rockbox/firmware/target/arm/as3525/sansa-c200v2/lcd-c200v2.c
Rafaël Carré ef9aacb2e0 FS#10245 by Jack Halpin : Adjust Clocking scheme on Sansa AMS
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21088 a1c6a512-1295-4272-9138-f99709370657
2009-05-26 18:44:02 +00:00

429 lines
11 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id: lcd-e200v2.c 19453 2008-12-16 02:50:39Z saratoga $
*
* Copyright (C) 2004 by Linus Nielsen Feltzing
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* FIXME: Copied from e200v2 lcd driver, unlikely to work, but maybe */
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
#include "clock-target.h"
static bool display_on = false; /* is the display turned on? */
static bool display_flipped = false;
static int y_offset = 0; /* needed for flip */
/* register defines */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_ENTRY_MODE 0x03
#define R_COMPARE_REG1 0x04
#define R_COMPARE_REG2 0x05
#define R_DISP_CONTROL1 0x07
#define R_DISP_CONTROL2 0x08
#define R_DISP_CONTROL3 0x09
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_IF_CONTROL 0x0c
#define R_POWER_CONTROL1 0x10
#define R_POWER_CONTROL2 0x11
#define R_POWER_CONTROL3 0x12
#define R_POWER_CONTROL4 0x13
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_RES_POS 0x38
#define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39
#define R_GATE_SCAN_POS 0x40
#define R_VERT_SCROLL_CONTROL 0x41
#define R_1ST_SCR_DRV_POS 0x42
#define R_2ND_SCR_DRV_POS 0x43
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
#define R_ENTRY_MODE_HORZ 0x7030
#define R_ENTRY_MODE_VERT 0x7038
#define R_ENTRY_MODE_SOLID_VERT 0x1038
/* TODO: Implement this function */
static void lcd_delay(int x)
{
/* This is just arbitrary - the OF does something more complex */
x *= 1024;
while (x--);
}
/* DBOP initialisation, do what OF does */
static void ams3525_dbop_init(void)
{
CGU_DBOP = (1<<3) | AS3525_DBOP_DIV;
DBOP_TIMPOL_01 = 0xe167e167;
DBOP_TIMPOL_23 = 0xe167006e;
DBOP_CTRL = 0x41008;
GPIOB_AFSEL = 0xfc;
GPIOC_AFSEL = 0xff;
DBOP_TIMPOL_23 = 0x6000e;
DBOP_CTRL = 0x51008;
DBOP_TIMPOL_01 = 0x6e167;
DBOP_TIMPOL_23 = 0xa167e06f;
/* TODO: The OF calls some other functions here, but maybe not important */
}
static void lcd_write_cmd(int cmd)
{
/* Write register */
DBOP_CTRL &= ~(1<<14);
DBOP_TIMPOL_23 = 0xa167006e;
DBOP_DOUT = cmd;
/* Wait for fifo to empty */
while ((DBOP_STAT & (1<<10)) == 0);
DBOP_TIMPOL_23 = 0xa167e06f;
}
void lcd_write_data(const fb_data* p_bytes, int count)
{
while (count--)
{
DBOP_DOUT = *p_bytes++;
/* Wait for fifo to empty */
while ((DBOP_STAT & (1<<10)) == 0);
}
}
static void lcd_write_reg(int reg, int value)
{
unsigned short data = value;
lcd_write_cmd(reg);
lcd_write_data(&data, 1);
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
}
static void flip_lcd(bool yesno)
{
(void)yesno;
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
display_flipped = yesno;
y_offset = yesno ? 4 : 0; /* FIXME: Is a y_offset needed? */
if (display_on)
flip_lcd(yesno);
}
static void _display_on(void)
{
/* Initialisation the display the same way as the original firmware */
lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x011b); /* 220 lines, GS=0, SS=1 */
/* B/C = 1: n-line inversion form
* EOR = 1: polarity inversion occurs by applying an EOR to odd/even
* frame select signal and an n-line inversion signal.
* FLD = 01b: 1 field interlaced scan, external display iface */
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);
/* Address counter updated in horizontal direction; left to right;
* vertical increment horizontal increment.
