rockbox/apps/codecs/libgme/gbs_emu.c
Andree Buschmann 4ca2367e34 3rd part of FS#12176. Gain setting migrated to fixed point for libgme.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@30277 a1c6a512-1295-4272-9138-f99709370657
2011-08-10 17:58:36 +00:00

631 lines
17 KiB
C

// Game_Music_Emu 0.5.2. http://www.slack.net/~ant/
#include "gbs_emu.h"
#include "blargg_endian.h"
#include "blargg_source.h"
/* Copyright (C) 2003-2006 Shay Green. this module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. this
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
const char gme_wrong_file_type [] ICONST_ATTR = "Wrong file type for this emulator";
int const idle_addr = 0xF00D;
int const tempo_unit = 16;
int const stereo = 2; // number of channels for stereo
int const silence_max = 6; // seconds
int const silence_threshold = 0x10;
long const fade_block_size = 512;
int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift)
void clear_track_vars( struct Gbs_Emu* this )
{
this->current_track_ = -1;
this->out_time = 0;
this->emu_time = 0;
this->emu_track_ended_ = true;
this->track_ended = true;
this->fade_start = (blargg_long)(LONG_MAX / 2 + 1);
this->fade_step = 1;
this->silence_time = 0;
this->silence_count = 0;
this->buf_remain = 0;
}
void Gbs_init( struct Gbs_Emu* this )
{
this->sample_rate_ = 0;
this->mute_mask_ = 0;
this->tempo_ = (int)(FP_ONE_TEMPO);
// Unload
this->header.timer_mode = 0;
clear_track_vars( this );
this->ignore_silence = false;
this->silence_lookahead = 6;
this->max_initial_silence = 21;
Sound_set_gain( this, (int)(FP_ONE_GAIN*1.2) );
Rom_init( &this->rom, 0x4000 );
Apu_init( &this->apu );
Cpu_init( &this->cpu );
this->tempo = tempo_unit;
this->sound_hardware = sound_gbs;
// Reduce apu sound clicks?
Apu_reduce_clicks( &this->apu, true );
}
static blargg_err_t check_gbs_header( void const* header )
{
if ( memcmp( header, "GBS", 3 ) )
return gme_wrong_file_type;
return 0;
}
// Setup
blargg_err_t Gbs_load( struct Gbs_Emu* this, void* data, long size )
{
// Unload
this->header.timer_mode = 0;
this->voice_count_ = 0;
this->m3u.size = 0;
clear_track_vars( this );
assert( offsetof (struct header_t,copyright [32]) == header_size );
RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, 0 ) );
RETURN_ERR( check_gbs_header( &this->header ) );
/* Ignore warnings? */
/*if ( header_.vers != 1 )
warning( "Unknown file version" );
if ( header_.timer_mode & 0x78 )
warning( "Invalid timer mode" ); */
/* unsigned load_addr = get_le16( this->header.load_addr ); */
/* if ( (header_.load_addr [1] | header_.init_addr [1] | header_.play_addr [1]) > 0x7F ||
load_addr < 0x400 )
warning( "Invalid load/init/play address" ); */
unsigned load_addr = get_le16( this->header.load_addr );
/* if ( (this->header.load_addr [1] | this->header.init_addr [1] | this->header.play_addr [1]) > 0x7F ||
load_addr < 0x400 )
warning( "Invalid load/init/play address" ); */
this->cpu.rst_base = load_addr;
Rom_set_addr( &this->rom, load_addr );
this->voice_count_ = osc_count;
Apu_volume( &this->apu, (double)(this->gain_)/FP_ONE_GAIN );
// Change clock rate & setup buffer
this->clock_rate_ = 4194304;
Buffer_clock_rate( &this->stereo_buf, 4194304 );
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
// Post load
Sound_set_tempo( this, this->tempo_ );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
// Reset track count
this->track_count = this->header.track_count;
return 0;
}
// Emulation
// see gb_cpu_io.h for read/write functions
void Set_bank( struct Gbs_Emu* this, int n )
{
addr_t addr = mask_addr( n * this->rom.bank_size, this->rom.mask );
if ( addr == 0 && this->rom.size > this->rom.bank_size )
addr = this->rom.bank_size; // MBC1&2 behavior, bank 0 acts like bank 1
Cpu_map_code( &this->cpu, this->rom.bank_size, this->rom.bank_size, Rom_at_addr( &this->rom, addr ) );
}
void Update_timer( struct Gbs_Emu* this )
{
this->play_period = 70224 / tempo_unit; /// 59.73 Hz
if ( this->header.timer_mode & 0x04 )
{
// Using custom rate
static byte const rates [4] = { 6, 0, 2, 4 };
// TODO: emulate double speed CPU mode rather than halving timer rate
int double_speed = this->header.timer_mode >> 7;
int shift = rates [this->ram [hi_page + 7] & 3] - double_speed;
this->play_period = (256 - this->ram [hi_page + 6]) << shift;
}
this->play_period *= this->tempo;
}
// Jumps to routine, given pointer to address in file header. Pushes idle_addr
// as return address, NOT old PC.
