rockbox/apps/recorder/resize.c
Andrew Mahone 524c5409c3 remove unneeded test
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@19439 a1c6a512-1295-4272-9138-f99709370657
2008-12-14 17:58:04 +00:00

781 lines
27 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Akio Idehara, Andrew Mahone
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
* Implementation of area average and linear row and vertical scalers, and
* nearest-neighbor grey scaler (C) 2008 Andrew Mahone
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <general.h>
#include "inttypes.h"
#include "debug.h"
#include "lcd.h"
#include "file.h"
#ifdef HAVE_REMOTE_LCD
#include "lcd-remote.h"
#endif
#ifdef ROCKBOX_DEBUG_SCALERS
#define SDEBUGF DEBUGF
#else
#define SDEBUGF(...)
#endif
#ifndef __PCTOOL__
#include "config.h"
#include "system.h"
#include "bmp.h"
#include "resize.h"
#include "resize.h"
#include "debug.h"
#else
#undef DEBUGF
#define DEBUGF(...)
#endif
/* All of these scalers use variations of Bresenham's algorithm to convert from
their input to output coordinates. The color scalers have the error value
shifted so that it is a useful input to the scaling algorithm.
*/
#ifdef HAVE_LCD_COLOR
/* dither + pack on channel of RGB565, R an B share a packing macro */
#define PACKRB(v, delta) ((31 * v + (v >> 3) + delta) >> 8)
#define PACKG(g, delta) ((63 * g + (g >> 2) + delta) >> 8)
/* read new img_part unconditionally, return false on failure */
#define FILL_BUF_INIT(img_part, store_part, args) { \
img_part = store_part(args); \
if (img_part == NULL) \
return false; \
}
/* read new img_part if current one is empty, return false on failure */
#define FILL_BUF(img_part, store_part, args) { \
if (img_part->len == 0) \
img_part = store_part(args); \
if (img_part == NULL) \
return false; \
}
struct uint32_rgb {
uint32_t r;
uint32_t g;
uint32_t b;
};
struct scaler_context {
uint32_t divmul;
uint32_t round;
struct img_part* (*store_part)(void *);
long last_tick;
unsigned char *buf;
int len;
void *args;
};
/* Set up rounding and scale factors for horizontal area scaler */
static void scale_h_area_setup(struct bitmap *bm, struct dim *src,
struct scaler_context *ctx)
{
(void) bm;
/* sum is output value * src->width */
ctx->divmul = ((src->width - 1 + 0x80000000U) / src->width) << 1;
ctx->round = (src->width + 1) >> 1;
}
/* horizontal area average scaler */
static bool scale_h_area(struct bitmap *bm, struct dim *src,
struct uint32_rgb *out_line,
struct scaler_context *ctx, bool accum)
{
SDEBUGF("scale_h_area\n");
unsigned int ix, ox, oxe, mul;
struct uint32_rgb rgbvalacc = { 0, 0, 0 },
rgbvaltmp = { 0, 0, 0 };
struct img_part *part;
FILL_BUF_INIT(part,ctx->store_part,ctx->args);
ox = 0;
oxe = 0;
mul = 0;
for (ix = 0; ix < (unsigned int)src->width; ix++)
{
oxe += bm->width;
/* end of current area has been reached */
if (oxe >= (unsigned int)src->width)
{
/* yield if we haven't since last tick */
if (ctx->last_tick != current_tick)
{
yield();
ctx->last_tick = current_tick;
}
/* "reset" error, which now represents partial coverage of next
pixel by the next area
*/
oxe -= src->width;
/* add saved partial pixel from start of area */
rgbvalacc.r = rgbvalacc.r * bm->width + rgbvaltmp.r * mul;
rgbvalacc.g = rgbvalacc.g * bm->width + rgbvaltmp.g * mul;
rgbvalacc.b = rgbvalacc.b * bm->width + rgbvaltmp.b * mul;
/* fill buffer if needed */
FILL_BUF(part,ctx->store_part,ctx->args);
/* get new pixel , then add its partial coverage to this area */
rgbvaltmp.r = part->buf->red;
rgbvaltmp.g = part->buf->green;
rgbvaltmp.b = part->buf->blue;
part->buf++;
part->len--;
mul = bm->width - oxe;
rgbvalacc.r += rgbvaltmp.r * mul;
rgbvalacc.g += rgbvaltmp.g * mul;
rgbvalacc.b += rgbvaltmp.b * mul;
/* round, divide, and either store or accumulate to output row */
