rockbox/apps/recorder/jpeg_load.c
Andrew Mahone eef7945a97 Move YUV->RGB in JPEG load from before scaler to after scaler. Required change to struct custom_format, so sorted the plugin API as well.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@20856 a1c6a512-1295-4272-9138-f99709370657
2009-05-06 04:53:56 +00:00

1986 lines
69 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* JPEG image viewer
* (This is a real mess if it has to be coded in one single C file)
*
* Copyright (C) 2009 Andrew Mahone fractional decode, split IDCT - 16-point
* IDCT based on IJG jpeg-7 pre-release
* File scrolling addition (C) 2005 Alexander Spyridakis
* Copyright (C) 2004 Jörg Hohensohn aka [IDC]Dragon
* Heavily borrowed from the IJG implementation (C) Thomas G. Lane
* Small & fast downscaling IDCT (C) 2002 by Guido Vollbeding JPEGclub.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "plugin.h"
#include "debug.h"
#include "jpeg_load.h"
/*#define JPEG_BS_DEBUG*/
/* for portability of below JPEG code */
#define MEMSET(p,v,c) memset(p,v,c)
#define MEMCPY(d,s,c) memcpy(d,s,c)
#define INLINE static inline
#define ENDIAN_SWAP16(n) n /* only for poor little endian machines */
/**************** begin JPEG code ********************/
#ifdef HAVE_LCD_COLOR
typedef struct uint8_rgb jpeg_pix_t;
#else
typedef uint8_t jpeg_pix_t;
#endif
#define JPEG_PIX_SZ (sizeof(jpeg_pix_t))
/* This can't be in jpeg_load.h because plugin.h includes it, and it conflicts
* with the definition in jpeg_decoder.h
*/
struct jpeg
{
int fd;
int buf_left;
unsigned char *buf_index;
unsigned long int bitbuf;
int bitbuf_bits;
int marker_ind;
int marker_val;
unsigned char marker;
int x_size, y_size; /* size of image (can be less than block boundary) */
int x_phys, y_phys; /* physical size, block aligned */
int x_mbl; /* x dimension of MBL */
int y_mbl; /* y dimension of MBL */
int blocks; /* blocks per MB */
int restart_interval; /* number of MCUs between RSTm markers */
int restart; /* blocks until next restart marker */
int mcu_row; /* current row relative to first row of this row of MCUs */
unsigned char *out_ptr; /* pointer to current row to output */
int cur_row; /* current row relative to top of image */
int set_rows;
int store_pos[4]; /* for Y block ordering */
#ifdef HAVE_LCD_COLOR
int last_dc_val[3];
#else
int last_dc_val;
#endif
int h_scale[2]; /* horizontal scalefactor = (2**N) / 8 */
int v_scale[2]; /* same as above, for vertical direction */
int k_need[3]; /* per component zig-zag index of last needed coefficient */
int zero_need[3]; /* per compenent number of coefficients to zero */
jpeg_pix_t *img_buf;
int quanttable[4][QUANT_TABLE_LENGTH]; /* raw quantization tables 0-3 */
struct huffman_table hufftable[2]; /* Huffman tables */
struct derived_tbl dc_derived_tbls[2]; /* Huffman-LUTs */
struct derived_tbl ac_derived_tbls[2];
struct frame_component frameheader[3]; /* Component descriptor */
struct scan_component scanheader[3]; /* currently not used */
int mcu_membership[6]; /* info per block */
int tab_membership[6];
int subsample_x[3]; /* info per component */
int subsample_y[3];
unsigned char buf[JPEG_READ_BUF_SIZE];
struct img_part part;
};
INLINE unsigned range_limit(int value)
{
#if CONFIG_CPU == SH7034
unsigned tmp;
asm ( /* Note: Uses knowledge that only low byte of result is used */
"mov #-128,%[t] \n"
"sub %[t],%[v] \n" /* value -= -128; equals value += 128; */
"extu.b %[v],%[t] \n"
"cmp/eq %[v],%[t] \n" /* low byte == whole number ? */
"bt 1f \n" /* yes: no overflow */
"cmp/pz %[v] \n" /* overflow: positive? */
"subc %[v],%[v] \n" /* %[r] now either 0 or 0xffffffff */
"1: \n"
: /* outputs */
[v]"+r"(value),
[t]"=&r"(tmp)
);
return value;
#elif defined(CPU_COLDFIRE)
/* Note: Uses knowledge that only the low byte of the result is used */
asm (
"add.l #128,%[v] \n" /* value += 128; */
"cmp.l #255,%[v] \n" /* overflow? */
"bls.b 1f \n" /* no: return value */
/* yes: set low byte to appropriate boundary */
"spl.b %[v] \n"
"1: \n"
: /* outputs */
[v]"+d"(value)
);
return value;
#elif defined(CPU_ARM)
/* Note: Uses knowledge that only the low byte of the result is used */
asm (
"add %[v], %[v], #128 \n" /* value += 128 */
"cmp %[v], #255 \n" /* out of range 0..255? */
"mvnhi %[v], %[v], asr #31 \n" /* yes: set all bits to ~(sign_bit) */
: /* outputs */
[v]"+r"(value)
);
return value;
#else
value += 128;
if ((unsigned)value <= 255)
return value;
if (value < 0)
return 0;
return 255;
#endif
}
/* IDCT implementation */
#define CONST_BITS 13
#define PASS1_BITS 2
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#define FIX_0_298631336 2446 /* FIX(0.298631336) */
#define FIX_0_390180644 3196 /* FIX(0.390180644) */
#define FIX_0_541196100 4433 /* FIX(0.541196100) */
#define FIX_0_765366865 6270 /* FIX(0.765366865) */
#define FIX_0_899976223 7373 /* FIX(0.899976223) */
#define FIX_1_175875602 9633 /* FIX(1.175875602) */
#define FIX_1_501321110 12299 /* FIX(1.501321110) */
#define FIX_1_847759065 15137 /* FIX(1.847759065) */
#define FIX_1_961570560 16069 /* FIX(1.961570560) */
#define FIX_2_053119869 16819 /* FIX(2.053119869) */
#define FIX_2_562915447 20995 /* FIX(2.562915447) */
#define FIX_3_072711026 25172 /* FIX(3.072711026) */
/* Multiply an long variable by an long constant to yield an long result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#define MULTIPLY16(var,const) (((short) (var)) * ((short) (const)))
#define MULTIPLY(var1, var2) ((var1) * (var2))
/*
* Macros for handling fixed-point arithmetic; these are used by many
* but not all of the DCT/IDCT modules.
*
* All values are expected to be of type INT32.
* Fractional constants are scaled left by CONST_BITS bits.
* CONST_BITS is defined within each module using these macros,
* and may differ from one module to the next.
*/
#define ONE ((long)1)
#define CONST_SCALE (ONE << CONST_BITS)
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
* thus causing a lot of useless floating-point operations at run time.