void Jsr_then_stop( struct Gbs_Emu* this, byte const addr [] )
{
check( this->cpu.r.sp == get_le16( this->header.stack_ptr ) );
this->cpu.r.pc = get_le16( addr );
Write_mem( this, --this->cpu.r.sp, idle_addr >> 8 );
Write_mem( this, --this->cpu.r.sp, idle_addr );
}
blargg_err_t Run_until( struct Gbs_Emu* this, int end )
{
this->end_time = end;
Cpu_set_time( &this->cpu, Cpu_time( &this->cpu ) - end );
while ( true )
{
Run_cpu( this );
if ( Cpu_time( &this->cpu ) >= 0 )
break;
if ( this->cpu.r.pc == idle_addr )
{
if ( this->next_play > this->end_time )
{
Cpu_set_time( &this->cpu, 0 );
break;
}
if ( Cpu_time( &this->cpu ) < this->next_play - this->end_time )
Cpu_set_time( &this->cpu, this->next_play - this->end_time );
this->next_play += this->play_period;
Jsr_then_stop( this, this->header.play_addr );
}
else if ( this->cpu.r.pc > 0xFFFF )
{
/* warning( "PC wrapped around\n" ); */
this->cpu.r.pc &= 0xFFFF;
}
else
{
/* warning( "Emulation error (illegal/unsupported instruction)" ); */
this->cpu.r.pc = (this->cpu.r.pc + 1) & 0xFFFF;
Cpu_set_time( &this->cpu, Cpu_time( &this->cpu ) + 6 );
}
}
return 0;
}
blargg_err_t End_frame( struct Gbs_Emu* this, int end )
{
RETURN_ERR( Run_until( this, end ) );
this->next_play -= end;
if ( this->next_play < 0 ) // happens when play routine takes too long
{
#if !defined(GBS_IGNORE_STARVED_PLAY)
check( false );
#endif
this->next_play = 0;
}
Apu_end_frame( &this->apu, end );
return 0;
}
blargg_err_t Run_clocks( struct Gbs_Emu* this, blip_time_t duration )
{
return End_frame( this, duration );
}
blargg_err_t play_( struct Gbs_Emu* this, long count, sample_t* out )
{
long remain = count;
while ( remain )
{
remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain );
if ( remain )
{
if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) )
{
this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf );
// Remute voices
Sound_mute_voices( this, this->mute_mask_ );
}
int msec = Buffer_length( &this->stereo_buf );
blip_time_t clocks_emulated = (blargg_long) msec * this->clock_rate_ / 1000;
RETURN_ERR( Run_clocks( this, clocks_emulated ) );
assert( clocks_emulated );
Buffer_end_frame( &this->stereo_buf, clocks_emulated );
}
}
return 0;
}
blargg_err_t Gbs_set_sample_rate( struct Gbs_Emu* this, long rate )
{
require( !this->sample_rate_ ); // sample rate can't be changed once set
Buffer_init( &this->stereo_buf );
RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) );
// Set bass frequency
Buffer_bass_freq( &this->stereo_buf, 300 );
this->sample_rate_ = rate;
return 0;
}
// Sound
void Sound_mute_voice( struct Gbs_Emu* this, int index, bool mute )
{
require( (unsigned) index < (unsigned) this->voice_count_ );
int bit = 1 << index;
int mask = this->mute_mask_ | bit;
if ( !mute )
mask ^= bit;
Sound_mute_voices( this, mask );
}
void Sound_mute_voices( struct Gbs_Emu* this, int mask )
{
require( this->sample_rate_ ); // sample rate must be set first
this->mute_mask_ = mask;
int i;
for ( i = this->voice_count_; i--; )
{
if ( mask & (1 << i) )
{
Apu_set_output( &this->apu, i, 0, 0, 0 );
}
else
{
struct channel_t ch = Buffer_channel( &this->stereo_buf );
assert( (ch.center && ch.left && ch.right) ||
(!ch.center && !ch.left && !ch.right) ); // all or nothing
Apu_set_output( &this->apu, i, ch.center, ch.left, ch.right );
}
}
}
void Sound_set_tempo( struct Gbs_Emu* this, int t )
{
require( this->sample_rate_ ); // sample rate must be set first
int const min = (int)(FP_ONE_TEMPO*0.02);
int const max = (int)(FP_ONE_TEMPO*4.00);
if ( t < min ) t = min;
if ( t > max ) t = max;
this->tempo_ = t;
this->tempo = (int) ((tempo_unit * FP_ONE_TEMPO) / t);
Apu_set_tempo( &this->apu, t );
Update_timer( this );
}
void fill_buf( struct Gbs_Emu* this );
blargg_err_t Gbs_start_track( struct Gbs_Emu* this, int track )
{
clear_track_vars( this );
// Remap track if playlist available
if ( this->m3u.size > 0 ) {
