3ec66893e3
Change-Id: I7517e7d5459e129dcfc9465c6fbd708619888fbe
990 lines
26 KiB
C
990 lines
26 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2002 by Heikki Hannikainen, Uwe Freese
|
|
* Revisions copyright (C) 2005 by Gerald Van Baren
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "kernel.h"
|
|
#include "thread.h"
|
|
#include "debug.h"
|
|
#if !defined(DX50) && !defined(DX90)
|
|
#include "adc.h"
|
|
#endif
|
|
#include "string.h"
|
|
#include "storage.h"
|
|
#include "power.h"
|
|
#include "audio.h"
|
|
#include "usb.h"
|
|
#include "powermgmt.h"
|
|
#include "backlight.h"
|
|
#include "lcd.h"
|
|
#include "rtc.h"
|
|
#if CONFIG_TUNER
|
|
#include "fmradio.h"
|
|
#endif
|
|
#include "sound.h"
|
|
#include "font.h"
|
|
#include "logf.h"
|
|
#ifdef HAVE_REMOTE_LCD
|
|
#include "lcd-remote.h"
|
|
#endif
|
|
#if (CONFIG_PLATFORM & PLATFORM_HOSTED)
|
|
#include <time.h>
|
|
#endif
|
|
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2)) \
|
|
&& !defined (SIMULATOR)
|
|
#include "pcf50606.h"
|
|
#endif
|
|
|
|
/** Shared by sim **/
|
|
static int last_sent_battery_level = 100;
|
|
/* battery level (0-100%) */
|
|
int battery_percent = -1;
|
|
void send_battery_level_event(void);
|
|
static void set_sleep_timer(int seconds);
|
|
|
|
static bool sleeptimer_active = false;
|
|
static long sleeptimer_endtick;
|
|
/* Whether an active sleep timer should be restarted when a key is pressed */
|
|
static bool sleeptimer_key_restarts = false;
|
|
/* The number of seconds the sleep timer was last set to */
|
|
static unsigned int sleeptimer_duration = 0;
|
|
|
|
#if CONFIG_CHARGING
|
|
/* State of the charger input as seen by the power thread */
|
|
enum charger_input_state_type charger_input_state;
|
|
/* Power inputs as seen by the power thread */
|
|
unsigned int power_thread_inputs;
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
/* Charging state (mode) as seen by the power thread */
|
|
enum charge_state_type charge_state = DISCHARGING;
|
|
#endif
|
|
#endif /* CONFIG_CHARGING */
|
|
|
|
static int shutdown_timeout = 0;
|
|
|
|
void handle_auto_poweroff(void);
|
|
static int poweroff_timeout = 0;
|
|
static long last_event_tick = 0;
|
|
|
|
#if (CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE) == PERCENTAGE_MEASURE
|
|
#ifdef SIMULATOR
|
|
int _battery_level(void) { return -1; }
|
|
int _battery_voltage(void);
|
|
extern const unsigned short percent_to_volt_discharge[BATTERY_TYPES_COUNT][11];
|
|
extern const unsigned short percent_to_volt_charge[11];
|
|
#else
|
|
int _battery_voltage(void) { return -1; }
|
|
const unsigned short percent_to_volt_discharge[BATTERY_TYPES_COUNT][11];
|
|
const unsigned short percent_to_volt_charge[11];
|
|
#endif
|
|
#elif (CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE) == VOLTAGE_MEASURE
|
|
int _battery_level(void) { return -1; }
|
|
/*
|
|
* Average battery voltage and charger voltage, filtered via a digital
|
|
* exponential filter (aka. exponential moving average, scaled):
|
|
* avgbat = y[n] = (N-1)/N*y[n-1] + x[n]. battery_millivolts = y[n] / N.
