rockbox/firmware/target/arm/as3525/ata_sd_as3525.c
Rafaël Carré 405d12de7e Sansa AMS: panic with the PL180 controller status register in case of errors
The maximum number of errors is 10 (arbitrary)
A recovery mechanism is not in place (yet) but could be implemented in the future

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21776 a1c6a512-1295-4272-9138-f99709370657
2009-07-11 14:27:26 +00:00

883 lines
25 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Daniel Ankers
* Copyright © 2008-2009 Rafaël Carré
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* Driver for the ARM PL180 SD/MMC controller inside AS3525 SoC */
/* TODO: Find the real capacity of >2GB models (will be useful for USB) */
#include "config.h" /* for HAVE_MULTIVOLUME & AMS_OF_SIZE */
#include "fat.h"
#include "thread.h"
#include "led.h"
#include "hotswap.h"
#include "system.h"
#include "cpu.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "as3525.h"
#include "pl180.h" /* SD controller */
#include "pl081.h" /* DMA controller */
#include "dma-target.h" /* DMA request lines */
#include "clock-target.h"
#ifdef HAVE_BUTTON_LIGHT
#include "backlight-target.h"
#endif
#include "stdbool.h"
#include "ata_idle_notify.h"
#include "sd.h"
#include "usb.h"
#ifdef HAVE_HOTSWAP
#include "disk.h"
#include "panic.h"
#endif
/* command flags */
#define MCI_NO_FLAGS (0<<0)
#define MCI_RESP (1<<0)
#define MCI_LONG_RESP (1<<1)
#define MCI_ARG (1<<2)
/* ARM PL180 registers */
#define MCI_POWER(i) (*(volatile unsigned char *) (pl180_base[i]+0x00))
#define MCI_CLOCK(i) (*(volatile unsigned long *) (pl180_base[i]+0x04))
#define MCI_ARGUMENT(i) (*(volatile unsigned long *) (pl180_base[i]+0x08))
#define MCI_COMMAND(i) (*(volatile unsigned long *) (pl180_base[i]+0x0C))
#define MCI_RESPCMD(i) (*(volatile unsigned long *) (pl180_base[i]+0x10))
#define MCI_RESP0(i) (*(volatile unsigned long *) (pl180_base[i]+0x14))
#define MCI_RESP1(i) (*(volatile unsigned long *) (pl180_base[i]+0x18))
#define MCI_RESP2(i) (*(volatile unsigned long *) (pl180_base[i]+0x1C))
#define MCI_RESP3(i) (*(volatile unsigned long *) (pl180_base[i]+0x20))
#define MCI_DATA_TIMER(i) (*(volatile unsigned long *) (pl180_base[i]+0x24))
#define MCI_DATA_LENGTH(i) (*(volatile unsigned short*) (pl180_base[i]+0x28))
#define MCI_DATA_CTRL(i) (*(volatile unsigned char *) (pl180_base[i]+0x2C))
#define MCI_DATA_CNT(i) (*(volatile unsigned short*) (pl180_base[i]+0x30))
#define MCI_STATUS(i) (*(volatile unsigned long *) (pl180_base[i]+0x34))
#define MCI_CLEAR(i) (*(volatile unsigned long *) (pl180_base[i]+0x38))
#define MCI_MASK0(i) (*(volatile unsigned long *) (pl180_base[i]+0x3C))
#define MCI_MASK1(i) (*(volatile unsigned long *) (pl180_base[i]+0x40))
#define MCI_SELECT(i) (*(volatile unsigned long *) (pl180_base[i]+0x44))
#define MCI_FIFO_CNT(i) (*(volatile unsigned long *) (pl180_base[i]+0x48))
#define MCI_ERROR \
(MCI_DATA_CRC_FAIL | MCI_DATA_TIMEOUT | MCI_RX_OVERRUN | MCI_TX_UNDERRUN)
#define MCI_FIFO(i) ((unsigned long *) (pl180_base[i]+0x80))
/* volumes */
#define INTERNAL_AS3525 0 /* embedded SD card */
#define SD_SLOT_AS3525 1 /* SD slot if present */
static const int pl180_base[NUM_VOLUMES] = {
NAND_FLASH_BASE
#ifdef HAVE_MULTIVOLUME
, SD_MCI_BASE
#endif
};
static int sd_select_bank(signed char bank);
static int sd_init_card(const int drive);
static void init_pl180_controller(const int drive);