struct entry_t* e = &this->m3u.entries[track];
track = e->track;
}
this->current_track_ = track;
Buffer_clear( &this->stereo_buf );
// Reset APU to state expected by most rips
static byte const sound_data [] ICONST_ATTR = {
0x80, 0xBF, 0x00, 0x00, 0xB8, // square 1 DAC disabled
0x00, 0x3F, 0x00, 0x00, 0xB8, // square 2 DAC disabled
0x7F, 0xFF, 0x9F, 0x00, 0xB8, // wave DAC disabled
0x00, 0xFF, 0x00, 0x00, 0xB8, // noise DAC disabled
0x77, 0xFF, 0x80, // max volume, all chans in center, power on
};
enum sound_t mode = this->sound_hardware;
if ( mode == sound_gbs )
mode = (this->header.timer_mode & 0x80) ? sound_cgb : sound_dmg;
Apu_reset( &this->apu, (enum gb_mode_t) mode, false );
Apu_write_register( &this->apu, 0, 0xFF26, 0x80 ); // power on
int i;
for ( i = 0; i < (int) sizeof sound_data; i++ )
Apu_write_register( &this->apu, 0, i + io_addr, sound_data [i] );
Apu_end_frame( &this->apu, 1 ); // necessary to get click out of the way */
memset( this->ram, 0, 0x4000 );
memset( this->ram + 0x4000, 0xFF, 0x1F80 );
memset( this->ram + 0x5F80, 0, sizeof this->ram - 0x5F80 );
this->ram [hi_page] = 0; // joypad reads back as 0
this->ram [idle_addr - ram_addr] = 0xED; // illegal instruction
this->ram [hi_page + 6] = this->header.timer_modulo;
this->ram [hi_page + 7] = this->header.timer_mode;
Cpu_reset( &this->cpu, this->rom.unmapped );
Cpu_map_code( &this->cpu, ram_addr, 0x10000 - ram_addr, this->ram );
Cpu_map_code( &this->cpu, 0, this->rom.bank_size, Rom_at_addr( &this->rom, 0 ) );
Set_bank( this, this->rom.size > this->rom.bank_size );
Update_timer( this );
this->next_play = this->play_period;
this->cpu.r.rp.fa = track;
this->cpu.r.sp = get_le16( this->header.stack_ptr );
this->cpu_time = 0;
Jsr_then_stop( this, this->header.init_addr );
this->emu_track_ended_ = false;
this->track_ended = false;
if ( !this->ignore_silence )
{
// play until non-silence or end of track
long end;
for ( end = this->max_initial_silence * stereo * this->sample_rate_; this->emu_time < end; )
{
fill_buf( this );
if ( this->buf_remain | (int) this->emu_track_ended_ )
break;
}
this->emu_time = this->buf_remain;
this->out_time = 0;
this->silence_time = 0;
this->silence_count = 0;
}
/* return track_ended() ? warning() : 0; */
return 0;
}
// Track
blargg_long msec_to_samples( blargg_long msec, long sample_rate )
{
blargg_long sec = msec / 1000;
msec -= sec * 1000;
return (sec * sample_rate + msec * sample_rate / 1000) * stereo;
}
long Track_tell( struct Gbs_Emu* this )
{
blargg_long rate = this->sample_rate_ * stereo;
blargg_long sec = this->out_time / rate;
return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate;
}
blargg_err_t Track_seek( struct Gbs_Emu* this, long msec )
{
blargg_long time = msec_to_samples( msec, this->sample_rate_ );
if ( time < this->out_time )
RETURN_ERR( Gbs_start_track( this, this->current_track_ ) );
return Track_skip( this, time - this->out_time );
}
blargg_err_t skip_( struct Gbs_Emu* this, long count )
{
// for long skip, mute sound
const long threshold = 30000;
if ( count > threshold )
{
int saved_mute = this->mute_mask_;
Sound_mute_voices( this, ~0 );
while ( count > threshold / 2 && !this->emu_track_ended_ )
{
RETURN_ERR( play_( this, buf_size, this->buf ) );
count -= buf_size;
}
Sound_mute_voices( this, saved_mute );
}
while ( count && !this->emu_track_ended_ )
{
long n = buf_size;
if ( n > count )
n = count;
count -= n;
RETURN_ERR( play_( this, n, this->buf ) );
}
return 0;
}
blargg_err_t Track_skip( struct Gbs_Emu* this, long count )
{
require( this->current_track_ >= 0 ); // start_track() must have been called already
this->out_time += count;
// remove from silence and buf first
{
long n = min( count, this->silence_count );
this->silence_count -= n;
count -= n;
n = min( count, this->buf_remain );
this->buf_remain -= n;
count -= n;
}
if ( count && !this->emu_track_ended_ )
{
this->emu_time += count;
// End track if error