|
|
*/
|
|
static unsigned int avgbat;
|
|
/* filtered battery voltage, millivolts */
|
|
static unsigned int battery_millivolts;
|
|
#elif (CONFIG_BATTERY_MEASURE == 0)
|
|
int _battery_voltage(void) { return -1; }
|
|
int _battery_level(void) { return -1; }
|
|
|
|
const unsigned short percent_to_volt_discharge[BATTERY_TYPES_COUNT][11];
|
|
const unsigned short percent_to_volt_charge[11];
|
|
#endif
|
|
|
|
#if !(CONFIG_BATTERY_MEASURE & TIME_MEASURE)
|
|
static int powermgmt_est_runningtime_min;
|
|
int _battery_time(void) { return powermgmt_est_runningtime_min; }
|
|
#endif
|
|
|
|
/* default value, mAh */
|
|
static int battery_capacity = BATTERY_CAPACITY_DEFAULT;
|
|
|
|
#if BATTERY_TYPES_COUNT > 1
|
|
static int battery_type = 0;
|
|
#else
|
|
#define battery_type 0
|
|
#endif
|
|
|
|
/* Power history: power_history[0] is the newest sample */
|
|
unsigned short power_history[POWER_HISTORY_LEN] = {0};
|
|
|
|
#if (CONFIG_CPU == JZ4732) || (CONFIG_CPU == JZ4760B) || \
|
|
(CONFIG_CPU == X1000) || (CONFIG_PLATFORM & PLATFORM_HOSTED)
|
|
static char power_stack[DEFAULT_STACK_SIZE + POWERMGMT_DEBUG_STACK];
|
|
#else
|
|
static char power_stack[DEFAULT_STACK_SIZE/2 + POWERMGMT_DEBUG_STACK];
|
|
#endif
|
|
static const char power_thread_name[] = "power";
|
|
|
|
|
|
static int voltage_to_battery_level(int battery_millivolts);
|
|
static void battery_status_update(void);
|
|
|
|
#ifdef CURRENT_NORMAL /*only used if we have run current*/
|
|
static int runcurrent(void);
|
|
#endif
|
|
|
|
void battery_read_info(int *voltage, int *level)
|
|
{
|
|
int millivolts = _battery_voltage();
|
|
int percent;
|
|
|
|
if (voltage)
|
|
*voltage = millivolts;
|
|
|
|
if (level) {
|
|
percent = voltage_to_battery_level(millivolts);
|
|
if (percent < 0)
|
|
percent = _battery_level();
|
|
*level = percent;
|
|
}
|
|
}
|
|
|
|
#if BATTERY_TYPES_COUNT > 1
|
|
void set_battery_type(int type)
|
|
{
|
|
if (type != battery_type) {
|
|
if ((unsigned)type >= BATTERY_TYPES_COUNT)
|
|
type = 0;
|
|
|
|
battery_type = type;
|
|
battery_status_update(); /* recalculate the battery status */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef BATTERY_CAPACITY_MIN
|
|
void set_battery_capacity(int capacity)
|
|
{
|
|
if (capacity > BATTERY_CAPACITY_MAX)
|
|
capacity = BATTERY_CAPACITY_MAX;
|
|
if (capacity < BATTERY_CAPACITY_MIN)
|
|
capacity = BATTERY_CAPACITY_MIN;
|
|
|
|
battery_capacity = capacity;
|
|
|
|
battery_status_update(); /* recalculate the battery status */
|
|
}
|
|
#endif
|
|
|
|
int get_battery_capacity(void)
|
|
{
|
|
return battery_capacity;
|
|
}
|
|
|
|
int battery_time(void)
|
|
{
|
|
#if ((CONFIG_BATTERY_MEASURE & TIME_MEASURE) == 0)
|
|
|
|
#ifndef CURRENT_NORMAL /* no estimation without current */
|
|
return -1;
|
|
#endif
|
|
if (battery_capacity <= 0) /* nor without capacity */
|
|
return -1;
|
|
|
|
#endif
|
|
return _battery_time();
|
|
}
|
|
|
|
/* Returns battery level in percent */
|
|
int battery_level(void)
|
|
{
|
|
#ifdef HAVE_BATTERY_SWITCH
|
|
if ((power_input_status() & POWER_INPUT_BATTERY) == 0)
|
|
return -1;
|
|
#endif
|
|
return battery_percent;
|
|
}
|
|
|
|
/* Tells if the battery level is safe for disk writes */