#define SECTOR_SIZE 512 /* XXX: different sector sizes ? */
#define BLOCKS_PER_BANK 0x7a7800
static tCardInfo card_info[NUM_VOLUMES];
/* maximum timeouts recommanded in the SD Specification v2.00 */
#define SD_MAX_READ_TIMEOUT ((AS3525_PCLK_FREQ) / 1000 * 100) /* 100 ms */
#define SD_MAX_WRITE_TIMEOUT ((AS3525_PCLK_FREQ) / 1000 * 250) /* 250 ms */
/* for compatibility */
static long last_disk_activity = -1;
#define MIN_YIELD_PERIOD 5 /* ticks */
static long next_yield = 0;
static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)];
static const char sd_thread_name[] = "ata/sd";
static struct mutex sd_mtx;
static struct event_queue sd_queue;
#ifndef BOOTLOADER
static bool sd_enabled = false;
#endif
static struct wakeup transfer_completion_signal;
static volatile unsigned int transfer_error[NUM_VOLUMES];
#define PL180_MAX_TRANSFER_ERRORS 10
#define UNALIGNED_NUM_SECTORS 10
static unsigned char aligned_buffer[UNALIGNED_NUM_SECTORS* SECTOR_SIZE] __attribute__((aligned(32))); /* align on cache line size */
static unsigned char *uncached_buffer = UNCACHED_ADDR(&aligned_buffer[0]);
static inline void mci_delay(void) { int i = 0xffff; while(i--) ; }
#ifdef HAVE_HOTSWAP
#if defined(SANSA_E200V2) || defined(SANSA_FUZE) || defined(SANSA_C200V2)
static int sd1_oneshot_callback(struct timeout *tmo)
{
(void)tmo;
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
if (card_detect_target())
{
queue_broadcast(SYS_HOTSWAP_INSERTED, 0);
}
else
queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0);
return 0;
}
void INT_GPIOA(void)
{
static struct timeout sd1_oneshot;
/* reset irq */
GPIOA_IC = (1<<2);
timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0);
}
#endif /* defined(SANSA_E200V2) || defined(SANSA_FUZE) || defined(SANSA_C200V2) */
#endif /* HAVE_HOTSWAP */
void INT_NAND(void)
{
const int status = MCI_STATUS(INTERNAL_AS3525);
transfer_error[INTERNAL_AS3525] = status & MCI_ERROR;
wakeup_signal(&transfer_completion_signal);
MCI_CLEAR(INTERNAL_AS3525) = status;
}
#ifdef HAVE_MULTIVOLUME
void INT_MCI0(void)
{
const int status = MCI_STATUS(SD_SLOT_AS3525);
transfer_error[SD_SLOT_AS3525] = status & MCI_ERROR;
wakeup_signal(&transfer_completion_signal);
MCI_CLEAR(SD_SLOT_AS3525) = status;
}
#endif
static bool send_cmd(const int drive, const int cmd, const int arg,
const int flags, long *response)
{
int val, status;
while(MCI_STATUS(drive) & MCI_CMD_ACTIVE);
if(MCI_COMMAND(drive) & MCI_COMMAND_ENABLE) /* clears existing command */
{
MCI_COMMAND(drive) = 0;
mci_delay();
}
val = cmd | MCI_COMMAND_ENABLE;
if(flags & MCI_RESP)
{
val |= MCI_COMMAND_RESPONSE;
if(flags & MCI_LONG_RESP)
val |= MCI_COMMAND_LONG_RESPONSE;
}
MCI_CLEAR(drive) = 0x7ff;
MCI_ARGUMENT(drive) = (flags & MCI_ARG) ? arg : 0;
MCI_COMMAND(drive) = val;
while(MCI_STATUS(drive) & MCI_CMD_ACTIVE); /* wait for cmd completion */
MCI_COMMAND(drive) = 0;
MCI_ARGUMENT(drive) = ~0;
status = MCI_STATUS(drive);
MCI_CLEAR(drive) = 0x7ff;
if(flags & MCI_RESP)
{
if(status & MCI_CMD_TIMEOUT)
return false;
else if(status & (MCI_CMD_CRC_FAIL /* FIXME? */ | MCI_CMD_RESP_END))
{ /* resp received */
if(flags & MCI_LONG_RESP)
{
/* store the response in reverse words order */
response[0] = MCI_RESP3(drive);
response[1] = MCI_RESP2(drive);
response[2] = MCI_RESP1(drive);
response[3] = MCI_RESP0(drive);
}
else
response[0] = MCI_RESP0(drive);
return true;
}
}
else if(status & MCI_CMD_SENT)
return true;
return false;
}