if ( skip_( this, count ) )
this->emu_track_ended_ = true;
}
if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended
this->track_ended |= this->emu_track_ended_;
return 0;
}
// Fading
void Track_set_fade( struct Gbs_Emu* this, long start_msec, long length_msec )
{
this->fade_step = this->sample_rate_ * length_msec / (fade_block_size * fade_shift * 1000 / stereo);
this->fade_start = msec_to_samples( start_msec, this->sample_rate_ );
}
// unit / pow( 2.0, (double) x / step )
static int int_log( blargg_long x, int step, int unit )
{
int shift = x / step;
int fraction = (x - shift * step) * unit / step;
return ((unit - fraction) + (fraction >> 1)) >> shift;
}
void handle_fade( struct Gbs_Emu* this, long out_count, sample_t* out )
{
int i;
for ( i = 0; i < out_count; i += fade_block_size )
{
int const shift = 14;
int const unit = 1 << shift;
int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size,
this->fade_step, unit );
if ( gain < (unit >> fade_shift) )
this->track_ended = this->emu_track_ended_ = true;
sample_t* io = &out [i];
int count;
for ( count = min( fade_block_size, out_count - i ); count; --count )
{
*io = (sample_t) ((*io * gain) >> shift);
++io;
}
}
}
// Silence detection
void emu_play( struct Gbs_Emu* this, long count, sample_t* out )
{
check( current_track_ >= 0 );
this->emu_time += count;
if ( this->current_track_ >= 0 && !this->emu_track_ended_ ) {
// End track if error
if ( play_( this, count, out ) ) this->emu_track_ended_ = true;
}
else
memset( out, 0, count * sizeof *out );
}
// number of consecutive silent samples at end
static long count_silence( sample_t* begin, long size )
{
sample_t first = *begin;
*begin = silence_threshold; // sentinel
sample_t* p = begin + size;
while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { }
*begin = first;
return size - (p - begin);
}
// fill internal buffer and check it for silence
void fill_buf( struct Gbs_Emu* this )
{
assert( !this->buf_remain );
if ( !this->emu_track_ended_ )
{
emu_play( this, buf_size, this->buf );
long silence = count_silence( this->buf, buf_size );
if ( silence < buf_size )
{
this->silence_time = this->emu_time - silence;
this->buf_remain = buf_size;
return;
}
}
this->silence_count += buf_size;
}
blargg_err_t Gbs_play( struct Gbs_Emu* this, long out_count, sample_t* out )
{
if ( this->track_ended )
{
memset( out, 0, out_count * sizeof *out );
}
else
{
require( this->current_track_ >= 0 );
require( out_count % stereo == 0 );
assert( this->emu_time >= this->out_time );
long pos = 0;
if ( this->silence_count )
{
// during a run of silence, run emulator at >=2x speed so it gets ahead
long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time;
while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) )
fill_buf( this );
// fill with silence
pos = min( this->silence_count, out_count );
memset( out, 0, pos * sizeof *out );
this->silence_count -= pos;
if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate_ )
{
this->track_ended = this->emu_track_ended_ = true;
this->silence_count = 0;
this->buf_remain = 0;
}
}
if ( this->buf_remain )
{
// empty silence buf
long n = min( this->buf_remain, out_count - pos );
memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out );
this->buf_remain -= n;
pos += n;
}
// generate remaining samples normally
long remain = out_count - pos;
if ( remain )
{
emu_play( this, remain, out + pos );
this->track_ended |= this->emu_track_ended_;
if ( !this->ignore_silence || this->out_time > this->fade_start )
{
// check end for a new run of silence
long silence = count_silence( out + pos, remain );
if ( silence < remain )
this->silence_time = this->emu_time - silence;
if ( this->emu_time - this->silence_time >= buf_size )
fill_buf( this ); // cause silence detection on next play()
}
}
if ( this->out_time > this->fade_start )
handle_fade( this, out_count, out );
}
this->out_time += out_count;
return 0;
}