rockbox/apps/codecs/libgme/sgc_emu.c
Andree Buschmann 4ca2367e34 3rd part of FS#12176. Gain setting migrated to fixed point for libgme.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@30277 a1c6a512-1295-4272-9138-f99709370657
2011-08-10 17:58:36 +00:00

673 lines
19 KiB
C

// Game_Music_Emu 0.6-pre. http://www.slack.net/~ant/
#include "sgc_emu.h"
/* Copyright (C) 2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
int const osc_count = sms_osc_count + fm_apu_osc_count;
int const stereo = 2; // number of channels for stereo
int const silence_max = 6; // seconds
int const silence_threshold = 0x10;
long const fade_block_size = 512;
int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift)
const char gme_wrong_file_type [] = "Wrong file type for this emulator";
void clear_track_vars( struct Sgc_Emu* this )
{
this->current_track = -1;
this->out_time = 0;
this->emu_time = 0;
this->emu_track_ended_ = true;
this->track_ended = true;
this->fade_start = INT_MAX / 2 + 1;
this->fade_step = 1;
this->silence_time = 0;
this->silence_count = 0;
this->buf_remain = 0;
/* warning(); // clear warning */
}
void Sgc_init( struct Sgc_Emu* this )
{
assert( offsetof (struct header_t,copyright [32]) == header_size );
this->sample_rate = 0;
this->mute_mask_ = 0;
this->tempo = (int)FP_ONE_TEMPO;
this->gain = (int)FP_ONE_GAIN;
this->voice_count = 0;
// defaults
this->max_initial_silence = 2;
this->silence_lookahead = 6;
this->ignore_silence = false;
Sms_apu_init( &this->apu );
Fm_apu_create( &this->fm_apu );
Rom_init( &this->rom, 0x4000 );
Z80_init( &this->cpu );
Sound_set_gain( this, (int)(FP_ONE_GAIN*1.2) );
// Unload
clear_track_vars( this );
}
// Setup
blargg_err_t Sgc_load_mem( struct Sgc_Emu* this, const void* data, long size )
{
RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, 0 ) );
if ( !valid_tag( &this->header ) )
return gme_wrong_file_type;
/* if ( header.vers != 1 )
warning( "Unknown file version" ); */
/* if ( header.system > 2 )
warning( "Unknown system" ); */
addr_t load_addr = get_le16( this->header.load_addr );
/* if ( load_addr < 0x400 )
set_warning( "Invalid load address" ); */
Rom_set_addr( &this->rom, load_addr );
this->play_period = clock_rate( this ) / 60;
if ( sega_mapping( this ) && Fm_apu_supported() )
RETURN_ERR( Fm_apu_init( &this->fm_apu, clock_rate( this ), clock_rate( this ) / 72 ) );
this->m3u.size = 0;
this->track_count = this->header.song_count;
this->voice_count = sega_mapping( this ) ? osc_count : sms_osc_count;
Sms_apu_volume( &this->apu, (double)(this->gain)/FP_ONE_GAIN );
Fm_apu_volume( &this->fm_apu, (double)(this->gain)/FP_ONE_GAIN );
// Setup buffer
this->clock_rate_ = clock_rate( this );
Buffer_clock_rate( &this->stereo_buf, clock_rate( this ) );
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
Sound_set_tempo( this, this->tempo );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
return 0;
}
void Sound_set_voice( struct Sgc_Emu* this, int i, struct Blip_Buffer* c, struct Blip_Buffer* l, struct Blip_Buffer* r )
{
if ( i < sms_osc_count )
Sms_apu_set_output( &this->apu, i, c, l, r );
else
Fm_apu_set_output( &this->fm_apu, c );
}
blargg_err_t run_clocks( struct Sgc_Emu* this, blip_time_t* duration, int msec )
{
#if defined(ROCKBOX)
(void) msec;
#endif
cpu_time_t t = *duration;
