rockbox/firmware/kernel.c
Daniel Stenberg 2acc0ac542 Updated our source code header to explicitly mention that we are GPL v2 or
later. We still need to hunt down snippets used that are not. 1324 modified
files...
http://www.rockbox.org/mail/archive/rockbox-dev-archive-2008-06/0060.shtml


git-svn-id: svn://svn.rockbox.org/rockbox/trunk@17847 a1c6a512-1295-4272-9138-f99709370657
2008-06-28 18:10:04 +00:00

1459 lines
37 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Björn Stenberg
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "kernel.h"
#ifdef SIMULATOR
#include "system-sdl.h"
#include "debug.h"
#endif
#include "thread.h"
#include "cpu.h"
#include "system.h"
#include "panic.h"
/* Make this nonzero to enable more elaborate checks on objects */
#if defined(DEBUG) || defined(SIMULATOR)
#define KERNEL_OBJECT_CHECKS 1 /* Always 1 for DEBUG and sim*/
#else
#define KERNEL_OBJECT_CHECKS 0
#endif
#if KERNEL_OBJECT_CHECKS
#ifdef SIMULATOR
#define KERNEL_ASSERT(exp, msg...) \
({ if (!({ exp; })) { DEBUGF(msg); exit(-1); } })
#else
#define KERNEL_ASSERT(exp, msg...) \
({ if (!({ exp; })) panicf(msg); })
#endif
#else
#define KERNEL_ASSERT(exp, msg...) ({})
#endif
#if !defined(CPU_PP) || !defined(BOOTLOADER)
volatile long current_tick SHAREDDATA_ATTR = 0;
#endif
void (*tick_funcs[MAX_NUM_TICK_TASKS])(void);
extern struct core_entry cores[NUM_CORES];
/* This array holds all queues that are initiated. It is used for broadcast. */
static struct
{
int count;
struct event_queue *queues[MAX_NUM_QUEUES];
IF_COP( struct corelock cl; )
} all_queues SHAREDBSS_ATTR;
/****************************************************************************
* Standard kernel stuff
****************************************************************************/
void kernel_init(void)
{
/* Init the threading API */
init_threads();
/* Other processors will not reach this point in a multicore build.
* In a single-core build with multiple cores they fall-through and
* sleep in cop_main without returning. */
if (CURRENT_CORE == CPU)
{
memset(tick_funcs, 0, sizeof(tick_funcs));
memset(&all_queues, 0, sizeof(all_queues));
corelock_init(&all_queues.cl);
tick_start(1000/HZ);
#ifdef KDEV_INIT
kernel_device_init();
#endif
}
}
/****************************************************************************
* Timer tick
****************************************************************************/
#if CONFIG_CPU == SH7034
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
count = CPU_FREQ * interval_in_ms / 1000 / 8;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
/* We are using timer 0 */
TSTR &= ~0x01; /* Stop the timer */
TSNC &= ~0x01; /* No synchronization */
TMDR &= ~0x01; /* Operate normally */
TCNT0 = 0; /* Start counting at 0 */
GRA0 = (unsigned short)(count - 1);
TCR0 = 0x23; /* Clear at GRA match, sysclock/8 */
/* Enable interrupt on level 1 */
IPRC = (IPRC & ~0x00f0) | 0x0010;
TSR0 &= ~0x01;
TIER0 = 0xf9; /* Enable GRA match interrupt */
TSTR |= 0x01; /* Start timer 1 */
}
void IMIA0(void) __attribute__ ((interrupt_handler));
void IMIA0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TSR0 &= ~0x01;
}
#elif defined(CPU_COLDFIRE)
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
int prescale;
count = CPU_FREQ/2 * interval_in_ms / 1000 / 16;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