*/
#define FIX(x) ((long) ((x) * CONST_SCALE + 0.5))
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
/* Descale and correctly round an int value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) (((x) + (1l << ((n)-1))) >> (n))
#define DS_OUT ((CONST_BITS)+(PASS1_BITS)+3)
/*
* Conversion of full 0-255 range YCrCb to RGB:
* |R| |1.000000 -0.000001 1.402000| |Y'|
* |G| = |1.000000 -0.334136 -0.714136| |Pb|
* |B| |1.000000 1.772000 0.000000| |Pr|
* Scaled (yields s15-bit output):
* |R| |128 0 179| |Y |
* |G| = |128 -43 -91| |Cb - 128|
* |B| |128 227 0| |Cr - 128|
*/
#define YFAC 128
#define RVFAC 179
#define GUFAC (-43)
#define GVFAC (-91)
#define BUFAC 227
#define COMPONENT_SHIFT 15
/* horizontal-pass 1-point IDCT */
static void idct1h(int *ws, unsigned char *out, int rows, int rowstep)
{
int row;
for (row = 0; row < rows; row++)
{
*out = range_limit((int) DESCALE(*ws, DS_OUT));
out += rowstep;
ws += 8;
}
}
/* vertical-pass 2-point IDCT */
static void idct2v(int *ws, int cols)
{
int col;
for (col = 0; col < cols; col++)
{
int tmp1 = ws[0];
int tmp2 = ws[8];
ws[0] = tmp1 + tmp2;
ws[8] = tmp1 - tmp2;
ws++;
}
}
/* horizontal-pass 2-point IDCT */
static void idct2h(int *ws, unsigned char *out, int rows, int rowstep)
{
int row;
for (row = 0; row < rows; row++)
{
int tmp1 = ws[0] + (ONE << (DS_OUT - 1));
int tmp2 = ws[1];
out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp1 + tmp2,
DS_OUT));
out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp1 - tmp2,
DS_OUT));
out += rowstep;
ws += 8;
}
}
/* vertical-pass 4-point IDCT */
static void idct4v(int *ws, int cols)
{
int tmp0, tmp2, tmp10, tmp12;
int z1, z2, z3;
int col;
for (col = 0; col < cols; col++, ws++)
{
/* Even part */
tmp0 = ws[8*0];
tmp2 = ws[8*2];
tmp10 = (tmp0 + tmp2) << PASS1_BITS;
tmp12 = (tmp0 - tmp2) << PASS1_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = ws[8*1];
z3 = ws[8*3];
z1 = MULTIPLY16(z2 + z3, FIX_0_541196100) +
(ONE << (CONST_BITS - PASS1_BITS - 1));
tmp0 = RIGHT_SHIFT(z1 + MULTIPLY16(z3, - FIX_1_847759065),
CONST_BITS-PASS1_BITS);
tmp2 = RIGHT_SHIFT(z1 + MULTIPLY16(z2, FIX_0_765366865),
CONST_BITS-PASS1_BITS);
/* Final output stage */
ws[8*0] = (int) (tmp10 + tmp2);
ws[8*3] = (int) (tmp10 - tmp2);
ws[8*1] = (int) (tmp12 + tmp0);
ws[8*2] = (int) (tmp12 - tmp0);
}
}
/* horizontal-pass 4-point IDCT */
static void idct4h(int *ws, unsigned char *out, int rows, int rowstep)
{
int tmp0, tmp2, tmp10, tmp12;
int z1, z2, z3;
int row;
for (row = 0; row < rows; row++, out += rowstep, ws += 8)
{
/* Even part */
tmp0 = (int) ws[0] + (ONE << (PASS1_BITS + 2));
tmp2 = (int) ws[2];
tmp10 = (tmp0 + tmp2) << CONST_BITS;
tmp12 = (tmp0 - tmp2) << CONST_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = (int) ws[1];
z3 = (int) ws[3];
z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
tmp0 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
tmp2 = z1 + MULTIPLY16(z2, FIX_0_765366865);
/* Final output stage */
out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp10 + tmp2,
DS_OUT));
out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp10 - tmp2,
DS_OUT));
out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp12 + tmp0,
DS_OUT));
out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp12 - tmp0,
DS_OUT));
}
}
/* vertical-pass 8-point IDCT */
static void idct8v(int *ws, int cols)
{
long tmp0, tmp1, tmp2, tmp3;
long tmp10, tmp11, tmp12, tmp13;
long z1, z2, z3, z4, z5;
int col;
for (col = 0; col < cols; col++, ws++)
{
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if ((ws[8*1] | ws[8*2] | ws[8*3]
| ws[8*4] | ws[8*5] | ws[8*6] | ws[8*7]) == 0)
{
/* AC terms all zero */
int dcval = ws[8*0] << PASS1_BITS;
ws[8*0] = ws[8*1] = ws[8*2] = ws[8*3] = ws[8*4]
= ws[8*5] = ws[8*6] = ws[8*7] = dcval;
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = ws[8*2];
z3 = ws[8*6];
z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865);
z2 = ws[8*0] << CONST_BITS;
z2 += ONE << (CONST_BITS - PASS1_BITS - 1);
z3 = ws[8*4] << CONST_BITS;
tmp0 = (z2 + z3);
tmp1 = (z2 - z3);
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */
tmp0 = ws[8*7];
tmp1 = ws[8*5];
tmp2 = ws[8*3];
tmp3 = ws[8*1];
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
ws[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
ws[8*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
ws[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
ws[8*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
ws[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
ws[8*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
ws[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
ws[8*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
}
}
/* horizontal-pass 8-point IDCT */
static void idct8h(int *ws, unsigned char *out, int rows, int rowstep)
{
long tmp0, tmp1, tmp2, tmp3;
long tmp10, tmp11, tmp12, tmp13;
long z1, z2, z3, z4, z5;
int row;
for (row = 0; row < rows; row++, out += rowstep, ws += 8)
{
/* Rows of zeroes can be exploited in the same way as we did with
* columns. However, the column calculation has created many nonzero AC
* terms, so the simplification applies less often (typically 5% to 10%
* of the time). On machines with very fast multiplication, it's
* possible that the test takes more time than it's worth. In that
* case this section may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if ((ws[1] | ws[2] | ws[3]
| ws[4] | ws[5] | ws[6] | ws[7]) == 0)
{
/* AC terms all zero */
unsigned char dcval = range_limit((int) DESCALE((long) ws[0],
PASS1_BITS+3));
out[JPEG_PIX_SZ*0] = dcval;
out[JPEG_PIX_SZ*1] = dcval;
out[JPEG_PIX_SZ*2] = dcval;
out[JPEG_PIX_SZ*3] = dcval;
out[JPEG_PIX_SZ*4] = dcval;
out[JPEG_PIX_SZ*5] = dcval;
out[JPEG_PIX_SZ*6] = dcval;
out[JPEG_PIX_SZ*7] = dcval;
continue;
}
#endif
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = (long) ws[2];
z3 = (long) ws[6];
z1 = MULTIPLY16(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY16(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY16(z2, FIX_0_765366865);
z4 = (long) ws[0] + (ONE << (PASS1_BITS + 2));
z4 <<= CONST_BITS;
z5 = (long) ws[4] << CONST_BITS;
tmp0 = z4 + z5;
tmp1 = z4 - z5;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */
tmp0 = (long) ws[7];
tmp1 = (long) ws[5];
tmp2 = (long) ws[3];
tmp3 = (long) ws[1];