|
|
bool battery_level_safe(void)
|
|
{
|
|
#if defined(NO_LOW_BATTERY_SHUTDOWN)
|
|
return true;
|
|
#elif (CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE)
|
|
return (battery_percent > 0);
|
|
#elif defined(HAVE_BATTERY_SWITCH)
|
|
/* Cannot rely upon the battery reading to be valid and the
|
|
* device could be powered externally. */
|
|
return input_millivolts() > battery_level_dangerous[battery_type];
|
|
#else
|
|
return battery_millivolts > battery_level_dangerous[battery_type];
|
|
#endif
|
|
}
|
|
|
|
/* look into the percent_to_volt_* table and get a realistic battery level */
|
|
static int voltage_to_percent(int voltage, const short* table)
|
|
{
|
|
if (voltage <= table[0]) {
|
|
return 0;
|
|
}
|
|
else if (voltage >= table[10]) {
|
|
return 100;
|
|
}
|
|
else {
|
|
/* search nearest value */
|
|
int i = 0;
|
|
|
|
while (i < 10 && table[i+1] < voltage)
|
|
i++;
|
|
|
|
/* interpolate linear between the smaller and greater value */
|
|
/* Tens digit, 10% per entry, ones digit: interpolated */
|
|
return i*10 + (voltage - table[i])*10 / (table[i+1] - table[i]);
|
|
}
|
|
}
|
|
|
|
/* update battery level and estimated runtime, called once per minute or
|
|
* when battery capacity / type settings are changed */
|
|
static int voltage_to_battery_level(int battery_millivolts)
|
|
{
|
|
int level;
|
|
|
|
if (battery_millivolts < 0)
|
|
return -1;
|
|
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
if (charging_state()) {
|
|
/* battery level is defined to be < 100% until charging is finished */
|
|
level = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_charge);
|
|
if (level > 99)
|
|
level = 99;
|
|
}
|
|
else
|
|
#endif /* CONFIG_CHARGING >= CHARGING_MONITOR */
|
|
{
|
|
/* DISCHARGING or error state */
|
|
level = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_discharge[battery_type]);
|
|
}
|
|
|
|
return level;
|
|
}
|
|
|
|
static void battery_status_update(void)
|
|
{
|
|
int millivolt = battery_voltage();
|
|
int level = _battery_level();
|
|
|
|
if (level < 0)
|
|
level = voltage_to_battery_level(millivolt);
|
|
|
|
#ifdef CURRENT_NORMAL /*don't try to estimate run or charge
|
|
time without normal current defined*/
|
|
/* calculate estimated remaining running time */
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
if (charging_state()) {
|
|
/* charging: remaining charging time */
|
|
powermgmt_est_runningtime_min = (100 - level)*battery_capacity*60
|
|
/ 100 / (CURRENT_MAX_CHG - runcurrent());
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* discharging: remaining running time */
|
|
if (level > 0 && (millivolt > percent_to_volt_discharge[battery_type][0]
|
|
|| millivolt < 0)) {
|
|
/* linear extrapolation */
|
|
powermgmt_est_runningtime_min = (level + battery_percent)*60
|
|
* battery_capacity / 200 / runcurrent();
|
|
}
|
|
if (0 > powermgmt_est_runningtime_min) {
|
|
powermgmt_est_runningtime_min = 0;
|
|
}
|
|
#endif
|
|
|
|
battery_percent = level;
|
|
send_battery_level_event();
|
|
}
|
|
|
|
#ifdef CURRENT_NORMAL /*check that we have a current defined in a config file*/
|
|
|
|
/*
|
|
* Estimate how much current we are drawing just to run.