out_line[ox].r = (accum ? out_line[ox].r : 0) +
((rgbvalacc.r + ctx->round) *
(uint64_t)ctx->divmul >> 32);
out_line[ox].g = (accum ? out_line[ox].g : 0) +
((rgbvalacc.g + ctx->round) *
(uint64_t)ctx->divmul >> 32);
out_line[ox].b = (accum ? out_line[ox].b : 0) +
((rgbvalacc.b + ctx->round) *
(uint64_t)ctx->divmul >> 32);
/* reset accumulator */
rgbvalacc.r = 0;
rgbvalacc.g = 0;
rgbvalacc.b = 0;
mul = bm->width - mul;
ox += 1;
/* inside an area */
} else {
/* fill buffer if needed */
FILL_BUF(part,ctx->store_part,ctx->args);
/* add pixel value to accumulator */
rgbvalacc.r += part->buf->red;
rgbvalacc.g += part->buf->green;
rgbvalacc.b += part->buf->blue;
part->buf++;
part->len--;
}
}
return true;
}
/* vertical area average scaler */
static bool scale_v_area(struct bitmap *bm, bool dither, struct dim *src,
struct rowset *rset,
bool (*h_scaler)(struct bitmap*, struct dim*,
struct uint32_rgb*,
struct scaler_context*, bool),
struct scaler_context *ctx)
{
uint32_t mul, divmul, x, oy, iy, oye, round;
int delta = 127, r, g, b;
fb_data *row, *pix;
/* Set up rounding and scale factors */
divmul = ((src->height - 1 + 0x80000000U) / src->height) << 1;
round = (src->height + 1) >> 1;
mul = 0;
oy = 0;
oye = 0;
struct uint32_rgb *rowacc = (struct uint32_rgb *)(ctx->buf),
*rowtmp = rowacc + bm->width;
SDEBUGF("scale_v_area\n");
/* zero the accumulator and temp rows */
memset((void *)ctx->buf, 0, bm->width * 2 * sizeof(struct uint32_rgb));
row = (fb_data *)(bm->data) + bm->width * rset->rowstart;
for (iy = 0; iy < (unsigned int)src->height; iy++)
{
oye += bm->height;
/* end of current area has been reached */
if (oye >= (unsigned int)src->height)
{
/* "reset" error, which now represents partial coverage of the next
row by the next area
*/
oye -= src->height;
/* add stored partial row to accumulator */
for (x = 0; x < 3 *(unsigned int)bm->width; x++)
((uint32_t*)rowacc)[x] = ((uint32_t*)rowacc)[x] *
bm->height + mul *
((uint32_t*)rowtmp)[x];
/* store new scaled row in temp row */
if(!h_scaler(bm, src, rowtmp, ctx, false))
return false;
/* add partial coverage by new row to this area, then round and
scale to final value
*/
mul = bm->height - oye;
for (x = 0; x < 3 *(unsigned int)bm->width; x++)
{
((uint32_t*)rowacc)[x] += mul * ((uint32_t*)rowtmp)[x];
((uint32_t*)rowacc)[x] = (round +
((uint32_t*)rowacc)[x]) *
(uint64_t)divmul >> 32;
}
/* convert to RGB565 in output bitmap */
pix = row;
for (x = 0; x < (unsigned int)bm->width; x++)
{
if (dither)
delta = dither_mat(x & 0xf, oy & 0xf);
r = PACKRB(rowacc[x].r,delta);
g = PACKG(rowacc[x].g,delta);
b = PACKRB(rowacc[x].b,delta);
*pix++ = LCD_RGBPACK_LCD(r, g, b);
}
/* clear accumulator row, store partial coverage for next row */
memset((void *)rowacc, 0, bm->width * sizeof(struct uint32_rgb));
mul = oye;
row += bm->width * rset->rowstep;
oy += 1;
/* inside an area */
} else {
/* accumulate new scaled row to rowacc */
if (!h_scaler(bm, src, rowacc, ctx, true))
return false;
}
}
return true;
}
#ifdef HAVE_UPSCALER
/* Set up rounding and scale factors for the horizontal scaler. The divisor
is bm->width - 1, so that the first and last pixels in the row align
exactly between input and output
*/
static void scale_h_linear_setup(struct bitmap *bm, struct dim *src,
struct scaler_context *ctx)
{
(void) src;
ctx->divmul = ((bm->width - 2 + 0x80000000U) / (bm->width - 1)) << 1;
ctx->round = bm->width >> 1;
}
/* horizontal linear scaler */
static bool scale_h_linear(struct bitmap *bm, struct dim *src,
struct uint32_rgb *out_line,
struct scaler_context *ctx, bool accum)
{
unsigned int ix, ox, ixe;
/* type x = x is an ugly hack for hiding an unitialized data warning. The
values are conditionally initialized before use, but other values are
set such that this will occur before these are used.
