW_POWER_VDDDCTRL__TRG_OFF 8 /* below 8, the register value doesn't encode linearly */
#endif
#define BV_POWER_MISC_FREQSEL__RES 0
#define BV_POWER_MISC_FREQSEL__20MHz 1
#define BV_POWER_MISC_FREQSEL__24MHz 2
#define BV_POWER_MISC_FREQSEL__19p2MHz 3
#define BV_POWER_MISC_FREQSEL__14p4MHz 4
#define BV_POWER_MISC_FREQSEL__18MHz 5
#define BV_POWER_MISC_FREQSEL__21p6MHz 6
#define BV_POWER_MISC_FREQSEL__17p28MHz 7
struct current_step_bit_t
{
unsigned current;
uint32_t bit;
};
/* in decreasing order */
static struct current_step_bit_t g_charger_current_bits[] =
{
{ 400, BV_POWER_CHARGE_BATTCHRG_I__400mA },
{ 200, BV_POWER_CHARGE_BATTCHRG_I__200mA },
{ 100, BV_POWER_CHARGE_BATTCHRG_I__100mA },
{ 50, BV_POWER_CHARGE_BATTCHRG_I__50mA },
{ 20, BV_POWER_CHARGE_BATTCHRG_I__20mA },
{ 10, BV_POWER_CHARGE_BATTCHRG_I__10mA }
};
/* in decreasing order */
static struct current_step_bit_t g_charger_stop_current_bits[] =
{
{ 100, BV_POWER_CHARGE_STOP_ILIMIT__100mA },
{ 50, BV_POWER_CHARGE_STOP_ILIMIT__50mA },
{ 20, BV_POWER_CHARGE_STOP_ILIMIT__20mA },
{ 10, BV_POWER_CHARGE_STOP_ILIMIT__10mA }
};
#if IMX233_SUBTARGET >= 3780
/* in decreasing order */
static struct current_step_bit_t g_4p2_charge_limit_bits[] =
{
{ 400, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__400mA },
{ 200, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__200mA },
{ 100, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__100mA },
{ 50, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__50mA },
{ 20, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__20mA },
{ 10, BV_POWER_5VCTRL_CHARGE_4P2_ILIMIT__10mA }
};
#endif
/* FIXME
* POWER_STS.VBUSVALID does not reflect the actual vbusvalid value, only
* VBUSVALID_STATUS does. Indeed the VBUSVALID field can be locked using
* VBUSVALIDPIOLOCK. Some Freescale code suggests locking is required for
* proper operation of the USB ARC core. This is problematic though
* because it prevents proper usage of the VDD5V irq.
* Since we didn't encounter this problem, we never lock VBUSVALID
*
* WARNING
* Using VBUSVALID IRQ is broken on STMP3700 (see errata). The IRQ cannot be
* cleared. Currently fallback to the VDD5V>VDDIO method even though it's less
* reliable (we could use polling too).