|
|
*/
|
|
static int runcurrent(void)
|
|
{
|
|
int current = CURRENT_NORMAL;
|
|
|
|
#ifndef BOOTLOADER
|
|
if (usb_inserted()
|
|
#ifdef HAVE_USB_POWER
|
|
#if (CURRENT_USB < CURRENT_NORMAL)
|
|
|| usb_powered_only()
|
|
#else
|
|
&& !usb_powered_only()
|
|
#endif
|
|
#endif
|
|
) {
|
|
current = CURRENT_USB;
|
|
}
|
|
|
|
#if defined(HAVE_BACKLIGHT)
|
|
if (backlight_get_current_timeout() == 0) /* LED always on */
|
|
current += CURRENT_BACKLIGHT;
|
|
#endif
|
|
|
|
#if defined(HAVE_RECORDING) && defined(CURRENT_RECORD)
|
|
if (audio_status() & AUDIO_STATUS_RECORD)
|
|
current += CURRENT_RECORD;
|
|
#endif
|
|
|
|
#ifdef HAVE_SPDIF_POWER
|
|
if (spdif_powered())
|
|
current += CURRENT_SPDIF_OUT;
|
|
#endif
|
|
|
|
#ifdef HAVE_REMOTE_LCD
|
|
if (remote_detect())
|
|
current += CURRENT_REMOTE;
|
|
#endif
|
|
|
|
#if defined(HAVE_ATA_POWER_OFF) && defined(CURRENT_ATA)
|
|
if (ide_powered())
|
|
current += CURRENT_ATA;
|
|
#endif
|
|
|
|
#endif /* BOOTLOADER */
|
|
|
|
return current;
|
|
}
|
|
|
|
#endif /* CURRENT_NORMAL */
|
|
|
|
/* Check to see whether or not we've received an alarm in the last second */
|
|
#ifdef HAVE_RTC_ALARM
|
|
static void power_thread_rtc_process(void)
|
|
{
|
|
if (rtc_check_alarm_flag())
|
|
rtc_enable_alarm(false);
|
|
}
|
|
#endif
|
|
|
|
/* switch off unit if battery level is too low for reliable operation */
|
|
bool query_force_shutdown(void)
|
|
{
|
|
#if defined(NO_LOW_BATTERY_SHUTDOWN)
|
|
return false;
|
|
#elif CONFIG_BATTERY_MEASURE & PERCENTAGE_MEASURE
|
|
return battery_percent == 0;
|
|
#elif defined(HAVE_BATTERY_SWITCH)
|
|
/* Cannot rely upon the battery reading to be valid and the
|
|
* device could be powered externally. */
|
|
return input_millivolts() < battery_level_shutoff[battery_type];
|
|
#else
|
|
return battery_millivolts < battery_level_shutoff[battery_type];
|
|
#endif
|
|
}
|
|
|
|
#if defined(HAVE_BATTERY_SWITCH) || defined(HAVE_RESET_BATTERY_FILTER)
|
|
/*
|
|
* Reset the battery voltage filter to a new value and update the
|
|
* status.
|
|
*/
|
|
void reset_battery_filter(int millivolts)
|
|
{
|
|
avgbat = millivolts * BATT_AVE_SAMPLES;
|
|
battery_millivolts = millivolts;
|
|
battery_status_update();
|
|
}
|
|
#endif /* HAVE_BATTERY_SWITCH */
|
|
|
|
/** Generic charging algorithms for common charging types **/
|
|
#if CONFIG_CHARGING == 0 || CONFIG_CHARGING == CHARGING_SIMPLE
|
|
static inline void powermgmt_init_target(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static inline void charging_algorithm_step(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static inline void charging_algorithm_close(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
#elif CONFIG_CHARGING == CHARGING_MONITOR
|
|
/*
|
|
* Monitor CHARGING/DISCHARGING state.
|
|
*/
|
|
static inline void powermgmt_init_target(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static inline void charging_algorithm_step(void)
|
|
{
|
|
switch (charger_input_state)
|
|
{
|
|
case CHARGER_PLUGGED:
|
|
case CHARGER:
|
|
if (charging_state()) {
|
|
charge_state = CHARGING;
|
|
break;
|
|
}
|
|
/* Fallthrough */
|
|
case CHARGER_UNPLUGGED:
|
|
case NO_CHARGER:
|
|
charge_state = DISCHARGING;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void charging_algorithm_close(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
#endif /* CONFIG_CHARGING == * */
|
|
|
|
#if CONFIG_CHARGING
|
|
/* Shortcut function calls - compatibility, simplicity. */
|
|
|
|
/* Returns true if any power input is capable of charging. */
|
|
bool charger_inserted(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
unsigned int data = power_thread_inputs;
|
|
#else
|
|
unsigned int data = power_input_status();
|
|
#endif
|
|
return data & POWER_INPUT_CHARGER;
|
|
}
|
|
|
|
/* Returns true if any power input is connected - charging-capable
|
|
* or not. */
|
|
bool power_input_present(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
unsigned int data = power_thread_inputs;
|
|
#else
|
|
unsigned int data = power_input_status();
|
|
#endif
|
|
return data & POWER_INPUT;
|
|
}
|
|
|
|
/*
|
|
* Detect charger inserted. Return true if the state is transistional.