*/
struct uint32_rgb rgbval=rgbval, rgbinc=rgbinc;
struct img_part *part;
SDEBUGF("scale_h_linear\n");
FILL_BUF_INIT(part,ctx->store_part,ctx->args);
ix = 0;
/* The error is set so that values are initialized on the first pass. */
ixe = bm->width - 1;
for (ox = 0; ox < (uint32_t)bm->width; ox++) {
if (ixe >= ((uint32_t)bm->width - 1))
{
/* yield once each tick */
if (ctx->last_tick != current_tick)
{
yield();
ctx->last_tick = current_tick;
}
/* Store the new "current" pixel value in rgbval, and the color
step value in rgbinc.
*/
ixe -= (bm->width - 1);
rgbinc.r = -(part->buf->red);
rgbinc.g = -(part->buf->green);
rgbinc.b = -(part->buf->blue);
rgbval.r = (part->buf->red) * (bm->width - 1);
rgbval.g = (part->buf->green) * (bm->width - 1);
rgbval.b = (part->buf->blue) * (bm->width - 1);
ix += 1;
/* If this wasn't the last pixel, add the next one to rgbinc. */
if (ix < (uint32_t)src->width) {
part->buf++;
part->len--;
/* Fetch new pixels if needed */
FILL_BUF(part,ctx->store_part,ctx->args);
rgbinc.r += part->buf->red;
rgbinc.g += part->buf->green;
rgbinc.b += part->buf->blue;
/* Add a partial step to rgbval, in this pixel isn't precisely
aligned with the new source pixel
*/
rgbval.r += rgbinc.r * ixe;
rgbval.g += rgbinc.g * ixe;
rgbval.b += rgbinc.b * ixe;
}
/* Now multiple the color increment to its proper value */
rgbinc.r *= src->width - 1;
rgbinc.g *= src->width - 1;
rgbinc.b *= src->width - 1;
}
/* round and scale values, and accumulate or store to output */
out_line[ox].r = (accum ? out_line[ox].r : 0) +
((rgbval.r + ctx->round) *
(uint64_t)ctx->divmul >> 32);
out_line[ox].g = (accum ? out_line[ox].g : 0) +
((rgbval.g + ctx->round) *
(uint64_t)ctx->divmul >> 32);
out_line[ox].b = (accum ? out_line[ox].b : 0) +
((rgbval.b + ctx->round) *
(uint64_t)ctx->divmul >> 32);
rgbval.r += rgbinc.r;
rgbval.g += rgbinc.g;
rgbval.b += rgbinc.b;
ixe += src->width - 1;
}
return true;
}
/* vertical linear scaler */
static bool scale_v_linear(struct bitmap *bm, bool dither, struct dim *src,
struct rowset *rset,
bool (*h_scaler)(struct bitmap*, struct dim*,
struct uint32_rgb*,
struct scaler_context*, bool),
struct scaler_context *ctx)
{
uint32_t mul, divmul, x, oy, iy, iye, round;
int delta = 127;
struct uint32_rgb p;
fb_data *row, *pix;
/* Set up scale and rounding factors, the divisor is bm->height - 1 */
divmul = ((bm->height - 2 + 0x80000000U) / (bm->height - 1)) << 1;
round = bm->height >> 1;
mul = 0;
iy = 0;
iye = bm->height - 1;
/* Set up our two temp buffers. The names are generic because they'll be
swapped each time a new input row is read
*/
struct uint32_rgb *crow1 = (struct uint32_rgb *)(ctx->buf),
*crow2 = crow1 + bm->width,
*t;
SDEBUGF("scale_v_linear\n");
row = (fb_data *)(bm->data) + bm->width * rset->rowstart;
/* get first scaled row in crow2 */
if(!h_scaler(bm, src, crow2, ctx, false))
return false;
for (oy = 0; oy < (uint32_t)bm->height; oy++)
{
if (iye >= (uint32_t)bm->height - 1)
{
/* swap temp rows, then read another row into crow2 */
t = crow2;
crow2 = crow1;
crow1 = t;
iye -= bm->height - 1;
iy += 1;
if (iy < (uint32_t)src->height)
{
if (!h_scaler(bm, src, crow2, ctx, false))
return false;
}
}
pix = row;
for (x = 0; x < (uint32_t)bm->width; x++)
{
/* iye and bm-height - 1 - iye represent the contribution of each
row to the output. Calculate their weighted sum, then round and
scale it.