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY16(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY16(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY16(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY16(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY16(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY16(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY16(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY16(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY16(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp10 + tmp3,
DS_OUT));
out[JPEG_PIX_SZ*7] = range_limit((int) RIGHT_SHIFT(tmp10 - tmp3,
DS_OUT));
out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp11 + tmp2,
DS_OUT));
out[JPEG_PIX_SZ*6] = range_limit((int) RIGHT_SHIFT(tmp11 - tmp2,
DS_OUT));
out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp12 + tmp1,
DS_OUT));
out[JPEG_PIX_SZ*5] = range_limit((int) RIGHT_SHIFT(tmp12 - tmp1,
DS_OUT));
out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp13 + tmp0,
DS_OUT));
out[JPEG_PIX_SZ*4] = range_limit((int) RIGHT_SHIFT(tmp13 - tmp0,
DS_OUT));
}
}
/* vertical-pass 16-point IDCT */
static void idct16v(int *ws, int cols)
{
long tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
long tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
long z1, z2, z3, z4;
int col;
for (col = 0; col < cols; col++, ws++)
{
/* Even part */
tmp0 = ws[8*0] << CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += 1 << (CONST_BITS-PASS1_BITS-1);
z1 = ws[8*4];
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
tmp10 = tmp0 + tmp1;
tmp11 = tmp0 - tmp1;
tmp12 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
z1 = ws[8*2];
z2 = ws[8*6];
z3 = z1 - z2;
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
/* (c6+c2)[16] = (c3+c1)[8] */
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447);
/* (c6-c14)[16] = (c3-c7)[8] */
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223);
/* (c2-c10)[16] = (c1-c5)[8] */
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887));
/* (c10-c14)[16] = (c5-c7)[8] */
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579));
tmp20 = tmp10 + tmp0;
tmp27 = tmp10 - tmp0;
tmp21 = tmp12 + tmp1;
tmp26 = tmp12 - tmp1;
tmp22 = tmp13 + tmp2;
tmp25 = tmp13 - tmp2;
tmp23 = tmp11 + tmp3;
tmp24 = tmp11 - tmp3;
/* Odd part */
z1 = ws[8*1];
z2 = ws[8*3];
z3 = ws[8*5];
z4 = ws[8*7];
tmp11 = z1 + z3;
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
tmp0 = tmp1 + tmp2 + tmp3 -
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
tmp13 = tmp10 + tmp11 + tmp12 -
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
z2 += z4;
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
tmp1 += z1;
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
tmp12 += z2;
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
tmp2 += z2;
tmp3 += z2;
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
tmp10 += z2;
tmp11 += z2;
/* Final output stage */
ws[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
ws[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
ws[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
ws[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
ws[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
ws[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
ws[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
ws[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
ws[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
ws[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
ws[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
ws[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
ws[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
ws[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
ws[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
ws[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
}
}
/* horizontal-pass 16-point IDCT */
static void idct16h(int *ws, unsigned char *out, int rows, int rowstep)
{
long tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
long tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
long z1, z2, z3, z4;
int row;
for (row = 0; row < rows; row++, out += rowstep, ws += 8)
{
/* Even part */
/* Add fudge factor here for final descale. */
tmp0 = (long) ws[0] + (ONE << (PASS1_BITS+2));
tmp0 <<= CONST_BITS;
z1 = (long) ws[4];
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
tmp10 = tmp0 + tmp1;
tmp11 = tmp0 - tmp1;
tmp12 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
z1 = (long) ws[2];
z2 = (long) ws[6];
z3 = z1 - z2;
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
/* (c6+c2)[16] = (c3+c1)[8] */
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447);
/* (c6-c14)[16] = (c3-c7)[8] */
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223);
/* (c2-c10)[16] = (c1-c5)[8] */
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887));
/* (c10-c14)[16] = (c5-c7)[8] */
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579));
tmp20 = tmp10 + tmp0;
tmp27 = tmp10 - tmp0;
tmp21 = tmp12 + tmp1;
tmp26 = tmp12 - tmp1;
tmp22 = tmp13 + tmp2;
tmp25 = tmp13 - tmp2;
tmp23 = tmp11 + tmp3;
tmp24 = tmp11 - tmp3;
/* Odd part */
z1 = (long) ws[1];
z2 = (long) ws[3];
z3 = (long) ws[5];
z4 = (long) ws[7];
tmp11 = z1 + z3;
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
tmp0 = tmp1 + tmp2 + tmp3 -
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
tmp13 = tmp10 + tmp11 + tmp12 -
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
z2 += z4;
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
tmp1 += z1;
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
tmp12 += z2;
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
tmp2 += z2;
tmp3 += z2;
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
tmp10 += z2;
tmp11 += z2;
/* Final output stage */
out[JPEG_PIX_SZ*0] = range_limit((int) RIGHT_SHIFT(tmp20 + tmp0,
DS_OUT));
out[JPEG_PIX_SZ*15] = range_limit((int) RIGHT_SHIFT(tmp20 - tmp0,
DS_OUT));
out[JPEG_PIX_SZ*1] = range_limit((int) RIGHT_SHIFT(tmp21 + tmp1,
DS_OUT));
out[JPEG_PIX_SZ*14] = range_limit((int) RIGHT_SHIFT(tmp21 - tmp1,
DS_OUT));
out[JPEG_PIX_SZ*2] = range_limit((int) RIGHT_SHIFT(tmp22 + tmp2,
DS_OUT));
out[JPEG_PIX_SZ*13] = range_limit((int) RIGHT_SHIFT(tmp22 - tmp2,
DS_OUT));
out[JPEG_PIX_SZ*3] = range_limit((int) RIGHT_SHIFT(tmp23 + tmp3,
DS_OUT));
out[JPEG_PIX_SZ*12] = range_limit((int) RIGHT_SHIFT(tmp23 - tmp3,
DS_OUT));
out[JPEG_PIX_SZ*4] = range_limit((int) RIGHT_SHIFT(tmp24 + tmp10,
DS_OUT));
out[JPEG_PIX_SZ*11] = range_limit((int) RIGHT_SHIFT(tmp24 - tmp10,
DS_OUT));
out[JPEG_PIX_SZ*5] = range_limit((int) RIGHT_SHIFT(tmp25 + tmp11,
DS_OUT));
out[JPEG_PIX_SZ*10] = range_limit((int) RIGHT_SHIFT(tmp25 - tmp11,
DS_OUT));
out[JPEG_PIX_SZ*6] = range_limit((int) RIGHT_SHIFT(tmp26 + tmp12,
DS_OUT));