|
|
*/
|
|
static inline bool detect_charger(unsigned int pwr)
|
|
{
|
|
/*
|
|
* Detect charger plugged/unplugged transitions. On a plugged or
|
|
* unplugged event, we return immediately, run once through the main
|
|
* loop (including the subroutines), and end up back here where we
|
|
* transition to the appropriate steady state charger on/off state.
|
|
*/
|
|
if (pwr & POWER_INPUT_CHARGER) {
|
|
switch (charger_input_state)
|
|
{
|
|
case NO_CHARGER:
|
|
case CHARGER_UNPLUGGED:
|
|
charger_input_state = CHARGER_PLUGGED;
|
|
break;
|
|
|
|
case CHARGER_PLUGGED:
|
|
queue_broadcast(SYS_CHARGER_CONNECTED, 0);
|
|
last_sent_battery_level = 0;
|
|
charger_input_state = CHARGER;
|
|
break;
|
|
|
|
case CHARGER:
|
|
/* Steady state */
|
|
return false;
|
|
}
|
|
}
|
|
else { /* charger not inserted */
|
|
switch (charger_input_state)
|
|
{
|
|
case NO_CHARGER:
|
|
/* Steady state */
|
|
return false;
|
|
|
|
case CHARGER_UNPLUGGED:
|
|
queue_broadcast(SYS_CHARGER_DISCONNECTED, 0);
|
|
last_sent_battery_level = 100;
|
|
charger_input_state = NO_CHARGER;
|
|
break;
|
|
|
|
case CHARGER_PLUGGED:
|
|
case CHARGER:
|
|
charger_input_state = CHARGER_UNPLUGGED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Transitional state */
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_CHARGING */
|
|
|
|
|
|
#if CONFIG_BATTERY_MEASURE & VOLTAGE_MEASURE
|
|
/* Returns filtered battery voltage [millivolts] */
|
|
int battery_voltage(void)
|
|
{
|
|
return battery_millivolts;
|
|
}
|
|
|
|
static void average_init(void)
|
|
{
|
|
/* initialize the voltages for the exponential filter */
|
|
avgbat = _battery_voltage() + 15;
|
|
|
|
#ifdef HAVE_DISK_STORAGE /* this adjustment is only needed for HD based */
|
|
/* The battery voltage is usually a little lower directly after
|
|
turning on, because the disk was used heavily. Raise it by 5% */
|
|
#if CONFIG_CHARGING
|
|
if (!charger_inserted()) /* only if charger not connected */
|
|
#endif
|
|
{
|
|
avgbat += (percent_to_volt_discharge[battery_type][6] -
|
|
percent_to_volt_discharge[battery_type][5]) / 2;
|
|
}
|
|
#endif /* HAVE_DISK_STORAGE */
|
|
|
|
avgbat = avgbat * BATT_AVE_SAMPLES;
|
|
battery_millivolts = power_history[0] = avgbat / BATT_AVE_SAMPLES;
|
|
}
|
|
|
|
static void average_step(void)
|
|
{
|
|
avgbat += _battery_voltage() - avgbat / BATT_AVE_SAMPLES;
|
|
/*
|
|
* battery_millivolts is the millivolt-scaled filtered battery value.
|
|
*/
|
|
battery_millivolts = avgbat / BATT_AVE_SAMPLES;
|
|
}
|
|
|
|
static void average_step_low(void)
|
|
{
|
|
battery_millivolts = (_battery_voltage() + battery_millivolts + 1) / 2;
|
|
avgbat += battery_millivolts - avgbat / BATT_AVE_SAMPLES;
|
|
}
|
|
|
|
static void init_battery_percent(void)
|
|
{
|
|
#if CONFIG_CHARGING
|
|
if (charger_inserted()) {
|
|
battery_percent = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_charge);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
battery_percent = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_discharge[battery_type]);
|
|
battery_percent += battery_percent < 100;
|
|
}
|
|
|
|
}
|
|
|
|
static int power_hist_item(void)
|
|
{
|
|
return battery_millivolts;
|
|
}
|
|
#define power_history_unit() battery_millivolts
|
|
|
|
#else
|
|
int battery_voltage(void)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static void average_init(void) {}
|
|
static void average_step(void) {}
|
|
static void average_step_low(void) {}
|
|
static void init_battery_percent(void)
|
|
{
|
|
battery_percent = _battery_level();
|
|
}
|
|
|
|
static int power_hist_item(void)
|
|
{
|
|
return battery_percent;
|
|
}
|
|
#endif
|
|
|
|
static void collect_power_history(void)
|
|
{
|
|
/* rotate the power history */
|
|
memmove(&power_history[1], &power_history[0],
|
|
sizeof(power_history) - sizeof(power_history[0]));
|
|
power_history[0] = power_hist_item();
|
|
}
|
|
|
|
/*
|
|
* Monitor the presence of a charger and perform critical frequent steps
|
|
* such as running the battery voltage filter.
