rockbox/firmware/target/arm/imx233/creative-zenxfi3/lcd-zenxfi3.c
Amaury Pouly 52426d0891 imx233: fix pinctrl for stmp3600 and stmp3700
Change-Id: I87281b89315890fa285cb9a63fda5c90bdc8cdbf
2013-06-17 00:29:25 +02:00

499 lines
14 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (c) 2012 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <sys/types.h> /* off_t */
#include <string.h>
#include "cpu.h"
#include "system.h"
#include "backlight-target.h"
#include "lcd.h"
#include "lcdif-imx233.h"
#include "clkctrl-imx233.h"
#include "pinctrl-imx233.h"
#include "logf.h"
#ifdef HAVE_LCD_ENABLE
static bool lcd_on;
#endif
static unsigned lcd_yuv_options = 0;
static void setup_parameters(void)
{
imx233_lcdif_reset();
imx233_lcdif_set_lcd_databus_width(BV_LCDIF_CTRL_LCD_DATABUS_WIDTH__16_BIT);
imx233_lcdif_set_word_length(BV_LCDIF_CTRL_WORD_LENGTH__16_BIT);
imx233_lcdif_set_timings(2, 2, 3, 3);
imx233_lcdif_enable_underflow_recover(true);
}
static void setup_lcd_pins(bool use_lcdif)
{
/* WARNING
* the B1P22 pins is used to gate the speaker! Do NOT drive
* them as lcd_dotclk and lcd_hsync or it will break audio */
imx233_pinctrl_acquire(1, 18, "lcd reset");
imx233_pinctrl_acquire(1, 19, "lcd rs");
imx233_pinctrl_acquire(1, 20, "lcd wr");
imx233_pinctrl_acquire(1, 21, "lcd cs");
imx233_pinctrl_acquire(1, 23, "lcd enable");
imx233_pinctrl_acquire(1, 25, "lcd vsync");
//imx233_pinctrl_acquire_mask(1, 0x3ffff, "lcd data");
if(use_lcdif)
{
imx233_pinctrl_set_function(1, 25, PINCTRL_FUNCTION_MAIN); /* lcd_vsync */
imx233_pinctrl_set_function(1, 21, PINCTRL_FUNCTION_MAIN); /* lcd_cs */
imx233_pinctrl_set_function(1, 23, PINCTRL_FUNCTION_MAIN); /* lcd_enable */
imx233_pinctrl_set_function(1, 18, PINCTRL_FUNCTION_MAIN); /* lcd_reset */
imx233_pinctrl_set_function(1, 19, PINCTRL_FUNCTION_MAIN); /* lcd_rs */
imx233_pinctrl_set_function(1, 16, PINCTRL_FUNCTION_MAIN); /* lcd_d16 */
imx233_pinctrl_set_function(1, 17, PINCTRL_FUNCTION_MAIN); /* lcd_d17 */
imx233_pinctrl_set_function(1, 20, PINCTRL_FUNCTION_MAIN); /* lcd_wr */
HW_PINCTRL_MUXSELn_CLR(2) = 0xffffffff; /* lcd_d{0-15} */
}
else
{
HW_PINCTRL_MUXSELn_SET(2) = 0xffffffff; /* lcd_d{0-15} */
HW_PINCTRL_DOEn_CLR(1) = 0x2bfffff;
imx233_pinctrl_set_function(1, 16, PINCTRL_FUNCTION_GPIO); /* lcd_d16 */
imx233_pinctrl_set_function(1, 17, PINCTRL_FUNCTION_GPIO); /* lcd_d17 */
imx233_pinctrl_set_function(1, 19, PINCTRL_FUNCTION_GPIO); /* lcd_rs */
imx233_pinctrl_set_function(1, 20, PINCTRL_FUNCTION_GPIO); /* lcd_wr */
imx233_pinctrl_set_function(1, 21, PINCTRL_FUNCTION_GPIO); /* lcd_cs */
imx233_pinctrl_set_function(1, 23, PINCTRL_FUNCTION_GPIO); /* lcd_enable */