out[JPEG_PIX_SZ*9] = range_limit((int) RIGHT_SHIFT(tmp26 - tmp12,
DS_OUT));
out[JPEG_PIX_SZ*7] = range_limit((int) RIGHT_SHIFT(tmp27 + tmp13,
DS_OUT));
out[JPEG_PIX_SZ*8] = range_limit((int) RIGHT_SHIFT(tmp27 - tmp13,
DS_OUT));
}
}
struct idct_entry {
int v_scale;
int h_scale;
void (*v_idct)(int *ws, int cols);
void (*h_idct)(int *ws, unsigned char *out, int rows, int rowstep);
};
struct idct_entry idct_tbl[] = {
{ PASS1_BITS, CONST_BITS, NULL, idct1h },
{ PASS1_BITS, CONST_BITS, idct2v, idct2h },
{ 0, 0, idct4v, idct4h },
{ 0, 0, idct8v, idct8h },
{ 0, 0, idct16v, idct16h },
};
/* JPEG decoder implementation */
INLINE void fill_buf(struct jpeg* p_jpeg)
{
p_jpeg->buf_left = read(p_jpeg->fd, p_jpeg->buf, JPEG_READ_BUF_SIZE);
p_jpeg->buf_index = p_jpeg->buf;
}
static unsigned char *getc(struct jpeg* p_jpeg)
{
if (p_jpeg->buf_left < 1)
fill_buf(p_jpeg);
if (p_jpeg->buf_left < 1)
return NULL;
p_jpeg->buf_left--;
return p_jpeg->buf_index++;
}
INLINE bool skip_bytes_seek(struct jpeg* p_jpeg)
{
if (lseek(p_jpeg->fd, -p_jpeg->buf_left, SEEK_CUR) < 0)
return false;
p_jpeg->buf_left = 0;
return true;
}
static bool skip_bytes(struct jpeg* p_jpeg, int count)
{
p_jpeg->buf_left -= count;
p_jpeg->buf_index += count;
return p_jpeg->buf_left >= 0 || skip_bytes_seek(p_jpeg);
}
#define e_skip_bytes(jpeg, count) \
do {\
if (!skip_bytes((jpeg),(count))) \
return -1; \
} while (0)
#define e_getc(jpeg, code) \
({ \
unsigned char *c; \
if (!(c = getc(jpeg))) \
return (code); \
*c; \
})
#define d_getc(jpeg, def) \
({ \
unsigned char *cp = getc(jpeg); \
unsigned char c = cp ? *cp : (def); \
c; \
})
static void putc(struct jpeg* p_jpeg)
{
p_jpeg->buf_left++;
p_jpeg->buf_index--;
}
/* Preprocess the JPEG JFIF file */
static int process_markers(struct jpeg* p_jpeg)
{
unsigned char c;
int marker_size; /* variable length of marker segment */
int i, j, n;
int ret = 0; /* returned flags */
while ((c = e_getc(p_jpeg, -1)))
{
if (c != 0xFF) /* no marker? */
{
putc(p_jpeg);
break; /* exit marker processing */
}
c = e_getc(p_jpeg, -1);
switch (c)
{
case 0xFF: /* Fill byte */
ret |= FILL_FF;
case 0x00: /* Zero stuffed byte - entropy data */
putc(p_jpeg);
continue;
case 0xC0: /* SOF Huff - Baseline DCT */
{
ret |= SOF0;
marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
n = e_getc(p_jpeg, -1); /* sample precision (= 8 or 12) */
if (n != 8)
{
return(-1); /* Unsupported sample precision */
}
p_jpeg->y_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
p_jpeg->y_size |= e_getc(p_jpeg, -1); /* Lowbyte */
p_jpeg->x_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
p_jpeg->x_size |= e_getc(p_jpeg, -1); /* Lowbyte */
n = (marker_size-2-6)/3;
if (e_getc(p_jpeg, -1) != n || (n != 1 && n != 3))
{
return(-2); /* Unsupported SOF0 component specification */
}
for (i=0; i<n; i++)
{
/* Component info */
p_jpeg->frameheader[i].ID = e_getc(p_jpeg, -1);
p_jpeg->frameheader[i].horizontal_sampling =
(c = e_getc(p_jpeg, -1)) >> 4;
p_jpeg->frameheader[i].vertical_sampling = c & 0x0F;
p_jpeg->frameheader[i].quanttable_select =
e_getc(p_jpeg, -1);
if (p_jpeg->frameheader[i].horizontal_sampling > 2
|| p_jpeg->frameheader[i].vertical_sampling > 2)
return -3; /* Unsupported SOF0 subsampling */
}
p_jpeg->blocks = n;
}
break;
case 0xC1: /* SOF Huff - Extended sequential DCT*/
case 0xC2: /* SOF Huff - Progressive DCT*/
case 0xC3: /* SOF Huff - Spatial (sequential) lossless*/
case 0xC5: /* SOF Huff - Differential sequential DCT*/
case 0xC6: /* SOF Huff - Differential progressive DCT*/
case 0xC7: /* SOF Huff - Differential spatial*/
case 0xC8: /* SOF Arith - Reserved for JPEG extensions*/
case 0xC9: /* SOF Arith - Extended sequential DCT*/
case 0xCA: /* SOF Arith - Progressive DCT*/
case 0xCB: /* SOF Arith - Spatial (sequential) lossless*/
case 0xCD: /* SOF Arith - Differential sequential DCT*/
case 0xCE: /* SOF Arith - Differential progressive DCT*/
case 0xCF: /* SOF Arith - Differential spatial*/
{
return (-4); /* other DCT model than baseline not implemented */
}
case 0xC4: /* Define Huffman Table(s) */
{
ret |= DHT;
marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
marker_size -= 2;
while (marker_size > 17) /* another table */
{
c = e_getc(p_jpeg, -1);
marker_size--;
int sum = 0;
i = c & 0x0F; /* table index */
if (i > 1)
{
return (-5); /* Huffman table index out of range */
} else {
if (c & 0xF0) /* AC table */
{
for (j=0; j<16; j++)
{
p_jpeg->hufftable[i].huffmancodes_ac[j] =
(c = e_getc(p_jpeg, -1));
sum += c;
marker_size -= 1;
}
if(16 + sum > AC_LEN)
return -10; /* longer than allowed */
for (; j < 16 + sum; j++)
{
p_jpeg->hufftable[i].huffmancodes_ac[j] =
e_getc(p_jpeg, -1);
marker_size--;
}
}
else /* DC table */
{
for (j=0; j<16; j++)
{
p_jpeg->hufftable[i].huffmancodes_dc[j] =
(c = e_getc(p_jpeg, -1));
sum += c;
marker_size--;
}
if(16 + sum > DC_LEN)
return -11; /* longer than allowed */
for (; j < 16 + sum; j++)
{
p_jpeg->hufftable[i].huffmancodes_dc[j] =
e_getc(p_jpeg, -1);
marker_size--;
}
}
}
} /* while */
e_skip_bytes(p_jpeg, marker_size);
}
break;
case 0xCC: /* Define Arithmetic coding conditioning(s) */
return(-6); /* Arithmetic coding not supported */
case 0xD8: /* Start of Image */
case 0xD9: /* End of Image */
case 0x01: /* for temp private use arith code */
break; /* skip parameterless marker */
case 0xDA: /* Start of Scan */
{
ret |= SOS;
marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
marker_size -= 2;
n = (marker_size-1-3)/2;
if (e_getc(p_jpeg, -1) != n || (n != 1 && n != 3))
{
return (-7); /* Unsupported SOS component specification */
}
marker_size--;
for (i=0; i<n; i++)
{
p_jpeg->scanheader[i].ID = e_getc(p_jpeg, -1);
p_jpeg->scanheader[i].DC_select = (c = e_getc(p_jpeg, -1))
>> 4;
p_jpeg->scanheader[i].AC_select = c & 0x0F;
marker_size -= 2;
}
/* skip spectral information */
e_skip_bytes(p_jpeg, marker_size);
}
break;
case 0xDB: /* Define quantization Table(s) */
{
ret |= DQT;
marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
marker_size -= 2;
n = (marker_size)/(QUANT_TABLE_LENGTH+1); /* # of tables */
for (i=0; i<n; i++)
{
int id = e_getc(p_jpeg, -1); /* ID */
marker_size--;
if (id >= 4)
{
return (-8); /* Unsupported quantization table */
}
/* Read Quantisation table: */
for (j=0; j<QUANT_TABLE_LENGTH; j++)
{
p_jpeg->quanttable[id][j] = e_getc(p_jpeg, -1);
marker_size--;
}
}
e_skip_bytes(p_jpeg, marker_size);
}
break;
case 0xDD: /* Define Restart Interval */
{
marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
marker_size -= 4;
/* Highbyte */
p_jpeg->restart_interval = e_getc(p_jpeg, -1) << 8;