prescale = cpu_frequency / CPU_FREQ;
/* Note: The prescaler is later adjusted on-the-fly on CPU frequency
changes within timer.c */
/* We are using timer 0 */
TRR0 = (unsigned short)(count - 1); /* The reference count */
TCN0 = 0; /* reset the timer */
TMR0 = 0x001d | ((unsigned short)(prescale - 1) << 8);
/* restart, CLK/16, enabled, prescaler */
TER0 = 0xff; /* Clear all events */
ICR1 = 0x8c; /* Interrupt on level 3.0 */
IMR &= ~0x200;
}
void TIMER0(void) __attribute__ ((interrupt_handler));
void TIMER0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TER0 = 0xff; /* Clear all events */
}
#elif defined(CPU_PP)
#ifndef BOOTLOADER
void TIMER1(void)
{
int i;
/* Run through the list of tick tasks (using main core) */
TIMER1_VAL; /* Read value to ack IRQ */
/* Run through the list of tick tasks using main CPU core -
wake up the COP through its control interface to provide pulse */
for (i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if (tick_funcs[i])
{
tick_funcs[i]();
}
}
#if NUM_CORES > 1
/* Pulse the COP */
core_wake(COP);
#endif /* NUM_CORES */
current_tick++;
}
#endif
/* Must be last function called init kernel/thread initialization */
void tick_start(unsigned int interval_in_ms)
{
#ifndef BOOTLOADER
TIMER1_CFG = 0x0;
TIMER1_VAL;
/* enable timer */
TIMER1_CFG = 0xc0000000 | (interval_in_ms*1000 - 1);
/* unmask interrupt source */
CPU_INT_EN = TIMER1_MASK;
#else
/* We don't enable interrupts in the bootloader */
(void)interval_in_ms;
#endif
}
#elif CONFIG_CPU == PNX0101
void timer_handler(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
tick_funcs[i]();
}
current_tick++;
TIMER0.clr = 0;
}
void tick_start(unsigned int interval_in_ms)
{
TIMER0.ctrl &= ~0x80; /* Disable the counter */
TIMER0.ctrl |= 0x40; /* Reload after counting down to zero */
TIMER0.load = 3000000 * interval_in_ms / 1000;
TIMER0.ctrl &= ~0xc; /* No prescaler */
TIMER0.clr = 1; /* Clear the interrupt request */
irq_set_int_handler(IRQ_TIMER0, timer_handler);
irq_enable_int(IRQ_TIMER0);
TIMER0.ctrl |= 0x80; /* Enable the counter */
}
#endif
int tick_add_task(void (*f)(void))
{
int i;
int oldlevel = disable_irq_save();
/* Add a task if there is room */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == NULL)
{
tick_funcs[i] = f;
restore_irq(oldlevel);
return 0;
}
}
restore_irq(oldlevel);
panicf("Error! tick_add_task(): out of tasks");
return -1;
}
int tick_remove_task(void (*f)(void))
{
int i;
int oldlevel = disable_irq_save();
/* Remove a task if it is there */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == f)
{
tick_funcs[i] = NULL;
restore_irq(oldlevel);
return 0;
}
}
restore_irq(oldlevel);
return -1;
}
/****************************************************************************
* Tick-based interval timers/one-shots - be mindful this is not really
* intended for continuous timers but for events that need to run for a short
* time and be cancelled without further software intervention.
****************************************************************************/
#ifdef INCLUDE_TIMEOUT_API
static struct timeout *tmo_list = NULL; /* list of active timeout events */
/* timeout tick task - calls event handlers when they expire
* Event handlers may alter ticks, callback and data during operation.