while ( Z80_time( &this->cpu ) < t )
{
cpu_time_t next = min( t, this->next_play );
if ( run_cpu( this, next ) )
{
/* warning( "Unsupported CPU instruction" ); */
Z80_set_time( &this->cpu, next );
}
if ( this->cpu.r.pc == this->idle_addr )
Z80_set_time( &this->cpu, next );
if ( Z80_time( &this->cpu ) >= this->next_play )
{
this->next_play += this->play_period;
if ( this->cpu.r.pc == this->idle_addr )
jsr( this, this->header.play_addr );
}
}
this->next_play -= t;
check( this->next_play >= 0 );
Z80_adjust_time( &this->cpu, -t );
Sms_apu_end_frame( &this->apu, t );
if ( sega_mapping( this ) && this->fm_accessed )
{
if ( Fm_apu_supported() )
Fm_apu_end_frame( &this->fm_apu, t );
/* else
warning( "FM sound not supported" ); */
}
return 0;
}
// Emulation
void cpu_out( struct Sgc_Emu* this, cpu_time_t time, addr_t addr, int data )
{
int port = addr & 0xFF;
if ( sega_mapping( this ) )
{
switch ( port )
{
case 0x06:
Sms_apu_write_ggstereo( &this->apu, time, data );
return;
case 0x7E:
case 0x7F:
Sms_apu_write_data( &this->apu, time, data ); /* dprintf( "$7E<-%02X\n", data ); */
return;
case 0xF0:
this->fm_accessed = true;
if ( Fm_apu_supported() )
Fm_apu_write_addr( &this->fm_apu, data );//, dprintf( "$F0<-%02X\n", data );
return;
case 0xF1:
this->fm_accessed = true;
if ( Fm_apu_supported() )
Fm_apu_write_data( &this->fm_apu, time, data );//, dprintf( "$F1<-%02X\n", data );
return;
}
}
else if ( port >= 0xE0 )
{
Sms_apu_write_data( &this->apu, time, data );
return;
}
}
void jsr( struct Sgc_Emu* this, byte addr [2] )
{
*Z80_write( &this->cpu, --this->cpu.r.sp ) = this->idle_addr >> 8;
*Z80_write( &this->cpu, --this->cpu.r.sp ) = this->idle_addr & 0xFF;
this->cpu.r.pc = get_le16( addr );
}
void set_bank( struct Sgc_Emu* this, int bank, void const* data )
{
//dprintf( "map bank %d to %p\n", bank, (byte*) data - rom.at_addr( 0 ) );
Z80_map_mem( &this->cpu, bank * this->rom.bank_size, this->rom.bank_size, this->unmapped_write, data );
}
void cpu_write( struct Sgc_Emu* this, addr_t addr, int data )
{
if ( (addr ^ 0xFFFC) > 3 || !sega_mapping( this ) )
{
*Z80_write( &this->cpu, addr ) = data;
return;
}
switch ( addr )
{
case 0xFFFC:
Z80_map_mem_rw( &this->cpu, 2 * this->rom.bank_size, this->rom.bank_size, this->ram2 );
if ( data & 0x08 )
break;
this->bank2 = this->ram2;
// FALL THROUGH
case 0xFFFF: {
bool rom_mapped = (Z80_read( &this->cpu, 2 * this->rom.bank_size ) == this->bank2);
this->bank2 = Rom_at_addr( &this->rom, data * this->rom.bank_size );
if ( rom_mapped )
set_bank( this, 2, this->bank2 );
break;
}
case 0xFFFD:
set_bank( this, 0, Rom_at_addr( &this->rom, data * this->rom.bank_size ) );
break;
case 0xFFFE:
set_bank( this, 1, Rom_at_addr( &this->rom, data * this->rom.bank_size ) );
break;
}
}
blargg_err_t Sgc_set_sample_rate( struct Sgc_Emu* this, long rate )
{
require( !this->sample_rate ); // sample rate can't be changed once set
Buffer_init( &this->stereo_buf );
Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 );
// Set buffer bass
Buffer_bass_freq( &this->stereo_buf, 80 );
this->sample_rate = rate;
return 0;
}
void Sound_mute_voice( struct Sgc_Emu* this, int index, bool mute )
{
require( (unsigned) index < (unsigned) this->voice_count );
int bit = 1 << index;
int mask = this->mute_mask_ | bit;
if ( !mute )
mask ^= bit;
Sound_mute_voices( this, mask );