static int sd_init_card(const int drive)
{
unsigned long response;
long init_timeout;
bool sdhc;
unsigned long temp_reg[4];
int i;
if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_FLAGS, NULL))
return -1;
mci_delay();
sdhc = false;
if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP|MCI_ARG, &response))
if((response & 0xFFF) == 0x1AA)
sdhc = true;
/* timeout for initialization is 1sec, from SD Specification 2.00 */
init_timeout = current_tick + HZ;
do {
/* timeout */
if(current_tick > init_timeout)
return -2;
/* app_cmd */
if( !send_cmd(drive, SD_APP_CMD, 0, MCI_RESP|MCI_ARG, &response) ||
!(response & (1<<5)) )
{
return -3;
}
/* acmd41 */
if(!send_cmd(drive, SD_APP_OP_COND, (sdhc ? 0x40FF8000 : (1<<23)),
MCI_RESP|MCI_ARG, &card_info[drive].ocr))
{
return -4;
}
} while(!(card_info[drive].ocr & (1<<31)));
/* send CID */
if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP|MCI_ARG,
temp_reg))
return -5;
for(i=0; i<4; i++)
card_info[drive].cid[3-i] = temp_reg[i];
/* send RCA */
if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP|MCI_ARG,
&card_info[drive].rca))
return -6;
/* send CSD */
if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca,
MCI_RESP|MCI_LONG_RESP|MCI_ARG, temp_reg))
return -7;
for(i=0; i<4; i++)
card_info[drive].csd[3-i] = temp_reg[i];
sd_parse_csd(&card_info[drive]);
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_ARG, NULL))
return -9;
if(!send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_ARG, NULL))
return -10;
if(!send_cmd(drive, SD_SET_BUS_WIDTH, card_info[drive].rca | 2, MCI_ARG, NULL))
return -11;
if(!send_cmd(drive, SD_SET_BLOCKLEN, card_info[drive].blocksize, MCI_ARG,
NULL))
return -12;
card_info[drive].initialized = 1;
MCI_CLOCK(drive) |= MCI_CLOCK_BYPASS; /* full speed for controller clock */
mci_delay();
/*
* enable bank switching
* without issuing this command, we only have access to 1/4 of the blocks
* of the first bank (0x1E9E00 blocks, which is the size reported in the
* CSD register)
*/
if(drive == INTERNAL_AS3525)
{
const int ret = sd_select_bank(-1);
if(ret < 0)
return ret - 13;
}
return 0;
}
static void sd_thread(void) __attribute__((noreturn));
static void sd_thread(void)
{
struct queue_event ev;
bool idle_notified = false;
while (1)
{
queue_wait_w_tmo(&sd_queue, &ev, HZ);
switch ( ev.id )
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
{
int microsd_init = 1;
fat_lock(); /* lock-out FAT activity first -
prevent deadlocking via disk_mount that
would cause a reverse-order attempt with
another thread */
mutex_lock(&sd_mtx); /* lock-out card activity - direct calls
into driver that bypass the fat cache */
/* We now have exclusive control of fat cache and ata */
disk_unmount(SD_SLOT_AS3525); /* release "by force", ensure file
descriptors aren't leaked and any busy
ones are invalid if mounting */
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
card_info[SD_SLOT_AS3525].initialized = 0;
if (ev.id == SYS_HOTSWAP_INSERTED)
{
sd_enable(true);
init_pl180_controller(SD_SLOT_AS3525);
microsd_init = sd_init_card(SD_SLOT_AS3525);
if (microsd_init < 0) /* initialisation failed */
panicf("microSD init failed : %d", microsd_init);
microsd_init = disk_mount(SD_SLOT_AS3525); /* 0 if fail */
}
/*
* Mount succeeded, or this was an EXTRACTED event,
* in both cases notify the system about the changed filesystems
*/
if (microsd_init)
queue_broadcast(SYS_FS_CHANGED, 0);
/* Access is now safe */