*/
static void timeout_tick(void)
{
unsigned long tick = current_tick;
struct timeout *curr, *next;
for (curr = tmo_list; curr != NULL; curr = next)
{
next = (struct timeout *)curr->next;
if (TIME_BEFORE(tick, curr->expires))
continue;
/* this event has expired - call callback */
if (curr->callback(curr))
*(long *)&curr->expires = tick + curr->ticks; /* reload */
else
timeout_cancel(curr); /* cancel */
}
}
/* Cancels a timeout callback - can be called from the ISR */
void timeout_cancel(struct timeout *tmo)
{
int oldlevel = disable_irq_save();
if (tmo_list != NULL)
{
struct timeout *curr = tmo_list;
struct timeout *prev = NULL;
while (curr != tmo && curr != NULL)
{
prev = curr;
curr = (struct timeout *)curr->next;
}
if (curr != NULL)
{
/* in list */
if (prev == NULL)
tmo_list = (struct timeout *)curr->next;
else
*(const struct timeout **)&prev->next = curr->next;
if (tmo_list == NULL)
tick_remove_task(timeout_tick); /* last one - remove task */
}
/* not in list or tmo == NULL */
}
restore_irq(oldlevel);
}
/* Adds a timeout callback - calling with an active timeout resets the
interval - can be called from the ISR */
void timeout_register(struct timeout *tmo, timeout_cb_type callback,
int ticks, intptr_t data)
{
int oldlevel;
struct timeout *curr;
if (tmo == NULL)
return;
oldlevel = disable_irq_save();
/* see if this one is already registered */
curr = tmo_list;
while (curr != tmo && curr != NULL)
curr = (struct timeout *)curr->next;
if (curr == NULL)
{
/* not found - add it */
if (tmo_list == NULL)
tick_add_task(timeout_tick); /* first one - add task */
*(struct timeout **)&tmo->next = tmo_list;
tmo_list = tmo;
}
tmo->callback = callback;
tmo->ticks = ticks;
tmo->data = data;
*(long *)&tmo->expires = current_tick + ticks;
restore_irq(oldlevel);
}
#endif /* INCLUDE_TIMEOUT_API */
/****************************************************************************
* Thread stuff
****************************************************************************/
void sleep(int ticks)
{
#if CONFIG_CPU == S3C2440 && defined(BOOTLOADER)
volatile int counter;
TCON &= ~(1 << 20); // stop timer 4
// TODO: this constant depends on dividers settings inherited from
// firmware. Set them explicitly somwhere.
TCNTB4 = 12193 * ticks / HZ;
TCON |= 1 << 21; // set manual bit
TCON &= ~(1 << 21); // reset manual bit
TCON &= ~(1 << 22); //autoreload Off
TCON |= (1 << 20); // start timer 4
do {
counter = TCNTO4;
} while(counter > 0);
#elif defined(CPU_PP) && defined(BOOTLOADER)
unsigned stop = USEC_TIMER + ticks * (1000000/HZ);
while (TIME_BEFORE(USEC_TIMER, stop))
switch_thread();
#elif defined(CREATIVE_ZVx) && defined(BOOTLOADER)
/* hacky.. */
long sleep_ticks = current_tick + ticks + 1;
while (sleep_ticks > current_tick)
switch_thread();
#else
disable_irq();
sleep_thread(ticks);
switch_thread();
#endif
}
void yield(void)
{
#if ((CONFIG_CPU == S3C2440 || defined(ELIO_TPJ1022)) && defined(BOOTLOADER))
/* Some targets don't like yielding in the bootloader */
#else
switch_thread();
#endif
}
/****************************************************************************
* Queue handling stuff
****************************************************************************/
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/****************************************************************************
* Sender thread queue structure that aids implementation of priority
* inheritance on queues because the send list structure is the same as
* for all other kernel objects:
*
* Example state:
* E0 added with queue_send and removed by thread via queue_wait(_w_tmo)
* E3 was posted with queue_post
* 4 events remain enqueued (E1-E4)
*
* rd wr
* q->events[]: | XX | E1 | E2 | E3 | E4 | XX |
* q->send->senders[]: | NULL | T1 | T2 | NULL | T3 | NULL |
* \/ \/ \/
* q->send->list: >->|T0|<->|T1|<->|T2|<-------->|T3|<-<
* q->send->curr_sender: /\
*
* Thread has E0 in its own struct queue_event.
*
****************************************************************************/
/* Puts the specified return value in the waiting thread's return value
* and wakes the thread.
*
* A sender should be confirmed to exist before calling which makes it
* more efficent to reject the majority of cases that don't need this
* called.
*/
static void queue_release_sender(struct thread_entry **sender,
intptr_t retval)
{
struct thread_entry *thread = *sender;
*sender = NULL; /* Clear slot. */
thread->wakeup_ext_cb = NULL; /* Clear callback. */
thread->retval = retval; /* Assign thread-local return value. */
*thread->bqp = thread; /* Move blocking queue head to thread since
wakeup_thread wakes the first thread in
the list. */
wakeup_thread(thread->bqp);
}
/* Releases any waiting threads that are queued with queue_send -
* reply with 0.