|
|
*/
|
|
static inline void power_thread_step(void)
|
|
{
|
|
/* If the power off timeout expires, the main thread has failed
|
|
to shut down the system, and we need to force a power off */
|
|
if (shutdown_timeout) {
|
|
shutdown_timeout -= POWER_THREAD_STEP_TICKS;
|
|
|
|
if (shutdown_timeout <= 0)
|
|
power_off();
|
|
}
|
|
|
|
#ifdef HAVE_RTC_ALARM
|
|
power_thread_rtc_process();
|
|
#endif
|
|
|
|
/*
|
|
* Do a digital exponential filter. We don't sample the battery if
|
|
* the disk is spinning unless we are in USB mode (the disk will most
|
|
* likely always be spinning in USB mode) or charging.
|
|
*/
|
|
if (!storage_disk_is_active() || usb_inserted()
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
|| charger_input_state == CHARGER
|
|
#endif
|
|
) {
|
|
average_step();
|
|
/* update battery status every time an update is available */
|
|
battery_status_update();
|
|
}
|
|
else if (battery_percent < 8) {
|
|
average_step_low();
|
|
/* update battery status every time an update is available */
|
|
battery_status_update();
|
|
|
|
/*
|
|
* If battery is low, observe voltage during disk activity.
|
|
* Shut down if voltage drops below shutoff level and we are not
|
|
* using NiMH or Alkaline batteries.
|
|
*/
|
|
if (!shutdown_timeout && query_force_shutdown()) {
|
|
sys_poweroff();
|
|
}
|
|
}
|
|
} /* power_thread_step */
|
|
|
|
static void power_thread(void)
|
|
{
|
|
long next_power_hist;
|
|
|
|
/* Delay reading the first battery level */
|
|
#ifdef MROBE_100
|
|
while (_battery_voltage() > 4200) /* gives false readings initially */
|
|
#elif defined(DX50) || defined(DX90)
|
|
while (_battery_voltage() < 1) /* can give false readings initially */
|
|
#endif
|
|
{
|
|
sleep(HZ/100);
|
|
}
|
|
|
|
#if CONFIG_CHARGING
|
|
/* Initialize power input status before calling other routines. */
|
|
power_thread_inputs = power_input_status();
|
|
#endif
|
|
|
|
/* call target specific init now */
|
|
powermgmt_init_target();
|
|
/* initialize voltage averaging (if available) */
|
|
average_init();
|
|
/* get initial battery level value (in %) */
|
|
init_battery_percent();
|
|
/* get some initial data for the power curve */
|
|
collect_power_history();
|
|
|
|
next_power_hist = current_tick + HZ*60;
|
|
|
|
while (1)
|
|
{
|
|
#if CONFIG_CHARGING
|
|
unsigned int pwr = power_input_status();
|
|
#ifdef HAVE_BATTERY_SWITCH
|
|
if ((pwr ^ power_thread_inputs) & POWER_INPUT_BATTERY) {
|
|
sleep(HZ/10);
|
|
reset_battery_filter(_battery_voltage());
|
|
}
|
|
#endif
|
|
power_thread_inputs = pwr;
|
|
|
|
if (!detect_charger(pwr))
|
|
#endif /* CONFIG_CHARGING */
|
|
{
|
|
/* Steady state */
|
|
sleep(POWER_THREAD_STEP_TICKS);
|
|
|
|
/* Do common power tasks */
|
|
power_thread_step();
|
|
}
|
|
|
|
/* Perform target tasks */
|
|
charging_algorithm_step();
|
|
|
|
/* check if some idle or sleep timer wears off */
|
|
handle_auto_poweroff();
|
|
|
|
if (TIME_AFTER(current_tick, next_power_hist)) {
|
|
/* increment to ensure there is a record for every minute
|
|
* rather than go forward from the current tick */
|
|
next_power_hist += HZ*60;
|
|
collect_power_history();