mutex_unlock(&sd_mtx);
fat_unlock();
sd_enable(false);
}
break;
#endif
case SYS_TIMEOUT:
if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ)))
{
idle_notified = false;
}
else
{
/* never let a timer wrap confuse us */
next_yield = current_tick;
if (!idle_notified)
{
call_storage_idle_notifys(false);
idle_notified = true;
}
}
break;
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&sd_queue);
break;
case SYS_USB_DISCONNECTED:
usb_acknowledge(SYS_USB_DISCONNECTED_ACK);
break;
}
}
}
static void init_pl180_controller(const int drive)
{
MCI_COMMAND(drive) = MCI_DATA_CTRL(drive) = 0;
MCI_CLEAR(drive) = 0x7ff;
MCI_MASK0(drive) = MCI_MASK1(drive) = MCI_ERROR | MCI_DATA_END;
#ifdef HAVE_MULTIVOLUME
VIC_INT_ENABLE |=
(drive == INTERNAL_AS3525) ? INTERRUPT_NAND : INTERRUPT_MCI0;
#if defined(SANSA_E200V2) || defined(SANSA_FUZE) || defined(SANSA_C200V2)
/* setup isr for microsd monitoring */
VIC_INT_ENABLE |= (INTERRUPT_GPIOA);
/* clear previous irq */
GPIOA_IC = (1<<2);
/* enable edge detecting */
GPIOA_IS &= ~(1<<2);
/* detect both raising and falling edges */
GPIOA_IBE |= (1<<2);
#endif
#else
VIC_INT_ENABLE |= INTERRUPT_NAND;
#endif
MCI_POWER(drive) = MCI_POWER_UP|(10 /*voltage*/ << 2); /* use OF voltage */
mci_delay();
MCI_POWER(drive) |= MCI_POWER_ON;
mci_delay();
MCI_SELECT(drive) = 0;
MCI_CLOCK(drive) = MCI_CLOCK_ENABLE | AS3525_SD_IDENT_DIV;
mci_delay();
}
int sd_init(void)
{
int ret;
CGU_IDE = (1<<7) /* AHB interface enable */ |
(1<<6) /* interface enable */ |
(AS3525_IDE_DIV << 2) |
AS3525_CLK_PLLA; /* clock source = PLLA */
CGU_PERI |= CGU_NAF_CLOCK_ENABLE;
#ifdef HAVE_MULTIVOLUME
CGU_PERI |= CGU_MCI_CLOCK_ENABLE;
CCU_IO &= ~(1<<3); /* bits 3:2 = 01, xpd is SD interface */
CCU_IO |= (1<<2);
#endif
wakeup_init(&transfer_completion_signal);
init_pl180_controller(INTERNAL_AS3525);
ret = sd_init_card(INTERNAL_AS3525);
if(ret < 0)
return ret;
#ifdef HAVE_MULTIVOLUME
init_pl180_controller(SD_SLOT_AS3525);
#endif
/* init mutex */
mutex_init(&sd_mtx);
queue_init(&sd_queue, true);
create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0,
sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU));
#ifndef BOOTLOADER
sd_enabled = true;
sd_enable(false);
#endif
return 0;
}
#ifdef HAVE_HOTSWAP
bool sd_removable(IF_MV_NONVOID(int drive))
{
#ifndef HAVE_MULTIVOLUME
const int drive=0;
#endif
return (drive==1);
}
bool sd_present(IF_MV_NONVOID(int drive))
{
#ifndef HAVE_MULTIVOLUME
const int drive=0;
#endif
return (card_info[drive].initialized && card_info[drive].numblocks > 0);
}
#endif
static int sd_wait_for_state(const int drive, unsigned int state)
{
unsigned long response = 0;
unsigned int timeout = 100; /* ticks */
long t = current_tick;
while (1)
{
long tick;
if(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca,
MCI_RESP|MCI_ARG, &response))
return -1;
if (((response >> 9) & 0xf) == state)
return 0;
if(TIME_AFTER(current_tick, t + timeout))
return -2;
if (TIME_AFTER((tick = current_tick), next_yield))
{
yield();
timeout += current_tick - tick;
next_yield = tick + MIN_YIELD_PERIOD;
}
}
}
static int sd_select_bank(signed char bank)
{
int ret;
unsigned loops = 0;
do {
if(loops++ > PL180_MAX_TRANSFER_ERRORS)
panicf("SD bank %d error : 0x%x", bank,
transfer_error[INTERNAL_AS3525]);
ret = sd_wait_for_state(INTERNAL_AS3525, SD_TRAN);
if (ret < 0)
return ret - 2;
if(!send_cmd(INTERNAL_AS3525, SD_SWITCH_FUNC, 0x80ffffef, MCI_ARG, NULL))