*/
static void queue_release_all_senders(struct event_queue *q)
{
if(q->send)
{
unsigned int i;
for(i = q->read; i != q->write; i++)
{
struct thread_entry **spp =
&q->send->senders[i & QUEUE_LENGTH_MASK];
if(*spp)
{
queue_release_sender(spp, 0);
}
}
}
}
/* Callback to do extra forced removal steps from sender list in addition
* to the normal blocking queue removal and priority dis-inherit */
static void queue_remove_sender_thread_cb(struct thread_entry *thread)
{
*((struct thread_entry **)thread->retval) = NULL;
thread->wakeup_ext_cb = NULL;
thread->retval = 0;
}
/* Enables queue_send on the specified queue - caller allocates the extra
* data structure. Only queues which are taken to be owned by a thread should
* enable this however an official owner is not compulsory but must be
* specified for priority inheritance to operate.
*
* Use of queue_wait(_w_tmo) by multiple threads on a queue using synchronous
* messages results in an undefined order of message replies.
*/
void queue_enable_queue_send(struct event_queue *q,
struct queue_sender_list *send,
struct thread_entry *owner)
{
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
if(send != NULL && q->send == NULL)
{
memset(send, 0, sizeof(*send));
#ifdef HAVE_PRIORITY_SCHEDULING
send->blocker.wakeup_protocol = wakeup_priority_protocol_release;
send->blocker.priority = PRIORITY_IDLE;
send->blocker.thread = owner;
if(owner != NULL)
q->blocker_p = &send->blocker;
#endif
q->send = send;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
(void)owner;
}
/* Unblock a blocked thread at a given event index */
static inline void queue_do_unblock_sender(struct queue_sender_list *send,
unsigned int i)
{
if(send)
{
struct thread_entry **spp = &send->senders[i];
if(*spp)
{
queue_release_sender(spp, 0);
}
}
}
/* Perform the auto-reply sequence */
static inline void queue_do_auto_reply(struct queue_sender_list *send)
{
if(send && send->curr_sender)
{
/* auto-reply */
queue_release_sender(&send->curr_sender, 0);
}
}
/* Moves waiting thread's refrence from the senders array to the
* current_sender which represents the thread waiting for a reponse to the
* last message removed from the queue. This also protects the thread from
* being bumped due to overflow which would not be a valid action since its
* message _is_ being processed at this point. */
static inline void queue_do_fetch_sender(struct queue_sender_list *send,
unsigned int rd)
{
if(send)
{
struct thread_entry **spp = &send->senders[rd];
if(*spp)
{
/* Move thread reference from array to the next thread
that queue_reply will release */
send->curr_sender = *spp;
(*spp)->retval = (intptr_t)spp;
*spp = NULL;
}
/* else message was posted asynchronously with queue_post */
}
}
#else
/* Empty macros for when synchoronous sending is not made */
#define queue_release_all_senders(q)
#define queue_do_unblock_sender(send, i)
#define queue_do_auto_reply(send)
#define queue_do_fetch_sender(send, rd)
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
/* Queue must not be available for use during this call */
void queue_init(struct event_queue *q, bool register_queue)
{
int oldlevel = disable_irq_save();
if(register_queue)
{
corelock_lock(&all_queues.cl);
}
corelock_init(&q->cl);
q->queue = NULL;
q->read = 0;
q->write = 0;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
q->send = NULL; /* No message sending by default */
IF_PRIO( q->blocker_p = NULL; )
#endif
if(register_queue)
{
if(all_queues.count >= MAX_NUM_QUEUES)
{
panicf("queue_init->out of queues");
}
/* Add it to the all_queues array */
all_queues.queues[all_queues.count++] = q;
corelock_unlock(&all_queues.cl);
}
restore_irq(oldlevel);
}
/* Queue must not be available for use during this call */
void queue_delete(struct event_queue *q)
{
int oldlevel;
int i;
oldlevel = disable_irq_save();
corelock_lock(&all_queues.cl);
corelock_lock(&q->cl);
/* Find the queue to be deleted */
for(i = 0;i < all_queues.count;i++)
{