*/
p.r = (crow1[x].r * (bm->height - 1 - iye) +
crow2[x].r * iye + round) * (uint64_t)divmul >> 32;
p.g = (crow1[x].g * (bm->height - 1 - iye) +
crow2[x].g * iye + round) * (uint64_t)divmul >> 32;
p.b = (crow1[x].b * (bm->height - 1 - iye) +
crow2[x].b * iye + round) * (uint64_t)divmul >> 32;
/* dither and pack pixels to output */
if (dither)
delta = dither_mat(x & 0xf, oy & 0xf);
p.r = PACKRB(p.r,delta);
p.g = PACKG(p.g,delta);
p.b = PACKRB(p.b,delta);
*pix++ = LCD_RGBPACK_LCD(p.r, p.g, p.b);
}
row += bm->width * rset->rowstep;
iye += src->height - 1;
}
return true;
}
#endif /* HAVE_UPSCALER */
#endif /* HAVE_LCD_COLOR */
/* docs for this are still TODO, but it's Bresenham's again, used to skip or
repeat input pixels, and with the *ls values being used for "long steps"
that skip all the way, or nearly all the way, to the next transition of
the associated value.
*/
#if LCD_DEPTH < 8 || (defined(HAVE_REMOTE_LCD) && LCD_REMOTE_DEPTH < 8)
/* nearest-neighbor up/down/non-scaler */
static inline bool scale_nearest(struct bitmap *bm,
struct dim *src,
struct rowset *rset,
bool remote, bool dither,
struct img_part* (*store_part)(void *args),
bool (*skip_lines)(void *args, unsigned int),
void *args)
{
const int sw = src->width;
const int sh = src->height;
const int dw = bm->width;
const int dh = bm->height;
unsigned char *bitmap = bm->data;
const int rowstep = rset->rowstep;
const int rowstart = rset->rowstart;
const int rowstop = rset->rowstop;
const int fb_width = get_fb_width(bm, false);
long last_tick = current_tick;
/* yet/oyt will always be initialized before use, since they are set in the
inside loop, and not used elsewhere until the end of the outside loop.
*/
int ix, ox, lx, xe, iy, oy, ly, ye, yet = yet, oyt = oyt;
int xelim, ixls, xels, yelim, iyls, yels, p;
struct img_part *cur_part;
#ifndef HAVE_LCD_COLOR
fb_data *dest = dest, *dest_t;
#endif
#ifdef HAVE_REMOTE_LCD
fb_remote_data *rdest = rdest, *rdest_t;
#endif
SDEBUGF("scale_nearest sw=%d sh=%d dw=%d dh=%d remote=%d\n", sw, sh, dw,
dh, remote);
ly = 0;
iy = 0;
ye = 0;
xelim = sw == dw - 1 ? dw : dw - 1;
ixls = xelim ? sw / xelim : 1;
xels = sw - ixls * (xelim ? xelim : 1);
yelim = sh == dh - 1 ? dh : dh - 1;
iyls = yelim ? sh / yelim : 1;
yels = iyls * (yelim ? yelim : 1);
int delta = 127;
#if LCD_PIXELFORMAT == HORIZONTAL_PACKING || \
(defined(HAVE_REMOTE_LCD) && LCD_REMOTE_PIXELFORMAT == HORIZONTAL_PACKING)
uint8_t buf[4];
int data, oxt;
#endif
#if LCD_PIXELFORMAT == VERTICAL_PACKING || \
LCD_PIXELFORMAT == VERTICAL_INTERLEAVED || \
(defined(HAVE_REMOTE_LCD) && \
(LCD_REMOTE_PIXELFORMAT == VERTICAL_INTERLEAVED || \
LCD_REMOTE_PIXELFORMAT == VERTICAL_PACKING))
int bright, shift;
#endif
for (oy = rowstart; oy != rowstop;) {
SDEBUGF("oy=%d iy=%d\n", oy, iy);
if (last_tick != current_tick)
{
yield();
last_tick = current_tick;
}