return -1;
mci_delay();
if(!send_cmd(INTERNAL_AS3525, 35, 0, MCI_NO_FLAGS, NULL))
return -2;
mci_delay();
memset(uncached_buffer, 0, 512);
if(bank == -1)
{ /* enable bank switching */
uncached_buffer[0] = 16;
uncached_buffer[1] = 1;
uncached_buffer[2] = 10;
}
else
uncached_buffer[0] = bank;
dma_retain();
/* we don't use the uncached buffer here, because we need the
* physical memory address for DMA transfers */
dma_enable_channel(0, aligned_buffer, MCI_FIFO(INTERNAL_AS3525),
DMA_PERI_SD, DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8,
NULL);
MCI_DATA_TIMER(INTERNAL_AS3525) = SD_MAX_WRITE_TIMEOUT;
MCI_DATA_LENGTH(INTERNAL_AS3525) = 512;
MCI_DATA_CTRL(INTERNAL_AS3525) = (1<<0) /* enable */ |
(0<<1) /* transfer direction */ |
(1<<3) /* DMA */ |
(9<<4) /* 2^9 = 512 */ ;
wakeup_wait(&transfer_completion_signal, TIMEOUT_BLOCK);
dma_release();
mci_delay();
ret = sd_wait_for_state(INTERNAL_AS3525, SD_TRAN);
if (ret < 0)
return ret - 4;
} while(transfer_error[INTERNAL_AS3525]);
card_info[INTERNAL_AS3525].current_bank = (bank == -1) ? 0 : bank;
return 0;
}
static int sd_transfer_sectors(IF_MV2(int drive,) unsigned long start,
int count, void* buf, const bool write)
{
#ifndef HAVE_MULTIVOLUME
const int drive = 0;
#endif
int ret = 0;
unsigned loops = 0;
/* skip SanDisk OF */
if (drive == INTERNAL_AS3525)
start += AMS_OF_SIZE;
mutex_lock(&sd_mtx);
#ifndef BOOTLOADER
sd_enable(true);
led(true);
#endif
if (card_info[drive].initialized <= 0)
{
ret = sd_init_card(drive);
if (!(card_info[drive].initialized))
goto sd_transfer_error;
}
last_disk_activity = current_tick;
ret = sd_wait_for_state(drive, SD_TRAN);
if (ret < 0)
{
ret -= 20;
goto sd_transfer_error;
}
dma_retain();
while(count)
{
/* 128 * 512 = 2^16, and doesn't fit in the 16 bits of DATA_LENGTH
* register, so we have to transfer maximum 127 sectors at a time. */
unsigned int transfer = (count >= 128) ? 127 : count; /* sectors */
void *dma_buf;
const int cmd =
write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK;
unsigned long bank_start = start;
/* Only switch banks for internal storage */
if(drive == INTERNAL_AS3525)
{
unsigned int bank = start / BLOCKS_PER_BANK; /* Current bank */
/* Switch bank if needed */
if(card_info[INTERNAL_AS3525].current_bank != bank)
{
ret = sd_select_bank(bank);
if (ret < 0)
{
ret -= 2*20;
goto sd_transfer_error;
}
}
/* Adjust start block in current bank */
bank_start -= bank * BLOCKS_PER_BANK;
/* Do not cross a bank boundary in a single transfer loop */
if((transfer + bank_start) >= BLOCKS_PER_BANK)
transfer = BLOCKS_PER_BANK - bank_start;
}
dma_buf = aligned_buffer;
if(transfer > UNALIGNED_NUM_SECTORS)
transfer = UNALIGNED_NUM_SECTORS;
if(write)
memcpy(uncached_buffer, buf, transfer * SECTOR_SIZE);
/* Set bank_start to the correct unit (blocks or bytes) */
if(!(card_info[drive].ocr & (1<<30))) /* not SDHC */
bank_start *= SD_BLOCK_SIZE;
if(!send_cmd(drive, cmd, bank_start, MCI_ARG, NULL))
{
ret -= 3*20;
goto sd_transfer_error;
}
if(write)
dma_enable_channel(0, dma_buf, MCI_FIFO(drive),
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL);
else
dma_enable_channel(0, MCI_FIFO(drive), dma_buf,
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL);
/* FIXME : we should check if the timeouts calculated from the card's
* CSD are lower, and use them if it is the case
* Note : the OF doesn't seem to use them anyway */
MCI_DATA_TIMER(drive) = write ?
