rockbox/firmware/target/arm/as3525/sansa-c200v2/lcd-c200v2.c
Rafaël Carré adb978a44d Sansa AMS: Various fixes/enhancements for clock frequencies
Fix CGU_DBOP setting

Set PCLK to the exact frequency (62MHz, not the maximal frequency)

Use a better comment for CLK_DIV macro

Use preprocessor safety checks for clock divider sizes to avoid future mistakes (not for SD_IDENT frequency since that check is handled by mci_set_clock_divider)

Use maximal IDE frequency of 66MHz (like OF), not 90MHz like written in AS3525 datasheet. The IDE chip is somehow linked to internal storage, and a too high frequency could affect the storage driver.

Use the same DBOP frequency of 32MHz for all models (like OF, verified clip, fuze, e200v2 and m200v4), compromise between performance and battery life could be added in the future for each target
Performance increase on Sansa Fuze with DBOP freq. set to 64MHz: +12% fps for lcd_update, +1% fps for yuv

Thanks to daytona955 on the forums for his help

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@20923 a1c6a512-1295-4272-9138-f99709370657
2009-05-13 08:27:20 +00:00

429 lines
11 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id: lcd-e200v2.c 19453 2008-12-16 02:50:39Z saratoga $
*
* Copyright (C) 2004 by Linus Nielsen Feltzing
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* FIXME: Copied from e200v2 lcd driver, unlikely to work, but maybe */
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
#include "clock-target.h"
static bool display_on = false; /* is the display turned on? */
static bool display_flipped = false;
static int y_offset = 0; /* needed for flip */
/* register defines */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_ENTRY_MODE 0x03
#define R_COMPARE_REG1 0x04
#define R_COMPARE_REG2 0x05
#define R_DISP_CONTROL1 0x07
#define R_DISP_CONTROL2 0x08
#define R_DISP_CONTROL3 0x09
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_IF_CONTROL 0x0c
#define R_POWER_CONTROL1 0x10
#define R_POWER_CONTROL2 0x11
#define R_POWER_CONTROL3 0x12
#define R_POWER_CONTROL4 0x13
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_RES_POS 0x38
#define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39
#define R_GATE_SCAN_POS 0x40
#define R_VERT_SCROLL_CONTROL 0x41
#define R_1ST_SCR_DRV_POS 0x42
#define R_2ND_SCR_DRV_POS 0x43
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
#define R_ENTRY_MODE_HORZ 0x7030
#define R_ENTRY_MODE_VERT 0x7038
#define R_ENTRY_MODE_SOLID_VERT 0x1038
/* TODO: Implement this function */
static void lcd_delay(int x)
{
/* This is just arbitrary - the OF does something more complex */
x *= 1024;
while (x--);
}
/* DBOP initialisation, do what OF does */
static void ams3525_dbop_init(void)
{
CGU_DBOP = (1<<3) | (CLK_DIV(AS3525_PCLK_FREQ, AS3525_DBOP_FREQ) - 1);
DBOP_TIMPOL_01 = 0xe167e167;
DBOP_TIMPOL_23 = 0xe167006e;
DBOP_CTRL = 0x41008;
GPIOB_AFSEL = 0xfc;
GPIOC_AFSEL = 0xff;
DBOP_TIMPOL_23 = 0x6000e;
DBOP_CTRL = 0x51008;
DBOP_TIMPOL_01 = 0x6e167;
DBOP_TIMPOL_23 = 0xa167e06f;
/* TODO: The OF calls some other functions here, but maybe not important */
}
static void lcd_write_cmd(int cmd)
{
/* Write register */
DBOP_CTRL &= ~(1<<14);
DBOP_TIMPOL_23 = 0xa167006e;
DBOP_DOUT = cmd;
/* Wait for fifo to empty */
while ((DBOP_STAT & (1<<10)) == 0);
DBOP_TIMPOL_23 = 0xa167e06f;
}
void lcd_write_data(const fb_data* p_bytes, int count)
{
while (count--)
{
DBOP_DOUT = *p_bytes++;
/* Wait for fifo to empty */
while ((DBOP_STAT & (1<<10)) == 0);
}
}
static void lcd_write_reg(int reg, int value)
{
unsigned short data = value;
lcd_write_cmd(reg);
lcd_write_data(&data, 1);
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
}
static void flip_lcd(bool yesno)
{
(void)yesno;
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
display_flipped = yesno;
y_offset = yesno ? 4 : 0; /* FIXME: Is a y_offset needed? */
if (display_on)
flip_lcd(yesno);
}
static void _display_on(void)
{
/* Initialisation the display the same way as the original firmware */
lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x011b); /* 220 lines, GS=0, SS=1 */
/* B/C = 1: n-line inversion form
* EOR = 1: polarity inversion occurs by applying an EOR to odd/even
* frame select signal and an n-line inversion signal.
* FLD = 01b: 1 field interlaced scan, external display iface */
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);
/* Address counter updated in horizontal direction; left to right;
* vertical increment horizontal increment.
* data format for 8bit transfer or spi = 65k (5,6,5) */
lcd_write_reg(R_ENTRY_MODE, 0x0030);