}
void Sound_mute_voices( struct Sgc_Emu* this, int mask )
{
require( this->sample_rate ); // sample rate must be set first
this->mute_mask_ = mask;
int i;
for ( i = this->voice_count; i--; )
{
if ( mask & (1 << i) )
{
Sound_set_voice( this, i, 0, 0, 0 );
}
else
{
struct channel_t ch = Buffer_channel( &this->stereo_buf );
assert( (ch.center && ch.left && ch.right) ||
(!ch.center && !ch.left && !ch.right) ); // all or nothing
Sound_set_voice( this, i, ch.center, ch.left, ch.right );
}
}
}
void Sound_set_tempo( struct Sgc_Emu* this, int t )
{
require( this->sample_rate ); // sample rate must be set first
int const min = (int)(FP_ONE_TEMPO*0.02);
int const max = (int)(FP_ONE_TEMPO*4.00);
if ( t < min ) t = min;
if ( t > max ) t = max;
this->tempo = t;
this->play_period = (int) ((clock_rate( this ) * FP_ONE_TEMPO) / (this->header.rate ? 50 : 60) / t);
}
void fill_buf( struct Sgc_Emu* this ) ICODE_ATTR;
blargg_err_t Sgc_start_track( struct Sgc_Emu* this, int track )
{
clear_track_vars( this );
// Remap track if playlist available
if ( this->m3u.size > 0 ) {
struct entry_t* e = &this->m3u.entries[track];
track = e->track;
}
this->current_track = track;
if ( sega_mapping( this ) )
{
Sms_apu_reset( &this->apu, 0, 0 );
Fm_apu_reset( &this->fm_apu );
this->fm_accessed = false;
}
else
{
Sms_apu_reset( &this->apu, 0x0003, 15 );
}
memset( this->ram , 0, sizeof this->ram );
memset( this->ram2, 0, sizeof this->ram2 );
memset( this->vectors, 0xFF, sizeof this->vectors );
Z80_reset( &this->cpu, this->unmapped_write, this->rom.unmapped );
if ( sega_mapping( this ) )
{
this->vectors_addr = 0x10000 - page_size;
this->idle_addr = this->vectors_addr;
int i;
for ( i = 1; i < 8; ++i )
{
this->vectors [i*8 + 0] = 0xC3; // JP addr
this->vectors [i*8 + 1] = this->header.rst_addrs [i - 1] & 0xff;
this->vectors [i*8 + 2] = this->header.rst_addrs [i - 1] >> 8;
}
Z80_map_mem_rw( &this->cpu, 0xC000, 0x2000, this->ram );
Z80_map_mem( &this->cpu, this->vectors_addr, page_size, this->unmapped_write, this->vectors );
this->bank2 = NULL;
for ( i = 0; i < 4; ++i )
cpu_write( this, 0xFFFC + i, this->header.mapping [i] );
}
else
{
if ( !this->coleco_bios )
return "Coleco BIOS not set"; /* BLARGG_ERR( BLARGG_ERR_CALLER, "Coleco BIOS not set" ); */
this->vectors_addr = 0;
Z80_map_mem( &this->cpu, 0, 0x2000, this->unmapped_write, this->coleco_bios );
int i;
for ( i = 0; i < 8; ++i )
Z80_map_mem_rw( &this->cpu, 0x6000 + i*0x400, 0x400, this->ram );
this->idle_addr = 0x2000;
Z80_map_mem( &this->cpu, 0x2000, page_size, this->unmapped_write, this->vectors );
for ( i = 0; i < 0x8000 / this->rom.bank_size; ++i )
{
int addr = 0x8000 + i*this->rom.bank_size;
Z80_map_mem( &this->cpu, addr, this->rom.bank_size, this->unmapped_write, Rom_at_addr( &this->rom, addr ) );
}
}
this->cpu.r.sp = get_le16( this->header.stack_ptr );
this->cpu.r.b.a = track;
this->next_play = this->play_period;
jsr( this, this->header.init_addr );
Buffer_clear( &this->stereo_buf );
this->emu_track_ended_ = false;
this->track_ended = false;
if ( !this->ignore_silence )
{
// play until non-silence or end of track
long end;
for ( end = this->max_initial_silence * stereo * this->sample_rate; this->emu_time < end; )
{
fill_buf( this );
if ( this->buf_remain | (int) this->emu_track_ended_ )
break;
}