*/
#if IMX233_SUBTARGET >= 3780
#define USE_VBUSVALID
#endif
bool imx233_power_usb_detect(void)
{
#ifdef USE_VBUSVALID
return BF_RD(POWER_STS, VBUSVALID);
#else
return BF_RD(POWER_STS, VDD5V_GT_VDDIO);
#endif
}
void INT_VDD5V(void)
{
#ifdef USE_VBUSVALID
if(BF_RD(POWER_CTRL, VBUSVALID_IRQ))
{
if(BF_RD(POWER_STS, VBUSVALID))
usb_insert_int();
else
usb_remove_int();
/* reverse polarity */
BF_WR(POWER_CTRL_TOG, POLARITY_VBUSVALID(1));
/* clear int */
BF_CLR(POWER_CTRL, VBUSVALID_IRQ);
}
#else
if(BF_RD(POWER_CTRL, VDD5V_GT_VDDIO_IRQ))
{
if(BF_RD(POWER_STS, VDD5V_GT_VDDIO))
usb_insert_int();
else
usb_remove_int();
/* reverse polarity */
BF_WR(POWER_CTRL_TOG, POLARITY_VDD5V_GT_VDDIO(1));
/* clear int */
BF_CLR(POWER_CTRL, VDD5V_GT_VDDIO_IRQ);
}
#endif
}
void imx233_power_init(void)
{
#if IMX233_SUBTARGET >= 3700
BF_CLR(POWER_MINPWR, HALF_FETS);
#endif
/* setup vbusvalid parameters: set threshold to 4v and power up comparators */
BF_CS(POWER_5VCTRL, VBUSVALID_TRSH(1));
#if IMX233_SUBTARGET >= 3780
BF_SET(POWER_5VCTRL, PWRUP_VBUS_CMPS);
#else
BF_SET(POWER_5VCTRL, OTG_PWRUP_CMPS);
#endif
/* enable vbusvalid detection method for the dcdc (improves efficiency) */
BF_SET(POWER_5VCTRL, VBUSVALID_5VDETECT);
/* disable shutdown on 5V fail */
BF_CLR(POWER_5VCTRL, PWDN_5VBRNOUT);
#ifdef USE_VBUSVALID
/* make sure VBUSVALID is unlocked */
BF_CLR(POWER_DEBUG, VBUSVALIDPIOLOCK);
/* clear vbusvalid irq and set correct polarity */
BF_CLR(POWER_CTRL, VBUSVALID_IRQ);
if(BF_RD(POWER_STS, VBUSVALID))
BF_CLR(POWER_CTRL, POLARITY_VBUSVALID);
else
BF_SET(POWER_CTRL, POLARITY_VBUSVALID);
BF_SET(POWER_CTRL, ENIRQ_VBUS_VALID);
/* make sure old detection way is not enabled */
BF_CLR(POWER_CTRL, ENIRQ_VDD5V_GT_VDDIO);
#else
BF_CLR(POWER_CTRL, VDD5V_GT_VDDIO_IRQ);
if(BF_RD(POWER_STS, VDD5V_GT_VDDIO))
BF_CLR(POWER_CTRL, POLARITY_VDD5V_GT_VDDIO);
else
BF_SET(POWER_CTRL, POLARITY_VDD5V_GT_VDDIO);
BF_SET(POWER_CTRL, ENIRQ_VDD5V_GT_VDDIO);
/* make the vbusvalid detection way is not enabled */
#if IMX233_SUBTARGET >= 3700
BF_CLR(POWER_CTRL, ENIRQ_VBUS_VALID);
#endif
#endif
/* the VDD5V IRQ is shared by several sources, disable them */
#if IMX233_SUBTARGET >= 3700
BF_CLR(POWER_CTRL, ENIRQ_PSWITCH);
BF_CLR(POWER_CTRL, ENIRQ_DC_OK);
#if IMX233_SUBTARGET < 3780
BF_CLR(POWER_CTRL, ENIRQ_LINREG_OK);
#endif /* IMX233_SUBTARGET < 3780 */
#endif /* IMX233_SUBTARGET >= 3700 */
imx233_icoll_enable_interrupt(INT_SRC_VDD5V, true);
}
void power_init(void)
{
}
void power_off(void)
{
imx233_system_prepare_shutdown();
/* power down */
HW_POWER_RESET = BF_OR(POWER_RESET, UNLOCK_V(KEY), PWD(1));
while(1);
}
unsigned int power_input_status(void)