imx233_pinctrl_set_function(1, 25, PINCTRL_FUNCTION_GPIO); /* lcd_vsync */
}
}
static void common_lcd_enable(bool enable)
{
imx233_lcdif_enable(enable);
setup_lcd_pins(enable); /* use GPIO pins when disable */
}
static void setup_lcdif(void)
{
setup_parameters();
common_lcd_enable(true);
imx233_lcdif_enable_bus_master(true);
}
static void setup_lcdif_clock(void)
{
/* the LCD seems to work at 24Mhz, so use the xtal clock with no divider */
imx233_clkctrl_enable(CLK_PIX, false);
imx233_clkctrl_set_div(CLK_PIX, 1);
imx233_clkctrl_set_bypass(CLK_PIX, true); /* use XTAL */
imx233_clkctrl_enable(CLK_PIX, true);
}
static void lcd_write_reg(uint32_t reg, uint32_t data)
{
imx233_lcdif_pio_send(false, 2, &reg);
if(reg != 0x22)
imx233_lcdif_pio_send(true, 2, &data);
}
#define REG_UDELAY 0xffffffff
struct lcd_sequence_entry_t
{
uint32_t reg, data;
};
static void lcd_send_sequence(struct lcd_sequence_entry_t *seq, unsigned count)
{
for(;count-- > 0; seq++)
{
if(seq->reg == REG_UDELAY)
udelay(seq->data);
else
lcd_write_reg(seq->reg, seq->data);
}
}
#define _begin_seq() static struct lcd_sequence_entry_t __seq[] = {
#define _udelay(a) {REG_UDELAY, a},
#define _lcd_write_reg(a, b) {a, b},
#define _end_seq() }; lcd_send_sequence(__seq, sizeof(__seq) / sizeof(__seq[0]));
static void lcd_init_seq(void)
{
_begin_seq()
_lcd_write_reg(1, 0x11c)
_lcd_write_reg(2, 0x100)
_lcd_write_reg(3, 0x1030)
_lcd_write_reg(8, 0x808)
_lcd_write_reg(0xc, 0)
_lcd_write_reg(0xf, 0xc01)
_lcd_write_reg(0x20, 0)
_lcd_write_reg(0x21, 0)
_udelay(30)
_lcd_write_reg(0x10, 0xa00)
_lcd_write_reg(0x11, 0x1038)
_udelay(30)
_lcd_write_reg(0x12, 0x1010)
_lcd_write_reg(0x13, 0x50)
_lcd_write_reg(0x14, 0x4f58)
_lcd_write_reg(0x30, 0)
_lcd_write_reg(0x31, 0xdb)
_lcd_write_reg(0x32, 0)
_lcd_write_reg(0x33, 0)
_lcd_write_reg(0x34, 0xdb)
_lcd_write_reg(0x35, 0)
_lcd_write_reg(0x36, 0xaf)
_lcd_write_reg(0x37, 0)
_lcd_write_reg(0x38, 0xdb)
_lcd_write_reg(0x39, 0)
_lcd_write_reg(0x50, 0)
_lcd_write_reg(0x51, 0x705)
_lcd_write_reg(0x52, 0xe0a)
_lcd_write_reg(0x53, 0x300)
_lcd_write_reg(0x54, 0xa0e)
_lcd_write_reg(0x55, 0x507)
_lcd_write_reg(0x56, 0)
_lcd_write_reg(0x57, 3)
_lcd_write_reg(0x58, 0x90a)
_lcd_write_reg(0x59, 0xa09)
_udelay(30)
_lcd_write_reg(7, 0x1017)
_udelay(40)
_end_seq()
}
void lcd_init_device(void)
{
setup_lcdif();
setup_lcdif_clock();
// reset device
BF_SET(LCDIF_CTRL1, RESET);
mdelay(50);
BF_CLR(LCDIF_CTRL1, RESET);
mdelay(10);
BF_SET(LCDIF_CTRL1, RESET);
lcd_init_seq();
#ifdef HAVE_LCD_ENABLE
lcd_on = true;
#endif
}
#ifdef HAVE_LCD_ENABLE
bool lcd_active(void)
{
return lcd_on;