if(all_queues.queues[i] == q)
{
/* Move the following queues up in the list */
all_queues.count--;
for(;i < all_queues.count;i++)
{
all_queues.queues[i] = all_queues.queues[i+1];
}
break;
}
}
corelock_unlock(&all_queues.cl);
/* Release thread(s) waiting on queue head */
thread_queue_wake(&q->queue);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send)
{
/* Release threads waiting for replies */
queue_release_all_senders(q);
/* Reply to any dequeued message waiting for one */
queue_do_auto_reply(q->send);
q->send = NULL;
IF_PRIO( q->blocker_p = NULL; )
}
#endif
q->read = 0;
q->write = 0;
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
/* NOTE: multiple threads waiting on a queue head cannot have a well-
defined release order if timeouts are used. If multiple threads must
access the queue head, use a dispatcher or queue_wait only. */
void queue_wait(struct event_queue *q, struct queue_event *ev)
{
int oldlevel;
unsigned int rd;
#ifdef HAVE_PRIORITY_SCHEDULING
KERNEL_ASSERT(QUEUE_GET_THREAD(q) == NULL ||
QUEUE_GET_THREAD(q) == thread_get_current(),
"queue_wait->wrong thread\n");
#endif
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* auto-reply */
queue_do_auto_reply(q->send);
if (q->read == q->write)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
do
{
IF_COP( current->obj_cl = &q->cl; )
current->bqp = &q->queue;
block_thread(current);
corelock_unlock(&q->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
}
/* A message that woke us could now be gone */
while (q->read == q->write);
}
rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
/* Get data for a waiting thread if one */
queue_do_fetch_sender(q->send, rd);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_wait_w_tmo(struct event_queue *q, struct queue_event *ev, int ticks)
{
int oldlevel;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
KERNEL_ASSERT(QUEUE_GET_THREAD(q) == NULL ||
QUEUE_GET_THREAD(q) == thread_get_current(),
"queue_wait_w_tmo->wrong thread\n");
#endif
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Auto-reply */
queue_do_auto_reply(q->send);
if (q->read == q->write && ticks > 0)
{
struct thread_entry *current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &q->cl; )
current->bqp = &q->queue;
block_thread_w_tmo(current, ticks);
corelock_unlock(&q->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
}
/* no worry about a removed message here - status is checked inside
locks - perhaps verify if timeout or false alarm */
if (q->read != q->write)
{
unsigned int rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
/* Get data for a waiting thread if one */
queue_do_fetch_sender(q->send, rd);
}
else
{
ev->id = SYS_TIMEOUT;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_post(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
/* overflow protect - unblock any thread waiting at this index */
queue_do_unblock_sender(q->send, wr);
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* IRQ handlers are not allowed use of this function - we only aim to
protect the queue integrity by turning them off. */
intptr_t queue_send(struct event_queue *q, long id, intptr_t data)
{
int oldlevel;
unsigned int wr;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
if(q->send)
{
struct queue_sender_list *send = q->send;
struct thread_entry **spp = &send->senders[wr];
struct thread_entry *current = cores[CURRENT_CORE].running;
if(*spp)
{
/* overflow protect - unblock any thread waiting at this index */
queue_release_sender(spp, 0);
}
/* Wakeup a waiting thread if any */
wakeup_thread(&q->queue);
/* Save thread in slot, add to list and wait for reply */
*spp = current;
IF_COP( current->obj_cl = &q->cl; )
IF_PRIO( current->blocker = q->blocker_p; )
current->wakeup_ext_cb = queue_remove_sender_thread_cb;
current->retval = (intptr_t)spp;
current->bqp = &send->list;
block_thread(current);
corelock_unlock(&q->cl);
switch_thread();
return current->retval;
}