|
|
}
|
|
}
|
|
} /* power_thread */
|
|
|
|
void powermgmt_init(void)
|
|
{
|
|
create_thread(power_thread, power_stack, sizeof(power_stack), 0,
|
|
power_thread_name IF_PRIO(, PRIORITY_SYSTEM)
|
|
IF_COP(, CPU));
|
|
}
|
|
|
|
/* Various hardware housekeeping tasks relating to shutting down the player */
|
|
void shutdown_hw(void)
|
|
{
|
|
charging_algorithm_close();
|
|
audio_stop();
|
|
|
|
if (battery_level_safe()) { /* do not save on critical battery */
|
|
font_unload_all();
|
|
|
|
/* Commit pending writes if needed. Even though we don't do write caching,
|
|
things like flash translation layers may need this to commit scattered
|
|
pages to their final locations. So far only used for iPod Nano 2G. */
|
|
#ifdef HAVE_STORAGE_FLUSH
|
|
storage_flush();
|
|
#endif
|
|
|
|
if (storage_disk_is_active())
|
|
storage_spindown(1);
|
|
}
|
|
|
|
audiohw_close();
|
|
|
|
/* If HD is still active we try to wait for spindown, otherwise the
|
|
shutdown_timeout in power_thread_step will force a power off */
|
|
while (storage_disk_is_active())
|
|
sleep(HZ/10);
|
|
|
|
#ifndef HAVE_LCD_COLOR
|
|
lcd_set_contrast(0);
|
|
#endif
|
|
#ifdef HAVE_REMOTE_LCD
|
|
lcd_remote_set_contrast(0);
|
|
#endif
|
|
#ifdef HAVE_LCD_SHUTDOWN
|
|
lcd_shutdown();
|
|
#endif
|
|
|
|
/* Small delay to make sure all HW gets time to flush. Especially
|
|
eeprom chips are quite slow and might be still writing the last
|
|
byte. */
|
|
sleep(HZ/4);
|
|
power_off();
|
|
}
|
|
|
|
void set_poweroff_timeout(int timeout)
|
|
{
|
|
poweroff_timeout = timeout;
|
|
}
|
|
|
|
void reset_poweroff_timer(void)
|
|
{
|
|
last_event_tick = current_tick;
|
|
if (sleeptimer_active && sleeptimer_key_restarts)
|
|
set_sleep_timer(sleeptimer_duration);
|
|
}
|
|
|
|
void sys_poweroff(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
logf("sys_poweroff()");
|
|
/* If the main thread fails to shut down the system, we will force a
|
|
power off after an 20 second timeout - 28 seconds if recording */
|
|
if (shutdown_timeout == 0) {
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2)) && !defined(SIMULATOR)
|
|
pcf50606_reset_timeout(); /* Reset timer on first attempt only */
|
|
#endif
|
|
#ifdef HAVE_RECORDING
|
|
if (audio_status() & AUDIO_STATUS_RECORD)
|
|
shutdown_timeout += HZ*8;
|
|
#endif
|
|
#ifdef IPOD_NANO2G
|
|
/* The FTL alone may take half a minute to shut down cleanly. */
|
|
shutdown_timeout += HZ*60;
|
|
#else
|
|
shutdown_timeout += HZ*20;
|
|
#endif
|
|
}
|
|
|
|
queue_broadcast(SYS_POWEROFF, 0);
|
|
#endif /* BOOTLOADER */
|
|
}
|
|
|
|
void cancel_shutdown(void)
|
|
{
|
|
logf("cancel_shutdown()");
|
|
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2)) && !defined(SIMULATOR)
|
|
/* TODO: Move some things to target/ tree */
|
|
if (shutdown_timeout)
|
|
pcf50606_reset_timeout();
|
|
#endif
|
|
|
|
shutdown_timeout = 0;
|
|
}
|
|
|
|
/* Send system battery level update events on reaching certain significant
|
|
levels. This must be called after battery_percent has been updated. */
|
|
void send_battery_level_event(void)
|
|
{
|
|
static const int levels[] = { 5, 15, 30, 50, 0 };
|
|