}
static void lcd_enable_seq(bool enable)
{
if(!enable)
{
_begin_seq()
_end_seq()
}
else
{
_begin_seq()
_end_seq()
}
}
void lcd_enable(bool enable)
{
if(lcd_on == enable)
return;
lcd_on = enable;
if(enable)
common_lcd_enable(true);
lcd_enable_seq(enable);
if(!enable)
common_lcd_enable(false);
else
send_event(LCD_EVENT_ACTIVATION, NULL);
}
#endif
void lcd_update(void)
{
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}
void lcd_update_rect(int x, int y, int w, int h)
{
#ifdef HAVE_LCD_ENABLE
if(!lcd_on)
return;
#endif
/* make sure the rectangle is included in the screen */
x = MIN(x, LCD_WIDTH);
y = MIN(y, LCD_HEIGHT);
w = MIN(w, LCD_WIDTH - x);
h = MIN(h, LCD_HEIGHT - y);
imx233_lcdif_wait_ready();
lcd_write_reg(0x37, x);
lcd_write_reg(0x36, x + w - 1);
lcd_write_reg(0x39, y);
lcd_write_reg(0x38, y + h - 1);
lcd_write_reg(0x20, x);
lcd_write_reg(0x21, y);
lcd_write_reg(0x22, 0);
imx233_lcdif_wait_ready();
imx233_lcdif_set_word_length(BV_LCDIF_CTRL_WORD_LENGTH__16_BIT);
imx233_lcdif_set_byte_packing_format(0xf); /* two pixels per 32-bit word */
imx233_lcdif_set_data_format(false, false, false); /* RGB565, don't care, don't care */
/* there are two cases here:
* - either width = LCD_WIDTH and we can directly memcopy a part of lcd_framebuffer to FRAME
* and send it
* - either width != LCD_WIDTH and we have to build a contiguous copy of the rectangular area
* into FRAME before sending it (which is slower and doesn't use the hardware)
* In all cases, FRAME just acts as a temporary buffer.
* NOTE It's more interesting to do a copy to FRAME in all cases since in system mode
* the clock runs at 24MHz which provides barely 10MB/s bandwidth compared to >100MB/s
* for memcopy operations
*/
if(w == LCD_WIDTH)
{
memcpy((void *)FRAME, FBADDR(x,y), w * h * sizeof(fb_data));
}
else
{
for(int i = 0; i < h; i++)
memcpy((fb_data *)FRAME + i * w, FBADDR(x,y + i), w * sizeof(fb_data));
}
/* WARNING The LCDIF has a limitation on the vertical count ! In 16-bit packed mode
* (which we used, ie 16-bit per pixel, 2 pixels per 32-bit words), the v_count
* field must be a multiple of 2. Furthermore, it seems the lcd controller doesn't
* really like when both w and h are even, probably because the writes to the GRAM
* are done on several words and the controller requires dummy writes.
* The workaround is to always make sure that we send a number of pixels which is
* a multiple of 4 so that both the lcdif and the controller are happy. If any
* of w or h is odd, we will send a copy of the first pixels as dummy writes. We will
* send at most 3 bytes. We then send (w * h + 3) / 4 x 4 bytes.