/* Function as queue_post if sending is not enabled */
wakeup_thread(&q->queue);
corelock_unlock(&q->cl);
restore_irq(oldlevel);
return 0;
}
#if 0 /* not used now but probably will be later */
/* Query if the last message dequeued was added by queue_send or not */
bool queue_in_queue_send(struct event_queue *q)
{
bool in_send;
#if NUM_CORES > 1
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
#endif
in_send = q->send && q->send->curr_sender;
#if NUM_CORES > 1
corelock_unlock(&q->cl);
restore_irq(oldlevel);
#endif
return in_send;
}
#endif
/* Replies with retval to the last dequeued message sent with queue_send */
void queue_reply(struct event_queue *q, intptr_t retval)
{
if(q->send && q->send->curr_sender)
{
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Double-check locking */
IF_COP( if(q->send && q->send->curr_sender) )
{
queue_release_sender(&q->send->curr_sender, retval);
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
}
bool queue_peek(struct event_queue *q, struct queue_event *ev)
{
if(q->read == q->write)
return false;
bool have_msg = false;
int oldlevel = disable_irq_save();
corelock_lock(&q->cl);
if(q->read != q->write)
{
*ev = q->events[q->read & QUEUE_LENGTH_MASK];
have_msg = true;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
return have_msg;
}
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
/* Poll queue to see if a message exists - careful in using the result if
* queue_remove_from_head is called when messages are posted - possibly use
* queue_wait_w_tmo(&q, 0) in that case or else a removed message that
* unsignals the queue may cause an unwanted block */
bool queue_empty(const struct event_queue* q)
{
return ( q->read == q->write );
}
void queue_clear(struct event_queue* q)
{
int oldlevel;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
/* Release all threads waiting in the queue for a reply -
dequeued sent message will be handled by owning thread */
queue_release_all_senders(q);
q->read = 0;
q->write = 0;
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
void queue_remove_from_head(struct event_queue *q, long id)
{
int oldlevel;
oldlevel = disable_irq_save();
corelock_lock(&q->cl);
while(q->read != q->write)
{
unsigned int rd = q->read & QUEUE_LENGTH_MASK;
if(q->events[rd].id != id)
{
break;
}
/* Release any thread waiting on this message */
queue_do_unblock_sender(q->send, rd);
q->read++;
}
corelock_unlock(&q->cl);
restore_irq(oldlevel);
}
/**
* The number of events waiting in the queue.
*
* @param struct of event_queue
* @return number of events in the queue
*/
int queue_count(const struct event_queue *q)
{
return q->write - q->read;
}
int queue_broadcast(long id, intptr_t data)
{
int i;
#if NUM_CORES > 1
int oldlevel = disable_irq_save();
corelock_lock(&all_queues.cl);
#endif
for(i = 0;i < all_queues.count;i++)
{
queue_post(all_queues.queues[i], id, data);
}
#if NUM_CORES > 1
corelock_unlock(&all_queues.cl);
restore_irq(oldlevel);
#endif
return i;
}
/****************************************************************************
* Simple mutex functions ;)
****************************************************************************/
/* Initialize a mutex object - call before any use and do not call again once
* the object is available to other threads */
void mutex_init(struct mutex *m)
{
corelock_init(&m->cl);
m->queue = NULL;
m->count = 0;
m->locked = 0;
MUTEX_SET_THREAD(m, NULL);
#ifdef HAVE_PRIORITY_SCHEDULING
m->blocker.priority = PRIORITY_IDLE;
m->blocker.wakeup_protocol = wakeup_priority_protocol_transfer;
m->no_preempt = false;
#endif
}
/* Gain ownership of a mutex object or block until it becomes free */
void mutex_lock(struct mutex *m)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *current = cores[core].running;
if(current == MUTEX_GET_THREAD(m))
{
/* current thread already owns this mutex */
m->count++;
return;
}
/* lock out other cores */
corelock_lock(&m->cl);
if(m->locked == 0)
{
/* lock is open */