{
return (usb_detect() == USB_INSERTED)
? POWER_INPUT_MAIN_CHARGER : POWER_INPUT_NONE;
}
bool charging_state(void)
{
return BF_RD(POWER_STS, CHRGSTS);
}
void imx233_power_set_charge_current(unsigned current)
{
#if IMX233_SUBTARGET >= 3700
BF_CLR(POWER_CHARGE, BATTCHRG_I);
#else
BF_CLR(POWER_BATTCHRG, BATTCHRG_I);
#endif
/* find closest current LOWER THAN OR EQUAL TO the expected current */
for(unsigned i = 0; i < ARRAYLEN(g_charger_current_bits); i++)
if(current >= g_charger_current_bits[i].current)
{
current -= g_charger_current_bits[i].current;
#if IMX233_SUBTARGET >= 3700
BF_WR(POWER_CHARGE_SET, BATTCHRG_I(g_charger_current_bits[i].bit));
#else
BF_WR(POWER_BATTCHRG_SET, BATTCHRG_I(g_charger_current_bits[i].bit));
#endif
}
}
void imx233_power_set_stop_current(unsigned current)
{
#if IMX233_SUBTARGET >= 3700
BF_CLR(POWER_CHARGE, STOP_ILIMIT);
#else
BF_CLR(POWER_BATTCHRG, STOP_ILIMIT);
#endif
/* find closest current GREATHER THAN OR EQUAL TO the expected current */
unsigned sum = 0;
for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++)
sum += g_charger_stop_current_bits[i].current;
for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++)
{
sum -= g_charger_stop_current_bits[i].current;
if(current > sum)
{
current -= g_charger_stop_current_bits[i].current;
#if IMX233_SUBTARGET >= 3700
BF_WR(POWER_CHARGE_SET, STOP_ILIMIT(g_charger_stop_current_bits[i].bit));
#else
BF_WR(POWER_BATTCHRG_SET, STOP_ILIMIT(g_charger_stop_current_bits[i].bit));
#endif
}
}
}
/* regulator info */
#define HAS_BO (1 << 0)
#define HAS_LINREG (1 << 1)
#define HAS_LINREG_OFFSET (1 << 2)
#define HAS_ABS_BO (1 << 3)
static struct
{
unsigned min, step;
int off; // offset in the register value
volatile uint32_t *reg;
uint32_t trg_bm, trg_bp; // bitmask and bitpos
unsigned flags;
uint32_t bo_bm, bo_bp; // bitmask and bitpos
uint32_t linreg_bm;
uint32_t linreg_offset_bm, linreg_offset_bp; // bitmask and bitpos
} regulator_info[] =
{
#define ADD_REGULATOR(name, mask) \
.min = HW_POWER_##name##CTRL__TRG_MIN, \
.step = HW_POWER_##name##CTRL__TRG_STEP, \
.reg = &HW_POWER_##name##CTRL, \
.trg_bm = BM_POWER_##name##CTRL_TRG, \
.trg_bp = BP_POWER_##name##CTRL_TRG, \
.flags = mask, \
.off = 0
#define ADD_REGULATOR_BO(name) \
.bo_bm = BM_POWER_##name##CTRL_BO_OFFSET, \
.bo_bp = BP_POWER_##name##CTRL_BO_OFFSET
#define ADD_REGULATOR_LINREG(name) \
.linreg_bm = BM_POWER_##name##CTRL_ENABLE_LINREG
#define ADD_REGULATOR_LINREG_OFFSET(name) \
.linreg_offset_bm = BM_POWER_##name##CTRL_LINREG_OFFSET, \
.linreg_offset_bp = BP_POWER_##name##CTRL_LINREG_OFFSET
#if IMX233_SUBTARGET >= 3700
[REGULATOR_VDDD] =
{