this->emu_time = this->buf_remain;
this->out_time = 0;
this->silence_time = 0;
this->silence_count = 0;
}
/* return track_ended() ? warning() : 0; */
return 0;
}
// Tell/Seek
blargg_long msec_to_samples( blargg_long msec, long sample_rate )
{
blargg_long sec = msec / 1000;
msec -= sec * 1000;
return (sec * sample_rate + msec * sample_rate / 1000) * stereo;
}
long Track_tell( struct Sgc_Emu* this )
{
blargg_long rate = this->sample_rate * stereo;
blargg_long sec = this->out_time / rate;
return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate;
}
blargg_err_t Track_seek( struct Sgc_Emu* this, long msec )
{
blargg_long time = msec_to_samples( msec, this->sample_rate );
if ( time < this->out_time )
RETURN_ERR( Sgc_start_track( this, this->current_track ) );
return Track_skip( this, time - this->out_time );
}
blargg_err_t skip_( struct Sgc_Emu* this, long count ) ICODE_ATTR;
blargg_err_t Track_skip( struct Sgc_Emu* this, long count )
{
require( this->current_track >= 0 ); // start_track() must have been called already
this->out_time += count;
// remove from silence and buf first
{
long n = min( count, this->silence_count );
this->silence_count -= n;
count -= n;
n = min( count, this->buf_remain );
this->buf_remain -= n;
count -= n;
}
if ( count && !this->emu_track_ended_ )
{
this->emu_time += count;
// End track if error
if ( skip_( this, count ) ) {
this->emu_track_ended_ = true;
}
}
if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended
this->track_ended |= this->emu_track_ended_;
return 0;
}
blargg_err_t play_( struct Sgc_Emu* this, long count, sample_t* out ) ICODE_ATTR;
blargg_err_t skip_( struct Sgc_Emu* this, long count )
{
// for long skip, mute sound
const long threshold = 30000;
if ( count > threshold )
{
int saved_mute = this->mute_mask_;
Sound_mute_voices( this, ~0 );
while ( count > threshold / 2 && !this->emu_track_ended_ )
{
RETURN_ERR( play_( this, buf_size, this->buf ) );
count -= buf_size;
}
Sound_mute_voices( this, saved_mute );
}
while ( count && !this->emu_track_ended_ )
{
long n = buf_size;
if ( n > count )
n = count;
count -= n;
RETURN_ERR( play_( this, n, this->buf ) );
}
return 0;
}
// Fading
void Track_set_fade( struct Sgc_Emu* this, long start_msec, long length_msec )
{
this->fade_step = this->sample_rate * length_msec / (fade_block_size * fade_shift * 1000 / stereo);
this->fade_start = msec_to_samples( start_msec, this->sample_rate );
}
// unit / pow( 2.0, (double) x / step )
static int int_log( blargg_long x, int step, int unit )
{
int shift = x / step;
int fraction = (x - shift * step) * unit / step;
return ((unit - fraction) + (fraction >> 1)) >> shift;
}
void handle_fade( struct Sgc_Emu* this, long out_count, sample_t* out )
{
int i;
for ( i = 0; i < out_count; i += fade_block_size )
{
int const shift = 14;
int const unit = 1 << shift;
int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size,
this->fade_step, unit );
if ( gain < (unit >> fade_shift) )
this->track_ended = this->emu_track_ended_ = true;
sample_t* io = &out [i];
int count;
for ( count = min( fade_block_size, out_count - i ); count; --count )
{
*io = (sample_t) ((*io * gain) >> shift);
++io;
}
}
}
// Silence detection
void emu_play( struct Sgc_Emu* this, long count, sample_t* out )
{
check( this->current_track_ >= 0 );
this->emu_time += count;