MUTEX_SET_THREAD(m, current);
m->locked = 1;
corelock_unlock(&m->cl);
return;
}
/* block until the lock is open... */
IF_COP( current->obj_cl = &m->cl; )
IF_PRIO( current->blocker = &m->blocker; )
current->bqp = &m->queue;
disable_irq();
block_thread(current);
corelock_unlock(&m->cl);
/* ...and turn control over to next thread */
switch_thread();
}
/* Release ownership of a mutex object - only owning thread must call this */
void mutex_unlock(struct mutex *m)
{
/* unlocker not being the owner is an unlocking violation */
KERNEL_ASSERT(MUTEX_GET_THREAD(m) == thread_get_current(),
"mutex_unlock->wrong thread (%s != %s)\n",
MUTEX_GET_THREAD(m)->name,
thread_get_current()->name);
if(m->count > 0)
{
/* this thread still owns lock */
m->count--;
return;
}
/* lock out other cores */
corelock_lock(&m->cl);
/* transfer to next queued thread if any */
if(m->queue == NULL)
{
/* no threads waiting - open the lock */
MUTEX_SET_THREAD(m, NULL);
m->locked = 0;
corelock_unlock(&m->cl);
return;
}
else
{
const int oldlevel = disable_irq_save();
/* Tranfer of owning thread is handled in the wakeup protocol
* if priorities are enabled otherwise just set it from the
* queue head. */
IFN_PRIO( MUTEX_SET_THREAD(m, m->queue); )
IF_PRIO( unsigned int result = ) wakeup_thread(&m->queue);
restore_irq(oldlevel);
corelock_unlock(&m->cl);
#ifdef HAVE_PRIORITY_SCHEDULING
if((result & THREAD_SWITCH) && !m->no_preempt)
switch_thread();
#endif
}
}
/****************************************************************************
* Simpl-er mutex functions ;)
****************************************************************************/
#if NUM_CORES > 1
void spinlock_init(struct spinlock *l)
{
corelock_init(&l->cl);
l->thread = NULL;
l->count = 0;
}
void spinlock_lock(struct spinlock *l)
{
const unsigned int core = CURRENT_CORE;
struct thread_entry *current = cores[core].running;
if(l->thread == current)
{
/* current core already owns it */
l->count++;
return;
}
/* lock against other processor cores */
corelock_lock(&l->cl);
/* take ownership */
l->thread = current;
}
void spinlock_unlock(struct spinlock *l)
{
/* unlocker not being the owner is an unlocking violation */
KERNEL_ASSERT(l->thread == thread_get_current(),
"spinlock_unlock->wrong thread\n");
if(l->count > 0)
{
/* this core still owns lock */
l->count--;
return;
}
/* clear owner */
l->thread = NULL;
/* release lock */
corelock_unlock(&l->cl);
}
#endif /* NUM_CORES > 1 */
/****************************************************************************
* Simple semaphore functions ;)
****************************************************************************/
#ifdef HAVE_SEMAPHORE_OBJECTS
void semaphore_init(struct semaphore *s, int max, int start)
{
KERNEL_ASSERT(max > 0 && start >= 0 && start <= max,
"semaphore_init->inv arg\n");
s->queue = NULL;
s->max = max;
s->count = start;
corelock_init(&s->cl);
}
void semaphore_wait(struct semaphore *s)
{
struct thread_entry *current;
corelock_lock(&s->cl);
if(--s->count >= 0)
{
/* wait satisfied */
corelock_unlock(&s->cl);
return;
}
/* too many waits - block until dequeued... */
current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &s->cl; )
current->bqp = &s->queue;
disable_irq();
block_thread(current);
corelock_unlock(&s->cl);
/* ...and turn control over to next thread */
switch_thread();
}
void semaphore_release(struct semaphore *s)
{
IF_PRIO( unsigned int result = THREAD_NONE; )
corelock_lock(&s->cl);
if(s->count < s->max && ++s->count <= 0)
{
/* there should be threads in this queue */
KERNEL_ASSERT(s->queue != NULL, "semaphore->wakeup\n");
/* a thread was queued - wake it up */
int oldlevel = disable_irq_save();
IF_PRIO( result = ) wakeup_thread(&s->queue);
restore_irq(oldlevel);
}
corelock_unlock(&s->cl);
#ifdef HAVE_PRIORITY_SCHEDULING
if(result & THREAD_SWITCH)
switch_thread();
#endif
}
#endif /* HAVE_SEMAPHORE_OBJECTS */
/****************************************************************************