* data format for 8bit transfer or spi = 65k (5,6,5) */
lcd_write_reg(R_ENTRY_MODE, 0x0030);
/* Replace data on writing to GRAM */
lcd_write_reg(R_COMPARE_REG1, 0);
lcd_write_reg(R_COMPARE_REG2, 0);
lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON = 0, DTE = 0, D1-0 = 00b */
/* Front porch lines: 2; Back porch lines: 2; */
lcd_write_reg(R_DISP_CONTROL2, 0x0203);
/* Scan cycle = 0 frames */
lcd_write_reg(R_DISP_CONTROL3, 0x0000);
/* 16 clocks */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0000);
/* 18-bit RGB interface (one transfer/pixel)
* internal clock operation;
* System interface/VSYNC interface */
lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0000);
/* zero everything*/
lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */
lcd_delay(10);
/* initialise power supply */
/* DC12-10 = 000b: Step-up1 = clock/8,
* DC02-00 = 000b: Step-up2 = clock/16,
* VC2-0 = 010b: VciOUT = 0.87 * VciLVL */
lcd_write_reg(R_POWER_CONTROL2, 0x0002);
/* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */
lcd_write_reg(R_POWER_CONTROL3, 0x0008);
lcd_delay(40);
lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */
/* This register is unknown */
lcd_write_reg(0x56, 0x80f);
lcd_write_reg(R_POWER_CONTROL1, 0x4140);
lcd_delay(10);
lcd_write_reg(R_POWER_CONTROL2, 0x0000);
lcd_write_reg(R_POWER_CONTROL3, 0x0013);
lcd_delay(20);
lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);
lcd_delay(20);
lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0002);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0182);
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0203);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0706);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0006);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0706);
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0000);
lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x030f);
lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0f08);
lcd_write_reg(R_RAM_ADDR_SET, 0);
lcd_write_reg(R_GATE_SCAN_POS, 0);
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0);
lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_2ND_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_DISP_CONTROL1, 0x0037);
display_on=true; /* must be done before calling lcd_update() */
lcd_update();
}
/* LCD init */
void lcd_init_device(void)
{
ams3525_dbop_init();
/* Init GPIOs the same as the OF */
GPIOA_DIR |= (1<<5);
GPIOA_PIN(5) = 0;
GPIOA_PIN(3) = (1<<3);
GPIOA_DIR |= (3<<3);
GPIOA_PIN(3) = (1<<3);
GPIOA_PIN(4) = 0; /*c80b0040 := 0;*/
GPIOA_DIR |= (1<<7);
GPIOA_PIN(7) = 0;
lcd_delay(1);
GPIOA_PIN(5) = (1<<5);
lcd_delay(1);
_display_on();
}
void lcd_enable(bool on)
{
if(display_on!=on)
{
if(on)
{
_display_on();
lcd_activation_call_hook();
}
else
{
/* TODO: Implement off sequence */
display_on=false;
}
}
}
bool lcd_active(void)
{
return display_on;
}
void lcd_sleep(void)
{
/* TODO */
}
/*** update functions ***/
/* Performance function to blit a YUV bitmap directly to the LCD
* src_x, src_y, width and height should be even
* x, y, width and height have to be within LCD bounds
*/
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
(void)src;
(void)src_x;
(void)src_y;
(void)stride;
(void)x;
(void)y;
(void)width;
(void)height;
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
if (!display_on)
return;
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ);
/* Set start position and window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS,
((y_offset + LCD_HEIGHT-1) << 8) | y_offset);
lcd_write_reg(R_RAM_ADDR_SET, (y_offset) << 8);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_data((unsigned short *)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT);
} /* lcd_update */
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
int ymax;
const unsigned short *ptr;
if (!display_on)
return;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* Clip right */
if (x < 0)
width += x, x = 0; /* Clip left */
if (width <= 0)
return; /* nothing left to do */
ymax = y + height;
if (ymax > LCD_HEIGHT)
ymax = LCD_HEIGHT; /* Clip bottom */
if (y < 0)
y = 0; /* Clip top */
if (y >= ymax)
return; /* nothing left to do */
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ);
/* Set start position and window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS,
((x + width-1) << 8) | x);
lcd_write_reg(R_VERT_RAM_ADDR_POS,
((y_offset + y + height - 1) << 8) | (y_offset + y));
lcd_write_reg(R_RAM_ADDR_SET, ((y + y_offset) << 8) | x);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
ptr = (unsigned short *)&lcd_framebuffer[y][x];
do
{
lcd_write_data(ptr, width);
ptr += LCD_WIDTH;
}
while (++y < ymax);
} /* lcd_update_rect */