*/
if(w % 2 == 1 || h % 2 == 1)
{
/* copy three pixel after the last one */
for(int i = 0; i < 3; i++)
*((fb_data *)FRAME + w * h + i) = *((fb_data *)FRAME + i);
/* WARNING we need to update w and h to reflect the pixel count BUT it
* has no relation to w * h (it can even be 2 * prime). Hopefully, w <= 240 and
* h <= 320 so w * h <= 76800 and (w * h + 3) / 4 <= 38400 which fits into
* a 16-bit integer (horizontal count). */
h = (w * h + 3) / 4;
w = 4;
}
imx233_lcdif_dma_send((void *)FRAME_PHYS_ADDR, w, h);
}
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
}
#define YFAC (74)
#define RVFAC (101)
#define GUFAC (-24)
#define GVFAC (-51)
#define BUFAC (128)
static inline int clamp(int val, int min, int max)
{
if (val < min)
val = min;
else if (val > max)
val = max;
return val;
}
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
const unsigned char *ysrc, *usrc, *vsrc;
int linecounter;
fb_data *dst, *row_end;
long z;
/* width and height must be >= 2 and an even number */
width &= ~1;
linecounter = height >> 1;
#if LCD_WIDTH >= LCD_HEIGHT
dst = FBADDR(x,y);
row_end = dst + width;
#else
dst = FBADDR(LCD_WIDTH - y - 1,x);
row_end = dst + LCD_WIDTH * width;
#endif
z = stride * src_y;
ysrc = src[0] + z + src_x;
usrc = src[1] + (z >> 2) + (src_x >> 1);
vsrc = src[2] + (usrc - src[1]);
/* stride => amount to jump from end of last row to start of next */
stride -= width;
/* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */
do
{
do
{
int y, cb, cr, rv, guv, bu, r, g, b;
y = YFAC*(*ysrc++ - 16);
cb = *usrc++ - 128;
cr = *vsrc++ - 128;
rv = RVFAC*cr;
guv = GUFAC*cb + GVFAC*cr;
bu = BUFAC*cb;
r = y + rv;
g = y + guv;
b = y + bu;
if ((unsigned)(r | g | b) > 64*256-1)
{
r = clamp(r, 0, 64*256-1);
g = clamp(g, 0, 64*256-1);
b = clamp(b, 0, 64*256-1);
}
*dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9);
#if LCD_WIDTH >= LCD_HEIGHT
dst++;
#else
dst += LCD_WIDTH;
#endif
y = YFAC*(*ysrc++ - 16);
r = y + rv;
g = y + guv;
b = y + bu;
if ((unsigned)(r | g | b) > 64*256-1)
{
r = clamp(r, 0, 64*256-1);
g = clamp(g, 0, 64*256-1);
b = clamp(b, 0, 64*256-1);
}
*dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9);
#if LCD_WIDTH >= LCD_HEIGHT
dst++;
#else
dst += LCD_WIDTH;
#endif
}
while (dst < row_end);
ysrc += stride;
usrc -= width >> 1;
vsrc -= width >> 1;
#if LCD_WIDTH >= LCD_HEIGHT
row_end += LCD_WIDTH;
dst += LCD_WIDTH - width;
#else
row_end -= 1;
dst -= LCD_WIDTH*width + 1;
#endif
do
{
int y, cb, cr, rv, guv, bu, r, g, b;
y = YFAC*(*ysrc++ - 16);
cb = *usrc++ - 128;
cr = *vsrc++ - 128;
rv = RVFAC*cr;
guv = GUFAC*cb + GVFAC*cr;
bu = BUFAC*cb;
r = y + rv;
g = y + guv;
b = y + bu;
if ((unsigned)(r | g | b) > 64*256-1)
{
r = clamp(r, 0, 64*256-1);
g = clamp(g, 0, 64*256-1);
b = clamp(b, 0, 64*256-1);
}
*dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9);
#if LCD_WIDTH >= LCD_HEIGHT
dst++;
#else
dst += LCD_WIDTH;
#endif
y = YFAC*(*ysrc++ - 16);
r = y + rv;
g = y + guv;
b = y + bu;
if ((unsigned)(r | g | b) > 64*256-1)
{
r = clamp(r, 0, 64*256-1);
g = clamp(g, 0, 64*256-1);
b = clamp(b, 0, 64*256-1);
}
*dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9);
#if LCD_WIDTH >= LCD_HEIGHT
dst++;
#else
dst += LCD_WIDTH;
#endif
}
while (dst < row_end);
ysrc += stride;
usrc += stride >> 1;
vsrc += stride >> 1;
#if LCD_WIDTH >= LCD_HEIGHT
row_end += LCD_WIDTH;
dst += LCD_WIDTH - width;
#else
row_end -= 1;
dst -= LCD_WIDTH*width + 1;
#endif
}
while (--linecounter > 0);
#if LCD_WIDTH >= LCD_HEIGHT
lcd_update_rect(x, y, width, height);
#else
lcd_update_rect(LCD_WIDTH - y - height, x, height, width);
#endif
}