const int *level = levels;
|
|
|
|
while (*level)
|
|
{
|
|
if (battery_percent <= *level && last_sent_battery_level > *level) {
|
|
last_sent_battery_level = *level;
|
|
queue_broadcast(SYS_BATTERY_UPDATE, last_sent_battery_level);
|
|
break;
|
|
}
|
|
|
|
level++;
|
|
}
|
|
}
|
|
|
|
void set_sleeptimer_duration(int minutes)
|
|
{
|
|
set_sleep_timer(minutes * 60);
|
|
}
|
|
|
|
static void set_sleep_timer(int seconds)
|
|
{
|
|
if (seconds) {
|
|
sleeptimer_active = true;
|
|
sleeptimer_endtick = current_tick + seconds * HZ;
|
|
}
|
|
else {
|
|
sleeptimer_active = false;
|
|
sleeptimer_endtick = 0;
|
|
}
|
|
sleeptimer_duration = seconds;
|
|
}
|
|
|
|
int get_sleep_timer(void)
|
|
{
|
|
if (sleeptimer_active && (sleeptimer_endtick >= current_tick))
|
|
return (sleeptimer_endtick - current_tick) / HZ;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void set_keypress_restarts_sleep_timer(bool enable)
|
|
{
|
|
sleeptimer_key_restarts = enable;
|
|
}
|
|
|
|
#ifndef BOOTLOADER
|
|
static void handle_sleep_timer(void)
|
|
{
|
|
if (!sleeptimer_active)
|
|
return;
|
|
|
|
/* Handle sleeptimer */
|
|
if (TIME_AFTER(current_tick, sleeptimer_endtick)) {
|
|
if (usb_inserted()
|
|
#if CONFIG_CHARGING && !defined(HAVE_POWEROFF_WHILE_CHARGING)
|
|
|| charger_input_state != NO_CHARGER
|
|
#endif
|
|
) {
|
|
DEBUGF("Sleep timer timeout. Stopping...\n");
|
|
audio_pause();
|
|
set_sleep_timer(0);
|
|
backlight_off(); /* Nighty, nighty... */
|
|
}
|
|
else {
|
|
DEBUGF("Sleep timer timeout. Shutting off...\n");
|
|
sys_poweroff();
|
|
}
|
|
}
|
|
}
|
|
#endif /* BOOTLOADER */
|
|
|
|
/*
|
|
* We shut off in the following cases:
|
|
* 1) The unit is idle, not playing music
|
|
* 2) The unit is playing music, but is paused
|
|
* 3) The battery level has reached shutdown limit
|
|
*
|
|
* We do not shut off in the following cases:
|
|
* 1) The USB is connected
|
|
* 2) The charger is connected
|
|
* 3) We are recording, or recording with pause
|
|
* 4) The radio is playing
|
|
*/
|
|
void handle_auto_poweroff(void)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
long timeout = poweroff_timeout*60*HZ;
|
|
int audio_stat = audio_status();
|
|
long tick = current_tick;
|
|
|
|
/*
|
|
* Inhibit shutdown as long as the charger is plugged in. If it is
|
|
* unplugged, wait for a timeout period and then shut down.
|
|
*/
|
|
if (audio_stat == AUDIO_STATUS_PLAY
|
|
#if CONFIG_CHARGING
|
|
|| charger_input_state == CHARGER
|
|
#endif
|
|
) {
|
|
last_event_tick = current_tick;
|
|
}
|
|
|
|
if (!shutdown_timeout && query_force_shutdown()) {
|
|
backlight_on();
|
|
sys_poweroff();
|
|
}
|
|
|
|
if (timeout &&
|
|
#if CONFIG_TUNER
|
|
!(get_radio_status() & FMRADIO_PLAYING) &&
|
|
#endif
|
|
!usb_inserted() &&
|
|
(audio_stat == 0 ||
|
|
(audio_stat == (AUDIO_STATUS_PLAY | AUDIO_STATUS_PAUSE) &&
|
|
!sleeptimer_active))) {
|
|
|
|
if (TIME_AFTER(tick, last_event_tick + timeout)
|
|
#if !(CONFIG_PLATFORM & PLATFORM_HOSTED)
|
|
&& TIME_AFTER(tick, storage_last_disk_activity() + timeout)
|
|
#endif
|
|
) {
|
|
sys_poweroff();
|
|
}
|
|
} else
|
|
handle_sleep_timer();
|
|
#endif
|
|
}
|