ADD_REGULATOR(VDDD, HAS_BO|HAS_LINREG|HAS_LINREG_OFFSET),
ADD_REGULATOR_BO(VDDD),
ADD_REGULATOR_LINREG(VDDD),
ADD_REGULATOR_LINREG_OFFSET(VDDD)
},
[REGULATOR_VDDA] =
{
ADD_REGULATOR(VDDA, HAS_BO|HAS_LINREG|HAS_LINREG_OFFSET),
ADD_REGULATOR_BO(VDDA),
ADD_REGULATOR_LINREG(VDDA),
ADD_REGULATOR_LINREG_OFFSET(VDDA)
},
[REGULATOR_VDDIO] =
{
ADD_REGULATOR(VDDIO, HAS_BO|HAS_LINREG_OFFSET),
ADD_REGULATOR_BO(VDDIO),
ADD_REGULATOR_LINREG_OFFSET(VDDIO)
},
#if IMX233_SUBTARGET >= 3780
[REGULATOR_VDDMEM] =
{
ADD_REGULATOR(VDDMEM, HAS_LINREG),
ADD_REGULATOR_LINREG(VDDMEM),
},
#endif
#else
[REGULATOR_VDDD] =
{
.min = HW_POWER_VDDDCTRL__TRG_MIN,
.step = HW_POWER_VDDDCTRL__TRG_STEP,
.off = HW_POWER_VDDDCTRL__TRG_OFF,
.reg = &HW_POWER_VDDCTRL,
.flags = HAS_BO | HAS_ABS_BO,
.trg_bm = BM_POWER_VDDCTRL_VDDD_TRG,
.trg_bp = BP_POWER_VDDCTRL_VDDD_TRG,
.bo_bm = BM_POWER_VDDCTRL_VDDD_BO,
.bo_bp = BP_POWER_VDDCTRL_VDDD_BO,
},
#endif
};
void imx233_power_get_regulator(enum imx233_regulator_t reg, unsigned *value_mv,
unsigned *brownout_mv)
{
uint32_t reg_val = *regulator_info[reg].reg;
/* read target value */
unsigned raw_val = (reg_val & regulator_info[reg].trg_bm) >> regulator_info[reg].trg_bp;
raw_val -= regulator_info[reg].off;
/* convert it to mv */
if(value_mv)
*value_mv = regulator_info[reg].min + regulator_info[reg].step * raw_val;
if(regulator_info[reg].flags & HAS_BO)
{
/* read brownout offset */
unsigned raw_bo = (reg_val & regulator_info[reg].bo_bm) >> regulator_info[reg].bo_bp;
raw_bo -= regulator_info[reg].off;
if(!(regulator_info[reg].flags & HAS_ABS_BO))
raw_bo = raw_val - raw_bo;
/* convert it to mv */
if(brownout_mv)
*brownout_mv = regulator_info[reg].min + regulator_info[reg].step * raw_bo;
}
else if(brownout_mv)
*brownout_mv = 0;
}
#if IMX233_SUBTARGET >= 3700 && IMX233_SUBTARGET < 3780
static void update_dcfuncv(void)
{
int vddd, vdda, vddio;
imx233_power_get_regulator(REGULATOR_VDDD, &vddd, NULL);
imx233_power_get_regulator(REGULATOR_VDDA, &vdda, NULL);
imx233_power_get_regulator(REGULATOR_VDDIO, &vddio, NULL);
// assume Li-Ion, to divide by 6.25, do *100 and /625
BF_WR_ALL(POWER_DCFUNCV, VDDIO(((vddio - vdda) * 100) / 625),
VDDD(((vdda - vddd) * 100) / 625));
}
#endif
void imx233_power_set_regulator(enum imx233_regulator_t reg, unsigned value_mv,
unsigned brownout_mv)
{
// compute raw values
unsigned raw_val = (value_mv - regulator_info[reg].min) / regulator_info[reg].step;
raw_val += regulator_info[reg].off;
if(!(regulator_info[reg].flags & HAS_ABS_BO))
brownout_mv = value_mv - brownout_mv;
unsigned raw_bo_offset = brownout_mv/ regulator_info[reg].step;
raw_bo_offset += regulator_info[reg].off;