p_jpeg->restart_interval |= e_getc(p_jpeg, -1); /* Lowbyte */
e_skip_bytes(p_jpeg, marker_size); /* skip segment */
}
break;
case 0xDC: /* Define Number of Lines */
case 0xDE: /* Define Hierarchical progression */
case 0xDF: /* Expand Reference Component(s) */
case 0xE0: /* Application Field 0*/
case 0xE1: /* Application Field 1*/
case 0xE2: /* Application Field 2*/
case 0xE3: /* Application Field 3*/
case 0xE4: /* Application Field 4*/
case 0xE5: /* Application Field 5*/
case 0xE6: /* Application Field 6*/
case 0xE7: /* Application Field 7*/
case 0xE8: /* Application Field 8*/
case 0xE9: /* Application Field 9*/
case 0xEA: /* Application Field 10*/
case 0xEB: /* Application Field 11*/
case 0xEC: /* Application Field 12*/
case 0xED: /* Application Field 13*/
case 0xEE: /* Application Field 14*/
case 0xEF: /* Application Field 15*/
case 0xFE: /* Comment */
{
marker_size = e_getc(p_jpeg, -1) << 8; /* Highbyte */
marker_size |= e_getc(p_jpeg, -1); /* Lowbyte */
marker_size -= 2;
e_skip_bytes(p_jpeg, marker_size); /* skip segment */
}
break;
case 0xF0: /* Reserved for JPEG extensions */
case 0xF1: /* Reserved for JPEG extensions */
case 0xF2: /* Reserved for JPEG extensions */
case 0xF3: /* Reserved for JPEG extensions */
case 0xF4: /* Reserved for JPEG extensions */
case 0xF5: /* Reserved for JPEG extensions */
case 0xF6: /* Reserved for JPEG extensions */
case 0xF7: /* Reserved for JPEG extensions */
case 0xF8: /* Reserved for JPEG extensions */
case 0xF9: /* Reserved for JPEG extensions */
case 0xFA: /* Reserved for JPEG extensions */
case 0xFB: /* Reserved for JPEG extensions */
case 0xFC: /* Reserved for JPEG extensions */
case 0xFD: /* Reserved for JPEG extensions */
case 0x02: /* Reserved */
default:
return (-9); /* Unknown marker */
} /* switch */
} /* while */
return (ret); /* return flags with seen markers */
}
static const struct huffman_table luma_table =
{
{
0x00,0x01,0x05,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B
},
{
0x00,0x02,0x01,0x03,0x03,0x02,0x04,0x03,0x05,0x05,0x04,0x04,0x00,0x00,
0x01,0x7D,0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,
0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xA1,0x08,0x23,0x42,
0xB1,0xC1,0x15,0x52,0xD1,0xF0,0x24,0x33,0x62,0x72,0x82,0x09,0x0A,0x16,
0x17,0x18,0x19,0x1A,0x25,0x26,0x27,0x28,0x29,0x2A,0x34,0x35,0x36,0x37,
0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,0x55,
0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x73,
0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3,0xA4,0xA5,
0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,
0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,
0xD7,0xD8,0xD9,0xDA,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,
0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA
}
};
static const struct huffman_table chroma_table =
{
{
0x00,0x03,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,
0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B
},
{
0x00,0x02,0x01,0x02,0x04,0x04,0x03,0x04,0x07,0x05,0x04,0x04,0x00,0x01,
0x02,0x77,0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,
0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xA1,0xB1,
0xC1,0x09,0x23,0x33,0x52,0xF0,0x15,0x62,0x72,0xD1,0x0A,0x16,0x24,0x34,
0xE1,0x25,0xF1,0x17,0x18,0x19,0x1A,0x26,0x27,0x28,0x29,0x2A,0x35,0x36,
0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,
0x55,0x56,0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,
0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x82,0x83,0x84,0x85,0x86,0x87,
0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0xA2,0xA3,
0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,
0xB9,0xBA,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,
0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,
0xEA,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA
}
};
static void default_huff_tbl(struct jpeg* p_jpeg)
{
MEMCPY(&p_jpeg->hufftable[0], &luma_table, sizeof(luma_table));
MEMCPY(&p_jpeg->hufftable[1], &chroma_table, sizeof(chroma_table));
return;
}
/* Compute the derived values for a Huffman table */
static void fix_huff_tbl(int* htbl, struct derived_tbl* dtbl)
{
int p, i, l, si;
int lookbits, ctr;
char huffsize[257];
unsigned int huffcode[257];
unsigned int code;
dtbl->pub = htbl; /* fill in back link */
/* Figure C.1: make table of Huffman code length for each symbol */
/* Note that this is in code-length order. */
p = 0;
for (l = 1; l <= 16; l++)
{ /* all possible code length */
for (i = 1; i <= (int) htbl[l-1]; i++) /* all codes per length */
huffsize[p++] = (char) l;
}
huffsize[p] = 0;
/* Figure C.2: generate the codes themselves */
/* Note that this is in code-length order. */
code = 0;
si = huffsize[0];
p = 0;
while (huffsize[p])
{
while (((int) huffsize[p]) == si)
{
huffcode[p++] = code;
code++;
}
code <<= 1;
si++;
}
/* Figure F.15: generate decoding tables for bit-sequential decoding */
p = 0;
for (l = 1; l <= 16; l++)
{
if (htbl[l-1])
{
/* huffval[] index of 1st symbol of code length l */
dtbl->valptr[l] = p;
dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
p += htbl[l-1];
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
}
else
{
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
}
}
dtbl->maxcode[17] = 0xFFFFFL; /* ensures huff_DECODE terminates */
/* Compute lookahead tables to speed up decoding.
* First we set all the table entries to 0, indicating "too long";
* then we iterate through the Huffman codes that are short enough and
* fill in all the entries that correspond to bit sequences starting
* with that code.
*/
MEMSET(dtbl->look_nbits, 0, sizeof(dtbl->look_nbits));
p = 0;
for (l = 1; l <= HUFF_LOOKAHEAD; l++)
{
for (i = 1; i <= (int) htbl[l-1]; i++, p++)
{
/* l = current code's length, p = its index in huffcode[] &
* huffval[]. Generate left-justified code followed by all possible
* bit sequences
*/
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--)
{
dtbl->look_nbits[lookbits] = l;
dtbl->look_sym[lookbits] = htbl[16+p];
lookbits++;
}
}
}
}
/* zag[i] is the natural-order position of the i'th element of zigzag order.
* If the incoming data is corrupted, decode_mcu could attempt to
* reference values beyond the end of the array. To avoid a wild store,
* we put some extra zeroes after the real entries.
*/
static const unsigned char zag[] =
{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
0, 0, 0, 0, 0, 0, 0, 0, /* extra entries in case k>63 below */
0, 0, 0, 0, 0, 0, 0, 0
};
/* zig[i] is the the zig-zag order position of the i'th element of natural
* order, reading left-to-right then top-to-bottom.