if ( this->current_track >= 0 && !this->emu_track_ended_ ) {
// End track if error
if ( play_( this, count, out ) )
this->emu_track_ended_ = true;
}
else
memset( out, 0, count * sizeof *out );
}
// number of consecutive silent samples at end
static long count_silence( sample_t* begin, long size )
{
sample_t first = *begin;
*begin = silence_threshold; // sentinel
sample_t* p = begin + size;
while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { }
*begin = first;
return size - (p - begin);
}
// fill internal buffer and check it for silence
void fill_buf( struct Sgc_Emu* this )
{
assert( !this->buf_remain );
if ( !this->emu_track_ended_ )
{
emu_play( this, buf_size, this->buf );
long silence = count_silence( this->buf, buf_size );
if ( silence < buf_size )
{
this->silence_time = this->emu_time - silence;
this->buf_remain = buf_size;
return;
}
}
this->silence_count += buf_size;
}
blargg_err_t Sgc_play( struct Sgc_Emu* this, long out_count, sample_t* out )
{
if ( this->track_ended )
{
memset( out, 0, out_count * sizeof *out );
}
else
{
require( this->current_track >= 0 );
require( out_count % stereo == 0 );
assert( this->emu_time >= this->out_time );
// prints nifty graph of how far ahead we are when searching for silence
//debug_printf( "%*s \n", int ((emu_time - out_time) * 7 / sample_rate()), "*" );
long pos = 0;
if ( this->silence_count )
{
// during a run of silence, run emulator at >=2x speed so it gets ahead
long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time;
while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) )
fill_buf( this );
// fill with silence
pos = min( this->silence_count, out_count );
memset( out, 0, pos * sizeof *out );
this->silence_count -= pos;
if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate )
{
this->track_ended = this->emu_track_ended_ = true;
this->silence_count = 0;
this->buf_remain = 0;
}
}
if ( this->buf_remain )
{
// empty silence buf
long n = min( this->buf_remain, out_count - pos );
memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out );
this->buf_remain -= n;
pos += n;
}
// generate remaining samples normally
long remain = out_count - pos;
if ( remain )
{
emu_play( this, remain, out + pos );
this->track_ended |= this->emu_track_ended_;
if ( !this->ignore_silence || this->out_time > this->fade_start )
{
// check end for a new run of silence
long silence = count_silence( out + pos, remain );
if ( silence < remain )
this->silence_time = this->emu_time - silence;
if ( this->emu_time - this->silence_time >= buf_size )
fill_buf( this ); // cause silence detection on next play()
}
}
if ( this->out_time > this->fade_start )
handle_fade( this, out_count, out );
}
this->out_time += out_count;
return 0;
}
blargg_err_t play_( struct Sgc_Emu* this, long count, sample_t* out )
{
long remain = count;
while ( remain )
{
remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain );
if ( remain )
{
if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) )
{
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
}
int msec = Buffer_length( &this->stereo_buf );
blip_time_t clocks_emulated = msec * this->clock_rate_ / 1000 - 100;
RETURN_ERR( run_clocks( this, &clocks_emulated, msec ) );
assert( clocks_emulated );
Buffer_end_frame( &this->stereo_buf, clocks_emulated );
}
}
return 0;
}