/* Replace data on writing to GRAM */
lcd_write_reg(R_COMPARE_REG1, 0);
lcd_write_reg(R_COMPARE_REG2, 0);
lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON = 0, DTE = 0, D1-0 = 00b */
/* Front porch lines: 2; Back porch lines: 2; */
lcd_write_reg(R_DISP_CONTROL2, 0x0203);
/* Scan cycle = 0 frames */
lcd_write_reg(R_DISP_CONTROL3, 0x0000);
/* 16 clocks */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0000);
/* 18-bit RGB interface (one transfer/pixel)
* internal clock operation;
* System interface/VSYNC interface */
lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0000);
/* zero everything*/
lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */
lcd_delay(10);
/* initialise power supply */
/* DC12-10 = 000b: Step-up1 = clock/8,
* DC02-00 = 000b: Step-up2 = clock/16,
* VC2-0 = 010b: VciOUT = 0.87 * VciLVL */
lcd_write_reg(R_POWER_CONTROL2, 0x0002);
/* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */
lcd_write_reg(R_POWER_CONTROL3, 0x0008);
lcd_delay(40);
lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */
/* This register is unknown */
lcd_write_reg(0x56, 0x80f);
lcd_write_reg(R_POWER_CONTROL1, 0x4140);
lcd_delay(10);
lcd_write_reg(R_POWER_CONTROL2, 0x0000);
lcd_write_reg(R_POWER_CONTROL3, 0x0013);
lcd_delay(20);
lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);
lcd_delay(20);
lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0002);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0182);
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0203);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0706);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0006);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0706);
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0000);
lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x030f);
lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0f08);
lcd_write_reg(R_RAM_ADDR_SET, 0);
lcd_write_reg(R_GATE_SCAN_POS, 0);
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0);
lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_2ND_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_DISP_CONTROL1, 0x0037);
display_on=true; /* must be done before calling lcd_update() */
lcd_update();
}
/* LCD init */
void lcd_init_device(void)
{
ams3525_dbop_init();
/* Init GPIOs the same as the OF */
GPIOA_DIR |= (1<<5);
GPIOA_PIN(5) = 0;
GPIOA_PIN(3) = (1<<3);
GPIOA_DIR |= (3<<3);
GPIOA_PIN(3) = (1<<3);
GPIOA_PIN(4) = 0; /*c80b0040 := 0;*/
GPIOA_DIR |= (1<<7);
GPIOA_PIN(7) = 0;
lcd_delay(1);
GPIOA_PIN(5) = (1<<5);
lcd_delay(1);
_display_on();
}
void lcd_enable(bool on)
{
if(display_on!=on)
{
if(on)
{
_display_on();
lcd_activation_call_hook();
}
else
{
/* TODO: Implement off sequence */
display_on=false;
}
}
}
bool lcd_active(void)
{
return display_on;
}
void lcd_sleep(void)
{
/* TODO */
}
/*** update functions ***/
/* Performance function to blit a YUV bitmap directly to the LCD
* src_x, src_y, width and height should be even
* x, y, width and height have to be within LCD bounds
*/
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
(void)src;
(void)src_x;
(void)src_y;
(void)stride;
(void)x;
(void)y;
(void)width;
(void)height;
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
if (!display_on)
return;
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ);
/* Set start position and window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS,
((y_offset + LCD_HEIGHT-1) << 8) | y_offset);
lcd_write_reg(R_RAM_ADDR_SET, (y_offset) << 8);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_data((unsigned short *)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT);
} /* lcd_update */
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
int ymax;
const unsigned short *ptr;
if (!display_on)
return;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* Clip right */
if (x < 0)
width += x, x = 0; /* Clip left */
if (width <= 0)
return; /* nothing left to do */
ymax = y + height;
if (ymax > LCD_HEIGHT)
ymax = LCD_HEIGHT; /* Clip bottom */
if (y < 0)
y = 0; /* Clip top */
if (y >= ymax)
return; /* nothing left to do */
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ);
/* Set start position and window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS,
((x + width-1) << 8) | x);
lcd_write_reg(R_VERT_RAM_ADDR_POS,
((y_offset + y + height - 1) << 8) | (y_offset + y));
lcd_write_reg(R_RAM_ADDR_SET, ((y + y_offset) << 8) | x);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
ptr = (unsigned short *)&lcd_framebuffer[y][x];
do
{
lcd_write_data(ptr, width);
ptr += LCD_WIDTH;
}
while (++y < ymax);
} /* lcd_update_rect */