if (iy > ly && !skip_lines(args, iy - ly - 1))
return false;
ly = iy;
cur_part = store_part(args);
if (cur_part == NULL)
return false;
lx = 0;
ix = 0;
xe = 0;
#if defined(HAVE_REMOTE_LCD) && !defined(HAVE_LCD_COLOR)
if(!remote)
#else
(void)remote;
#endif
#if LCD_PIXELFORMAT == HORIZONTAL_PACKING
dest = (fb_data *)bitmap + fb_width * oy;
#elif LCD_PIXELFORMAT == VERTICAL_PACKING
dest = (fb_data *)bitmap + fb_width * (oy >> 2);
#elif LCD_PIXELFORMAT == VERTICAL_INTERLEAVED
dest = (fb_data *)bitmap + fb_width * (oy >> 3);
#endif
#ifdef HAVE_REMOTE_LCD
#ifndef HAVE_LCD_COLOR
else
#endif
rdest = (fb_remote_data *)bitmap + fb_width * (oy >> 3);
#endif
for (ox = 0; ox < dw; ox++) {
while (cur_part->len <= ix - lx)
{
lx += cur_part->len;
cur_part = store_part(args);
if (cur_part == NULL)
return false;
}
cur_part->len -= ix - lx;
cur_part->buf += ix - lx;
lx = ix;
#if defined(HAVE_REMOTE_LCD) && !defined(HAVE_LCD_COLOR)
if(!remote)
{
#endif
#if LCD_PIXELFORMAT == HORIZONTAL_PACKING
/* greyscale iPods */
buf[ox & 3] = brightness(*(cur_part->buf));
if ((ox & 3) == 3 || ox == dw - 1)
{
dest_t = dest++;
oyt = oy;
yet = ye;
int xo = ox & ~3;
while(yet < dh)
{
data = 0;
for (oxt = 0; oxt < (ox & 3) + 1; oxt++)
{
if (dither)
delta = dither_mat(oyt & 0xf, (xo + oxt) & 0xf);
p = (3 * buf[oxt] + (buf[oxt] >> 6) + delta) >> 8;
data |= (~p & 3) << ((3 - oxt) << 1);
}
*dest_t = data;
dest_t += rowstep * fb_width;
yet += sh;
oyt += rowstep;
}
}
#elif LCD_PIXELFORMAT == VERTICAL_PACKING
/* iriver H1x0 */
bright = brightness(*(cur_part->buf));
dest_t = dest++;
oyt = oy;
yet = ye;
while(yet < dh)
{
shift = (oyt & 3) << 1;
if (dither)
delta = dither_mat(oyt & 0xf, ox & 0xf);
p = (3 * bright + (bright >> 6) + delta) >> 8;
*dest_t |= (~p & 3) << shift;
if ((rowstep > 0 && shift == 6) || shift == 0)
dest_t += rowstep * fb_width;
yet += sh;
oyt += rowstep;
}
#elif LCD_PIXELFORMAT == VERTICAL_INTERLEAVED
bright = brightness(*(cur_part->buf));
dest_t = dest++;
oyt = oy;
yet = ye;
while(yet < dh)
{
shift = oyt & 7;
if (dither)
delta = dither_mat(oyt & 0xf, ox & 0xf);
p = (3 * bright + (bright >> 6) + delta) >> 8;
*dest_t |= vi_pat(p) << shift;
if ((rowstep > 0 && shift == 7) || shift == 0)
dest_t += rowstep * fb_width;
yet += sh;
oyt += rowstep;
}
#endif /* LCD_PIXELFORMAT */
#ifdef HAVE_REMOTE_LCD
#ifndef HAVE_LCD_COLOR
} else
#endif
{
#if LCD_REMOTE_PIXELFORMAT == VERTICAL_INTERLEAVED
bright = brightness(*(cur_part->buf));
rdest_t = rdest++;
oyt = oy;
yet = ye;
while(yet < dh)
{
shift = oyt & 7;
if (dither)
delta = dither_mat(oyt & 0xf, ox & 0xf);
p = (3 * bright + (bright >> 6) + delta) >> 8;
*rdest_t |= vi_pat(p) << shift;
if ((rowstep > 0 && shift == 7) || shift == 0)
rdest_t += rowstep * fb_width;
yet += sh;
oyt += rowstep;
}
#else
bright = brightness(*(cur_part->buf));
rdest_t = rdest++;
oyt = oy;
yet = ye;