// clear dc-dc ok flag
#if IMX233_SUBTARGET >= 3700
BF_SET(POWER_CTRL, DC_OK_IRQ);
#endif
// update
uint32_t reg_val = (*regulator_info[reg].reg) & ~regulator_info[reg].trg_bm;
reg_val |= raw_val << regulator_info[reg].trg_bp;
if(regulator_info[reg].flags & HAS_BO)
{
reg_val &= ~regulator_info[reg].bo_bm;
reg_val |= raw_bo_offset << regulator_info[reg].bo_bp;
}
*regulator_info[reg].reg = reg_val;
/* Wait until regulator is stable (ie brownout condition is gone)
* If DC-DC is used, we can use the DCDC_OK irq
* Otherwise it is unreliable (doesn't work when lowering voltage on linregs)
* It usually takes between 0.5ms and 2.5ms */
#if IMX233_SUBTARGET >= 3700
sleep(1);
#else
if(!BF_RD(POWER_5VCTRL, EN_DCDC1) || !BF_RD(POWER_5VCTRL, EN_DCDC2))
panicf("regulator %d: wait for voltage stabilize in linreg mode !", reg);
unsigned timeout = current_tick + (HZ * 20) / 1000;
while(!BF_RD(POWER_STS, DC1_OK) || !BF_RD(POWER_STS, DC2_OK) || !TIME_AFTER(current_tick, timeout))
yield();
if(!BF_RD(POWER_STS, DC1_OK) || !BF_RD(POWER_STS, DC2_OK))
panicf("regulator %d: failed to stabilize", reg);
#endif
/* On STMP37xx, we need to update the weird HW_POWER_DCFUNCV register */
#if IMX233_SUBTARGET >= 3700 && IMX233_SUBTARGET < 3780
update_dcfuncv();
#endif
}
// offset is -1,0 or 1
void imx233_power_get_regulator_linreg(enum imx233_regulator_t reg,
bool *enabled, int *linreg_offset)
{
if(enabled && regulator_info[reg].flags & HAS_LINREG)
*enabled = !!(*regulator_info[reg].reg & regulator_info[reg].linreg_bm);
else if(enabled)
*enabled = true;
if(regulator_info[reg].flags & HAS_LINREG_OFFSET)
{
unsigned v = (*regulator_info[reg].reg & regulator_info[reg].linreg_offset_bm);
v >>= regulator_info[reg].linreg_offset_bp;
if(linreg_offset)
*linreg_offset = (v == 0) ? 0 : (v == 1) ? 1 : -1;
}
else if(linreg_offset)
*linreg_offset = 0;
}
// offset is -1,0 or 1
/*
void imx233_power_set_regulator_linreg(enum imx233_regulator_t reg,
bool enabled, int linreg_offset)
{
}
*/
#if IMX233_SUBTARGET < 3700
int imx233_power_sense_die_temperature(int *min, int *max)
{
static int die_temp[] =
{
-50, -40, -30, -20, -10, 0, 15, 25, 35, 45, 55, 70, 85, 95, 105, 115, 130
};
/* power up temperature sensor */
BF_WR(POWER_SPEEDTEMP_CLR, TEMP_CTRL(1 << 3));
/* read temp */
int sense = BF_RD(POWER_SPEEDTEMP, TEMP_STS);
*min = die_temp[sense];
*max = die_temp[sense + 1];
/* power down temperature sensor */
BF_WR(POWER_SPEEDTEMP_SET, TEMP_CTRL(1 << 3));
return 0;
}
#endif
struct imx233_power_info_t imx233_power_get_info(unsigned flags)
{
#if IMX233_SUBTARGET >= 3700
static int dcdc_freqsel[8] = {
[BV_POWER_MISC_FREQSEL__RES] = 0,