*/
static const unsigned char zig[] =
{
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
/* Reformat some image header data so that the decoder can use it properly. */
INLINE void fix_headers(struct jpeg* p_jpeg)
{
int i;
for (i=0; i<4; i++)
p_jpeg->store_pos[i] = i; /* default ordering */
/* assignments for the decoding of blocks */
if (p_jpeg->frameheader[0].horizontal_sampling == 2
&& p_jpeg->frameheader[0].vertical_sampling == 1)
{ /* 4:2:2 */
p_jpeg->blocks = 4;
p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16;
p_jpeg->x_phys = p_jpeg->x_mbl * 16;
p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8;
p_jpeg->y_phys = p_jpeg->y_mbl * 8;
p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */
p_jpeg->mcu_membership[1] = 0;
p_jpeg->mcu_membership[2] = 1;
p_jpeg->mcu_membership[3] = 2;
p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */
p_jpeg->tab_membership[1] = 0;
p_jpeg->tab_membership[2] = 1;
p_jpeg->tab_membership[3] = 1;
p_jpeg->subsample_x[0] = 1;
p_jpeg->subsample_x[1] = 2;
p_jpeg->subsample_x[2] = 2;
p_jpeg->subsample_y[0] = 1;
p_jpeg->subsample_y[1] = 1;
p_jpeg->subsample_y[2] = 1;
}
if (p_jpeg->frameheader[0].horizontal_sampling == 1
&& p_jpeg->frameheader[0].vertical_sampling == 2)
{ /* 4:2:2 vertically subsampled */
p_jpeg->store_pos[1] = 2; /* block positions are mirrored */
p_jpeg->store_pos[2] = 1;
p_jpeg->blocks = 4;
p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8;
p_jpeg->x_phys = p_jpeg->x_mbl * 8;
p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16;
p_jpeg->y_phys = p_jpeg->y_mbl * 16;
p_jpeg->mcu_membership[0] = 0; /* Y1=Y2=0, U=1, V=2 */
p_jpeg->mcu_membership[1] = 0;
p_jpeg->mcu_membership[2] = 1;
p_jpeg->mcu_membership[3] = 2;
p_jpeg->tab_membership[0] = 0; /* DC, DC, AC, AC */
p_jpeg->tab_membership[1] = 0;
p_jpeg->tab_membership[2] = 1;
p_jpeg->tab_membership[3] = 1;
p_jpeg->subsample_x[0] = 1;
p_jpeg->subsample_x[1] = 1;
p_jpeg->subsample_x[2] = 1;
p_jpeg->subsample_y[0] = 1;
p_jpeg->subsample_y[1] = 2;
p_jpeg->subsample_y[2] = 2;
}
else if (p_jpeg->frameheader[0].horizontal_sampling == 2
&& p_jpeg->frameheader[0].vertical_sampling == 2)
{ /* 4:2:0 */
p_jpeg->blocks = 6;
p_jpeg->x_mbl = (p_jpeg->x_size+15) / 16;
p_jpeg->x_phys = p_jpeg->x_mbl * 16;
p_jpeg->y_mbl = (p_jpeg->y_size+15) / 16;
p_jpeg->y_phys = p_jpeg->y_mbl * 16;
p_jpeg->mcu_membership[0] = 0;
p_jpeg->mcu_membership[1] = 0;
p_jpeg->mcu_membership[2] = 0;
p_jpeg->mcu_membership[3] = 0;
p_jpeg->mcu_membership[4] = 1;
p_jpeg->mcu_membership[5] = 2;
p_jpeg->tab_membership[0] = 0;
p_jpeg->tab_membership[1] = 0;
p_jpeg->tab_membership[2] = 0;
p_jpeg->tab_membership[3] = 0;
p_jpeg->tab_membership[4] = 1;
p_jpeg->tab_membership[5] = 1;
p_jpeg->subsample_x[0] = 1;
p_jpeg->subsample_x[1] = 2;
p_jpeg->subsample_x[2] = 2;
p_jpeg->subsample_y[0] = 1;
p_jpeg->subsample_y[1] = 2;
p_jpeg->subsample_y[2] = 2;
}
else if (p_jpeg->frameheader[0].horizontal_sampling == 1
&& p_jpeg->frameheader[0].vertical_sampling == 1)
{ /* 4:4:4 */
/* don't overwrite p_jpeg->blocks */
p_jpeg->x_mbl = (p_jpeg->x_size+7) / 8;
p_jpeg->x_phys = p_jpeg->x_mbl * 8;
p_jpeg->y_mbl = (p_jpeg->y_size+7) / 8;
p_jpeg->y_phys = p_jpeg->y_mbl * 8;
p_jpeg->mcu_membership[0] = 0;
p_jpeg->mcu_membership[1] = 1;
p_jpeg->mcu_membership[2] = 2;
p_jpeg->tab_membership[0] = 0;
p_jpeg->tab_membership[1] = 1;
p_jpeg->tab_membership[2] = 1;
p_jpeg->subsample_x[0] = 1;
p_jpeg->subsample_x[1] = 1;
p_jpeg->subsample_x[2] = 1;
p_jpeg->subsample_y[0] = 1;
p_jpeg->subsample_y[1] = 1;
p_jpeg->subsample_y[2] = 1;
}
else
{
/* error */
}
}
INLINE void fix_huff_tables(struct jpeg *p_jpeg)
{
fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_dc,
&p_jpeg->dc_derived_tbls[0]);
fix_huff_tbl(p_jpeg->hufftable[0].huffmancodes_ac,
&p_jpeg->ac_derived_tbls[0]);
fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_dc,
&p_jpeg->dc_derived_tbls[1]);
fix_huff_tbl(p_jpeg->hufftable[1].huffmancodes_ac,
&p_jpeg->ac_derived_tbls[1]);
}
/* Because some of the IDCT routines never multiply by any constants, and
* therefore do not produce shifted output, we add the shift into the
* quantization table when one of these IDCT routines is used, rather than
* have the IDCT shift each value it processes.
*/
INLINE void fix_quant_tables(struct jpeg *p_jpeg)
{
int shift, i, x, y, a;
for (i = 0; i < 2; i++)
{
shift = idct_tbl[p_jpeg->v_scale[i]].v_scale +
idct_tbl[p_jpeg->h_scale[i]].h_scale;
if (shift)
{
a = 0;
for (y = 0; y < 1 << p_jpeg->h_scale[i]; y++)
{
for (x = 0; x < 1 << p_jpeg->v_scale[i]; x++)
p_jpeg->quanttable[i][zig[a+x]] <<= shift;
a += 8;
}
}
}
}
/*
* These functions/macros provide the in-line portion of bit fetching.
* Use check_bit_buffer to ensure there are N bits in get_buffer
* before using get_bits, peek_bits, or drop_bits.
* check_bit_buffer(state,n,action);
* Ensure there are N bits in get_buffer; if suspend, take action.
* val = get_bits(n);
* Fetch next N bits.
* val = peek_bits(n);
* Fetch next N bits without removing them from the buffer.
* drop_bits(n);
* Discard next N bits.
* The value N should be a simple variable, not an expression, because it
* is evaluated multiple times.
*/
static void fill_bit_buffer(struct jpeg* p_jpeg)
{
unsigned char byte, marker;
if (p_jpeg->marker_val)
p_jpeg->marker_ind += 16;
byte = d_getc(p_jpeg, 0);
if (byte == 0xFF) /* legal marker can be byte stuffing or RSTm */
{ /* simplification: just skip the (one-byte) marker code */
marker = d_getc(p_jpeg, 0);
if ((marker & ~7) == 0xD0)
{
p_jpeg->marker_val = marker;
p_jpeg->marker_ind = 8;
}
}
p_jpeg->bitbuf = (p_jpeg->bitbuf << 8) | byte;
byte = d_getc(p_jpeg, 0);
if (byte == 0xFF) /* legal marker can be byte stuffing or RSTm */
{ /* simplification: just skip the (one-byte) marker code */
marker = d_getc(p_jpeg, 0);
if ((marker & ~7) == 0xD0)
{
p_jpeg->marker_val = marker;
p_jpeg->marker_ind = 0;
}
}
p_jpeg->bitbuf = (p_jpeg->bitbuf << 8) | byte;
p_jpeg->bitbuf_bits += 16;
#ifdef JPEG_BS_DEBUG
DEBUGF("read in: %X\n", p_jpeg->bitbuf & 0xFFFF);
#endif
}
INLINE void check_bit_buffer(struct jpeg *p_jpeg, int nbits)
{
if (nbits > p_jpeg->bitbuf_bits)
fill_bit_buffer(p_jpeg);
}
INLINE int get_bits(struct jpeg *p_jpeg, int nbits)
{
#ifdef JPEG_BS_DEBUG
if (nbits > p_jpeg->bitbuf_bits)
DEBUGF("bitbuffer underrun\n");
int mask = 1 << (p_jpeg->bitbuf_bits - 1);
int i;
DEBUGF("get %d bits: ", nbits);
for (i = 0; i < nbits; i++)
DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1)));
DEBUGF("\n");
#endif
return ((int) (p_jpeg->bitbuf >> (p_jpeg->bitbuf_bits -= nbits))) &
((1<<nbits)-1);
}
INLINE int peek_bits(struct jpeg *p_jpeg, int nbits)
{
#ifdef JPEG_BS_DEBUG
int mask = 1 << (p_jpeg->bitbuf_bits - 1);
int i;
DEBUGF("peek %d bits: ", nbits);
for (i = 0; i < nbits; i++)
DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1)));
DEBUGF("\n");
#endif
return ((int) (p_jpeg->bitbuf >> (p_jpeg->bitbuf_bits - nbits))) &
((1<<nbits)-1);
}
INLINE void drop_bits(struct jpeg *p_jpeg, int nbits)
{
#ifdef JPEG_BS_DEBUG
int mask = 1 << (p_jpeg->bitbuf_bits - 1);
int i;
DEBUGF("drop %d bits: ", nbits);
for (i = 0; i < nbits; i++)
DEBUGF("%d",!!(p_jpeg->bitbuf & (mask >>= 1)));
DEBUGF("\n");
#endif
p_jpeg->bitbuf_bits -= nbits;
}
/* re-synchronize to entropy data (skip restart marker) */
static void search_restart(struct jpeg *p_jpeg)
{
if (p_jpeg->marker_val)
{
p_jpeg->marker_val = 0;
p_jpeg->bitbuf_bits = p_jpeg->marker_ind;
p_jpeg->marker_ind = 0;
return;
}
unsigned char byte;
p_jpeg->bitbuf_bits = 0;
while ((byte = d_getc(p_jpeg, 0xFF)))
{
if (byte == 0xff)
{
byte = d_getc(p_jpeg, 0xD0);
if ((byte & ~7) == 0xD0)
{
return;
}
else
putc(p_jpeg);
}
}
}
/* Figure F.12: extend sign bit. */
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
static const int extend_test[16] = /* entry n is 2**(n-1) */
{
0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
};
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{
0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1
};
/* Decode a single value */
INLINE int huff_decode_dc(struct jpeg *p_jpeg, struct derived_tbl* tbl)
{
int nb, look, s, r;
check_bit_buffer(p_jpeg, HUFF_LOOKAHEAD);
look = peek_bits(p_jpeg, HUFF_LOOKAHEAD);
if ((nb = tbl->look_nbits[look]) != 0)
{
drop_bits(p_jpeg, nb);
s = tbl->look_sym[look];
check_bit_buffer(p_jpeg, s);
r = get_bits(p_jpeg, s);
s = HUFF_EXTEND(r, s);
}
else
{ /* slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */
long code;
nb=HUFF_LOOKAHEAD+1;
check_bit_buffer(p_jpeg, nb);
code = get_bits(p_jpeg, nb);
while (code > tbl->maxcode[nb])
{
code <<= 1;
check_bit_buffer(p_jpeg, 1);
code |= get_bits(p_jpeg, 1);
nb++;
}
if (nb > 16) /* error in Huffman */
{
s=0; /* fake a zero, this is most safe */
}
else
{
s = tbl->pub[16 + tbl->valptr[nb] +
((int) (code - tbl->mincode[nb]))];
check_bit_buffer(p_jpeg, s);
r = get_bits(p_jpeg, s);
s = HUFF_EXTEND(r, s);
}
} /* end slow decode */
return s;
}
INLINE int huff_decode_ac(struct jpeg *p_jpeg, struct derived_tbl* tbl)
{
int nb, look, s;
check_bit_buffer(p_jpeg, HUFF_LOOKAHEAD);
look = peek_bits(p_jpeg, HUFF_LOOKAHEAD);
if ((nb = tbl->look_nbits[look]) != 0)
{
drop_bits(p_jpeg, nb);
s = tbl->look_sym[look];
}
else
{ /* slow_DECODE(s, HUFF_LOOKAHEAD+1)) < 0); */
long code;
nb=HUFF_LOOKAHEAD+1;
check_bit_buffer(p_jpeg, nb);
code = get_bits(p_jpeg, nb);
while (code > tbl->maxcode[nb])
{
code <<= 1;
check_bit_buffer(p_jpeg, 1);
code |= get_bits(p_jpeg, 1);
nb++;
}
if (nb > 16) /* error in Huffman */
{
s=0; /* fake a zero, this is most safe */
}
else
{
s = tbl->pub[16 + tbl->valptr[nb] +
((int) (code - tbl->mincode[nb]))];
}
} /* end slow decode */
return s;
}
static struct img_part *store_row_jpeg(void *jpeg_args)
{
struct jpeg *p_jpeg = (struct jpeg*) jpeg_args;
unsigned int width = p_jpeg->x_mbl << p_jpeg->h_scale[1];
unsigned int b_width = width * JPEG_PIX_SZ;
int height = 1U << p_jpeg->v_scale[1];
int x;
if (!p_jpeg->mcu_row) /* Need to decode a new row of MCUs */
{
p_jpeg->out_ptr = (unsigned char *)p_jpeg->img_buf;
int store_offs[4];
int mcu_offset = JPEG_PIX_SZ << p_jpeg->h_scale[1];
unsigned char *out = p_jpeg->out_ptr;
store_offs[p_jpeg->store_pos[0]] = 0;
store_offs[p_jpeg->store_pos[1]] = JPEG_PIX_SZ << p_jpeg->h_scale[0];
store_offs[p_jpeg->store_pos[2]] = b_width << p_jpeg->v_scale[0];
store_offs[p_jpeg->store_pos[3]] = store_offs[1] + store_offs[2];
int block[128]; /* decoded DCT coefficients */
for (x = 0; x < p_jpeg->x_mbl; x++)
{
int blkn;
for (blkn = 0; blkn < p_jpeg->blocks; blkn++)
{
int k = 1; /* coefficient index */
int s, r; /* huffman values */
int ci = p_jpeg->mcu_membership[blkn]; /* component index */
int ti = p_jpeg->tab_membership[blkn]; /* table index */
struct derived_tbl* dctbl = &p_jpeg->dc_derived_tbls[ti];
struct derived_tbl* actbl = &p_jpeg->ac_derived_tbls[ti];
/* Section F.2.2.1: decode the DC coefficient difference */
s = huff_decode_dc(p_jpeg, dctbl);
#ifndef HAVE_LCD_COLOR
if (!ci)
#endif
{
#ifdef HAVE_LCD_COLOR
p_jpeg->last_dc_val[ci] += s;
/* output it (assumes zag[0] = 0) */
block[0] = p_jpeg->last_dc_val[ci] *
p_jpeg->quanttable[!!ci][0];
#else
p_jpeg->last_dc_val += s;
/* output it (assumes zag[0] = 0) */
block[0] = p_jpeg->last_dc_val *
p_jpeg->quanttable[!!ci][0];
#endif
/* coefficient buffer must be cleared */
MEMSET(block+1, 0, p_jpeg->zero_need[!!ci] * sizeof(int));
/* Section F.2.2.2: decode the AC coefficients */
for (; k < p_jpeg->k_need[!!ci]; k++)
{
s = huff_decode_ac(p_jpeg, actbl);
r = s >> 4;
s &= 15;
if (s)
{
k += r;
check_bit_buffer(p_jpeg, s);
r = get_bits(p_jpeg, s);
r = HUFF_EXTEND(r, s);
int a = zag[k];
if (a <= zag[p_jpeg->k_need[!!ci]] && (a & 7) <=
(zag[p_jpeg->k_need[!!ci]] & 7))
{
r *= p_jpeg->quanttable[!!ci][k];
block[zag[k]] = r ;
}
}
else
{
if (r != 15)
{
k = 64;
break;
}
k += r;
}
} /* for k */
}
for (; k < 64; k++)
{
s = huff_decode_ac(p_jpeg, actbl);
r = s >> 4;
s &= 15;
if (s)
{
k += r;
check_bit_buffer(p_jpeg, s);
drop_bits(p_jpeg, s);
}
else
{
if (r != 15)
break;
k += r;
}
} /* for k */
#ifndef HAVE_LCD_COLOR
if (!ci)
#endif
{
unsigned char si = !!ci;
int idct_cols = 1 << MIN(p_jpeg->h_scale[si], 3);
int idct_rows = 1 << p_jpeg->v_scale[si];
unsigned char *b_out = out + (ci ? ci : store_offs[blkn]);
if (idct_tbl[p_jpeg->v_scale[si]].v_idct)
idct_tbl[p_jpeg->v_scale[si]].v_idct(block, idct_cols);
idct_tbl[p_jpeg->h_scale[si]].h_idct(block, b_out,
idct_rows, b_width);
}
} /* for blkn */
/* don't starve other threads while an MCU row decodes */
yield();
#ifdef HAVE_LCD_COLOR
unsigned int xp;
int yp;
unsigned char *row = out;
if (p_jpeg->blocks == 1)
{
for (yp = 0; yp < height; yp++, row += b_width)
{
unsigned char *px = row;
for (xp = 0; xp < 1U << p_jpeg->h_scale[1];
xp++, px += JPEG_PIX_SZ)
{
px[1] = px[2] = px[0];
}
}
}
#endif
out += mcu_offset;
if (p_jpeg->restart_interval && --p_jpeg->restart == 0)
{ /* if a restart marker is due: */
p_jpeg->restart = p_jpeg->restart_interval; /* count again */
search_restart(p_jpeg); /* align the bitstream */
#ifdef HAVE_LCD_COLOR
p_jpeg->last_dc_val[0] = p_jpeg->last_dc_val[1] =
p_jpeg->last_dc_val[2] = 0; /* reset decoder */
#else
p_jpeg->last_dc_val = 0;
#endif
}
}
} /* if !p_jpeg->mcu_row */
p_jpeg->mcu_row = (p_jpeg->mcu_row + 1) & (height - 1);
p_jpeg->part.len = width;
p_jpeg->part.buf = (jpeg_pix_t *)p_jpeg->out_ptr;
p_jpeg->out_ptr += b_width;
return &(p_jpeg->part);
}
/******************************************************************************
* read_jpeg_file()
*
* Reads a JPEG file and puts the data in rockbox format in *bitmap.