while(yet < dh)
{
shift = oyt & 7;
if (dither)
delta = dither_mat(oyt & 0xf, ox & 0xf);
p = (bright + delta) >> 8;
*rdest_t |= (~p & 1) << shift;
if ((rowstep > 0 && shift == 7) || shift == 0)
rdest_t += rowstep * fb_width;
yet += sh;
oyt += rowstep;
}
#endif
}
#endif
xe += xels;
ix += ixls;
while (xe > xelim)
{
xe -= xelim;
ix += 1;
}
}
oy = oyt;
ye = yet - yels;
iy += iyls;
while (ye > yelim)
{
ye -= yelim;
iy += 1;
}
}
return true;
}
#endif
int resize_on_load(struct bitmap *bm, bool dither, struct dim *src,
struct rowset *rset, bool remote,
#ifdef HAVE_LCD_COLOR
unsigned char *buf, unsigned int len,
#endif
struct img_part* (*store_part)(void *args),
bool (*skip_lines)(void *args, unsigned int lines),
void *args)
{
#if defined(HAVE_LCD_COLOR) && !defined(HAVE_REMOTE_LCD)
(void)skip_lines;
#endif
#ifdef HAVE_LCD_COLOR
#ifdef HAVE_REMOTE_LCD
if (!remote)
#endif
{
#ifdef HAVE_UPSCALER
const int sw = src->width;
const int sh = src->height;
const int dw = bm->width;
const int dh = bm->height;
#endif
int ret;
unsigned int needed = sizeof(struct uint32_rgb) * 2 * bm->width;
#if MAX_SC_STACK_ALLOC
uint8_t sc_buf[(needed <= len || needed > MAX_SC_STACK_ALLOC) ?
0 : needed];
if (len && buf)
#endif
len = (unsigned int)align_buffer((void**)&buf, len,
sizeof(uint32_t));
if (needed > len)
{
#if MAX_SC_STACK_ALLOC
if (needed > MAX_SC_STACK_ALLOC)
{
DEBUGF("unable to allocate required buffer: %d needed, "
"%d available, %d permitted from stack\n",
needed, len, MAX_SC_STACK_ALLOC);
return 0;
}
if (sizeof(sc_buf) < needed)
{
DEBUGF("failed to allocate large enough buffer on stack: "
"%d needed, only got %d",
needed, MAX_SC_STACK_ALLOC);
return 0;
}
#else
DEBUGF("unable to allocate required buffer: %d needed, "
"%d available\n", needed, len);
return 0;
#endif
}
bool (*h_scaler)(struct bitmap*, struct dim*,
struct uint32_rgb*,
struct scaler_context*, bool);
struct scaler_context ctx;
ctx.last_tick = current_tick;
cpu_boost(true);
#ifdef HAVE_UPSCALER
if (sw > dw)
{
#endif
h_scaler = scale_h_area;
scale_h_area_setup(bm, src, &ctx);
#ifdef HAVE_UPSCALER
} else {
h_scaler = scale_h_linear;
scale_h_linear_setup(bm, src, &ctx);
}
#endif
ctx.store_part = store_part;
ctx.args = args;
#if MAX_SC_STACK_ALLOC
ctx.buf = needed > len ? sc_buf : buf;
#else
ctx.buf = buf;
#endif
ctx.len = len;
#ifdef HAVE_UPSCALER
if (sh > dh)
#endif
ret = scale_v_area(bm, dither, src, rset, h_scaler, &ctx);
#ifdef HAVE_UPSCALER
else
ret = scale_v_linear(bm, dither, src, rset, h_scaler, &ctx);
#endif
cpu_boost(false);
if (!ret)
return 0;
}
#ifdef HAVE_REMOTE_LCD
else
#endif
#endif /* HAVE_LCD_COLOR */
#if !defined(HAVE_LCD_COLOR) || defined(HAVE_REMOTE_LCD)
{
if (!scale_nearest(bm, src, rset, remote, dither, store_part,
skip_lines, args))
return 0;
}
#endif /* !HAVE_LCD_COLOR || HAVE_REMOTE_LCD*/
return get_totalsize(bm, remote);
}