[BV_POWER_MISC_FREQSEL__20MHz] = 20000,
[BV_POWER_MISC_FREQSEL__24MHz] = 24000,
[BV_POWER_MISC_FREQSEL__19p2MHz] = 19200,
[BV_POWER_MISC_FREQSEL__14p4MHz] = 14200,
[BV_POWER_MISC_FREQSEL__18MHz] = 18000,
[BV_POWER_MISC_FREQSEL__21p6MHz] = 21600,
[BV_POWER_MISC_FREQSEL__17p28MHz] = 17280,
};
#endif
struct imx233_power_info_t s;
memset(&s, 0, sizeof(s));
#if IMX233_SUBTARGET >= 3700
if(flags & POWER_INFO_DCDC)
{
s.dcdc_sel_pllclk = BF_RD(POWER_MISC, SEL_PLLCLK);
s.dcdc_freqsel = dcdc_freqsel[BF_RD(POWER_MISC, FREQSEL)];
}
#endif
if(flags & POWER_INFO_CHARGE)
{
#if IMX233_SUBTARGET >= 3700
uint32_t current = BF_RD(POWER_CHARGE, BATTCHRG_I);
uint32_t stop_current = BF_RD(POWER_CHARGE, STOP_ILIMIT);
#else
uint32_t current = BF_RD(POWER_BATTCHRG, BATTCHRG_I);
uint32_t stop_current = BF_RD(POWER_BATTCHRG, STOP_ILIMIT);
#endif
for(unsigned i = 0; i < ARRAYLEN(g_charger_current_bits); i++)
if(current & g_charger_current_bits[i].bit)
s.charge_current += g_charger_current_bits[i].current;
for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++)
if(stop_current & g_charger_stop_current_bits[i].bit)
s.stop_current += g_charger_stop_current_bits[i].current;
s.charging = BF_RD(POWER_STS, CHRGSTS);
#if IMX233_SUBTARGET >= 3700
s.batt_adj = BF_RD(POWER_BATTMONITOR, EN_BATADJ);
#else
s.batt_adj = BF_RD(POWER_DC1MULTOUT, EN_BATADJ);
#endif
}
#if IMX233_SUBTARGET >= 3780
if(flags & POWER_INFO_4P2)
{
s._4p2_enable = BF_RD(POWER_DCDC4P2, ENABLE_4P2);
s._4p2_dcdc = BF_RD(POWER_DCDC4P2, ENABLE_DCDC);
s._4p2_cmptrip = BF_RD(POWER_DCDC4P2, CMPTRIP);
s._4p2_dropout = BF_RD(POWER_DCDC4P2, DROPOUT_CTRL);
}
#endif
if(flags & POWER_INFO_5V)
{
#if IMX233_SUBTARGET >= 3780
s._5v_pwd_charge_4p2 = BF_RD(POWER_5VCTRL, PWD_CHARGE_4P2);
#endif
s._5v_dcdc_xfer = BF_RD(POWER_5VCTRL, DCDC_XFER);
#if IMX233_SUBTARGET >= 3700
s._5v_enable_dcdc = BF_RD(POWER_5VCTRL, ENABLE_DCDC);
#else
s._5v_enable_dcdc = BF_RD(POWER_5VCTRL, EN_DCDC1) && BF_RD(POWER_5VCTRL, EN_DCDC2);
#endif
#if IMX233_SUBTARGET >= 3780
uint32_t charge_4p2_ilimit = BF_RD(POWER_5VCTRL, CHARGE_4P2_ILIMIT);
for(unsigned i = 0; i < ARRAYLEN(g_4p2_charge_limit_bits); i++)
if(charge_4p2_ilimit & g_4p2_charge_limit_bits[i].bit)
s._5v_charge_4p2_limit += g_4p2_charge_limit_bits[i].current;
#endif
s._5v_vbusvalid_detect = BF_RD(POWER_5VCTRL, VBUSVALID_5VDETECT);
#if IMX233_SUBTARGET >= 3780
s._5v_vbus_cmps = BF_RD(POWER_5VCTRL, PWRUP_VBUS_CMPS);
#else
s._5v_vbus_cmps = BF_RD(POWER_5VCTRL, OTG_PWRUP_CMPS);
#endif
s._5v_vbusvalid_thr =
BF_RD(POWER_5VCTRL, VBUSVALID_TRSH) == 0 ?
2900
: 3900 + BF_RD(POWER_5VCTRL, VBUSVALID_TRSH) * 100;
}
return s;
}