*
*****************************************************************************/
int read_jpeg_file(const char* filename,
struct bitmap *bm,
int maxsize,
int format,
const struct custom_format *cformat)
{
int fd, ret;
fd = open(filename, O_RDONLY);
/* Exit if file opening failed */
if (fd < 0) {
DEBUGF("read_jpeg_file: can't open '%s', rc: %d\n", filename, fd);
return fd * 10 - 1;
}
ret = read_jpeg_fd(fd, bm, maxsize, format, cformat);
close(fd);
return ret;
}
static int calc_scale(int in_size, int out_size, int subsample)
{
int scale = 0;
out_size <<= 3;
for (scale = 0; scale < 5 - subsample; scale++)
{
if (out_size <= in_size)
break;
else
in_size <<= 1;
}
return scale;
}
int read_jpeg_fd(int fd,
struct bitmap *bm,
int maxsize,
int format,
const struct custom_format *cformat)
{
bool resize = false, dither = false;
struct rowset rset;
struct dim src_dim;
struct jpeg *p_jpeg = (struct jpeg*)bm->data;
int tmp_size = maxsize;
int status;
int bm_size;
ALIGN_BUFFER(p_jpeg, tmp_size, sizeof(int));
/* not enough memory for our struct jpeg */
if ((size_t)tmp_size < sizeof(struct jpeg))
return -1;
memset(p_jpeg, 0, sizeof(struct jpeg));
p_jpeg->fd = fd;
status = process_markers(p_jpeg);
if (status < 0)
return status;
if ((status & (DQT | SOF0)) != (DQT | SOF0))
return -(status * 16);
if (!(status & DHT)) /* if no Huffman table present: */
default_huff_tbl(p_jpeg); /* use default */
fix_headers(p_jpeg); /* derive Huffman and other lookup-tables */
src_dim.width = p_jpeg->x_size;
src_dim.height = p_jpeg->y_size;
if (format & FORMAT_RESIZE)
resize = true;
if (format & FORMAT_DITHER)
dither = true;
if (resize) {
struct dim resize_dim = {
.width = bm->width,
.height = bm->height,
};
if (format & FORMAT_KEEP_ASPECT)
recalc_dimension(&resize_dim, &src_dim);
bm->width = resize_dim.width;
bm->height = resize_dim.height;
if (bm->width == src_dim.width && bm->height == src_dim.height)
resize = false;
} else {
bm->width = p_jpeg->x_size;
bm->height = p_jpeg->y_size;
}
p_jpeg->h_scale[0] = calc_scale(p_jpeg->x_size, bm->width,
p_jpeg->frameheader[0].horizontal_sampling);
p_jpeg->v_scale[0] = calc_scale(p_jpeg->y_size, bm->height,
p_jpeg->frameheader[0].vertical_sampling);
p_jpeg->h_scale[1] = p_jpeg->h_scale[0] +
p_jpeg->frameheader[0].horizontal_sampling - 1;
p_jpeg->v_scale[1] = p_jpeg->v_scale[0] +
p_jpeg->frameheader[0].vertical_sampling - 1;
fix_quant_tables(p_jpeg);
int decode_w = (1 << MIN(p_jpeg->h_scale[0],3)) - 1;
int decode_h = (1 << MIN(p_jpeg->v_scale[0],3)) - 1;
src_dim.width = (p_jpeg->x_size << p_jpeg->h_scale[0]) >> 3;
src_dim.height = (p_jpeg->y_size << p_jpeg->v_scale[0]) >> 3;
p_jpeg->zero_need[0] = (decode_h << 3) + decode_w;
p_jpeg->k_need[0] = zig[p_jpeg->zero_need[0]];
decode_w = (1 << MIN(p_jpeg->h_scale[1],3)) - 1;
decode_h = (1 << MIN(p_jpeg->v_scale[1],3)) - 1;
p_jpeg->zero_need[1] = p_jpeg->zero_need[2] = (decode_h << 3) + decode_w;
p_jpeg->k_need[1] = p_jpeg->k_need[2] = zig[p_jpeg->zero_need[1]];
if (cformat)
bm_size = cformat->get_size(bm);
else
bm_size = BM_SIZE(bm->width,bm->height,FORMAT_NATIVE,false);
if (bm_size > maxsize)
return -1;
char *buf_start = (char *)bm->data + bm_size;
char *buf_end = (char *)bm->data + maxsize;
maxsize = buf_end - buf_start;
ALIGN_BUFFER(buf_start, maxsize, sizeof(uint32_t));
if (maxsize < (int)sizeof(struct jpeg))
return -1;
memmove(buf_start, p_jpeg, sizeof(struct jpeg));
p_jpeg = (struct jpeg *)buf_start;
fix_huff_tables(p_jpeg);
buf_start += sizeof(struct jpeg);
maxsize = buf_end - buf_start;
int decode_buf_size = (p_jpeg->x_mbl << p_jpeg->h_scale[1])
<< p_jpeg->v_scale[1];
decode_buf_size *= JPEG_PIX_SZ;
p_jpeg->img_buf = (jpeg_pix_t *)buf_start;
if (buf_end - buf_start < decode_buf_size)
return -1;
buf_start += decode_buf_size;
maxsize = buf_end - buf_start;
memset(p_jpeg->img_buf, 0, decode_buf_size);
p_jpeg->mcu_row = 0;
p_jpeg->restart = p_jpeg->restart_interval;
rset.rowstart = 0;
rset.rowstop = bm->height;
rset.rowstep = 1;
if (resize_on_load(bm, dither, &src_dim, &rset, buf_start, maxsize, cformat,
IF_PIX_FMT(p_jpeg->blocks == 1 ? 0 : 1,) store_row_jpeg, p_jpeg))
return bm_size;
else
return 0;
}
/**************** end JPEG code ********************/