* Simple event functions ;)
****************************************************************************/
#ifdef HAVE_EVENT_OBJECTS
void event_init(struct event *e, unsigned int flags)
{
e->queues[STATE_NONSIGNALED] = NULL;
e->queues[STATE_SIGNALED] = NULL;
e->state = flags & STATE_SIGNALED;
e->automatic = (flags & EVENT_AUTOMATIC) ? 1 : 0;
corelock_init(&e->cl);
}
void event_wait(struct event *e, unsigned int for_state)
{
struct thread_entry *current;
corelock_lock(&e->cl);
if(e->automatic != 0)
{
/* wait for false always satisfied by definition
or if it just changed to false */
if(e->state == STATE_SIGNALED || for_state == STATE_NONSIGNALED)
{
/* automatic - unsignal */
e->state = STATE_NONSIGNALED;
corelock_unlock(&e->cl);
return;
}
/* block until state matches */
}
else if(for_state == e->state)
{
/* the state being waited for is the current state */
corelock_unlock(&e->cl);
return;
}
/* block until state matches what callers requests */
current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &e->cl; )
current->bqp = &e->queues[for_state];
disable_irq();
block_thread(current);
corelock_unlock(&e->cl);
/* turn control over to next thread */
switch_thread();
}
void event_set_state(struct event *e, unsigned int state)
{
unsigned int result;
int oldlevel;
corelock_lock(&e->cl);
if(e->state == state)
{
/* no change */
corelock_unlock(&e->cl);
return;
}
IF_PRIO( result = THREAD_OK; )
oldlevel = disable_irq_save();
if(state == STATE_SIGNALED)
{
if(e->automatic != 0)
{
/* no thread should have ever blocked for nonsignaled */
KERNEL_ASSERT(e->queues[STATE_NONSIGNALED] == NULL,
"set_event_state->queue[NS]:S\n");
/* pass to next thread and keep unsignaled - "pulse" */
result = wakeup_thread(&e->queues[STATE_SIGNALED]);
e->state = (result & THREAD_OK) ? STATE_NONSIGNALED : STATE_SIGNALED;
}
else
{
/* release all threads waiting for signaled */
e->state = STATE_SIGNALED;
IF_PRIO( result = )
thread_queue_wake(&e->queues[STATE_SIGNALED]);
}
}
else
{
/* release all threads waiting for nonsignaled */
/* no thread should have ever blocked if automatic */
KERNEL_ASSERT(e->queues[STATE_NONSIGNALED] == NULL ||
e->automatic == 0, "set_event_state->queue[NS]:NS\n");
e->state = STATE_NONSIGNALED;
IF_PRIO( result = )
thread_queue_wake(&e->queues[STATE_NONSIGNALED]);
}
restore_irq(oldlevel);
corelock_unlock(&e->cl);
#ifdef HAVE_PRIORITY_SCHEDULING
if(result & THREAD_SWITCH)
switch_thread();
#endif
}
#endif /* HAVE_EVENT_OBJECTS */
#ifdef HAVE_WAKEUP_OBJECTS
/****************************************************************************
* Lightweight IRQ-compatible wakeup object
*/
/* Initialize the wakeup object */
void wakeup_init(struct wakeup *w)
{
w->queue = NULL;
w->signalled = 0;
IF_COP( corelock_init(&w->cl); )
}
/* Wait for a signal blocking indefinitely or for a specified period */
int wakeup_wait(struct wakeup *w, int timeout)
{
int ret = OBJ_WAIT_SUCCEEDED; /* Presume success */
int oldlevel = disable_irq_save();
corelock_lock(&w->cl);
if(w->signalled == 0 && timeout != TIMEOUT_NOBLOCK)
{
struct thread_entry * current = cores[CURRENT_CORE].running;
IF_COP( current->obj_cl = &w->cl; )
current->bqp = &w->queue;
if (timeout != TIMEOUT_BLOCK)
block_thread_w_tmo(current, timeout);
else
block_thread(current);
corelock_unlock(&w->cl);
switch_thread();
oldlevel = disable_irq_save();
corelock_lock(&w->cl);
}
if(w->signalled == 0)
{
/* Timed-out or failed */
ret = (timeout != TIMEOUT_BLOCK) ?
OBJ_WAIT_TIMEDOUT : OBJ_WAIT_FAILED;
}
w->signalled = 0; /* Reset */
corelock_unlock(&w->cl);
restore_irq(oldlevel);
return ret;
}
/* Signal the thread waiting or leave the signal if the thread hasn't
* waited yet.
*
* returns THREAD_NONE or THREAD_OK
*/
int wakeup_signal(struct wakeup *w)
{
int oldlevel = disable_irq_save();
int ret;
corelock_lock(&w->cl);
w->signalled = 1;
ret = wakeup_thread(&w->queue);
corelock_unlock(&w->cl);
restore_irq(oldlevel);
return ret;
}
#endif /* HAVE_WAKEUP_OBJECTS */