SD_MAX_WRITE_TIMEOUT : SD_MAX_READ_TIMEOUT;
MCI_DATA_LENGTH(drive) = transfer * card_info[drive].blocksize;
MCI_DATA_CTRL(drive) = (1<<0) /* enable */ |
(!write<<1) /* transfer direction */ |
(1<<3) /* DMA */ |
(9<<4) /* 2^9 = 512 */ ;
wakeup_wait(&transfer_completion_signal, TIMEOUT_BLOCK);
if(!transfer_error[drive])
{
if(!write)
memcpy(buf, uncached_buffer, transfer * SECTOR_SIZE);
buf += transfer * SECTOR_SIZE;
start += transfer;
count -= transfer;
loops = 0; /* reset errors counter */
}
else if(loops++ > PL180_MAX_TRANSFER_ERRORS)
panicf("SD transfer error : 0x%x", transfer_error[drive]);
last_disk_activity = current_tick;
if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_NO_FLAGS, NULL))
{
ret = -4*20;
goto sd_transfer_error;
}
ret = sd_wait_for_state(drive, SD_TRAN);
if (ret < 0)
{
ret -= 5*20;
goto sd_transfer_error;
}
}
ret = 0; /* success */
sd_transfer_error:
dma_release();
#ifndef BOOTLOADER
led(false);
sd_enable(false);
#endif
if (ret) /* error */
card_info[drive].initialized = 0;
mutex_unlock(&sd_mtx);
return ret;
}
int sd_read_sectors(IF_MV2(int drive,) unsigned long start, int count,
void* buf)
{
return sd_transfer_sectors(IF_MV2(drive,) start, count, buf, false);
}
int sd_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
const void* buf)
{
#ifdef BOOTLOADER /* we don't need write support in bootloader */
#ifdef HAVE_MULTIVOLUME
(void) drive;
#endif
(void) start;
(void) count;
(void) buf;
return -1;
#else
return sd_transfer_sectors(IF_MV2(drive,) start, count, (void*)buf, true);
#endif
}
#ifndef BOOTLOADER
long sd_last_disk_activity(void)
{
return last_disk_activity;
}
void sd_enable(bool on)
{
/* buttonlight AMSes need a bit of special handling for the buttonlight here,
* due to the dual mapping of GPIOD and XPD */
#if defined(HAVE_BUTTON_LIGHT) && defined(HAVE_MULTIVOLUME)
extern int buttonlight_is_on;
#endif
if (sd_enabled == on)
return; /* nothing to do */
if(on)
{
CGU_PERI |= CGU_NAF_CLOCK_ENABLE;
#ifdef HAVE_MULTIVOLUME
CGU_PERI |= CGU_MCI_CLOCK_ENABLE;
#ifdef HAVE_BUTTON_LIGHT
CCU_IO |= (1<<2);
if (buttonlight_is_on)
GPIOD_DIR &= ~(1<<7);
else
_buttonlight_off();
#endif
#endif
CGU_IDE |= (1<<7) /* AHB interface enable */ |
(1<<6) /* interface enable */;
sd_enabled = true;
}
else
{
CGU_PERI &= ~CGU_NAF_CLOCK_ENABLE;
#ifdef HAVE_MULTIVOLUME
#ifdef HAVE_BUTTON_LIGHT
CCU_IO &= ~(1<<2);
if (buttonlight_is_on)
_buttonlight_on();
#endif
CGU_PERI &= ~CGU_MCI_CLOCK_ENABLE;
#endif
CGU_IDE &= ~((1<<7)|(1<<6));
sd_enabled = false;
}
}
tCardInfo *card_get_info_target(int card_no)
{
return &card_info[card_no];
}
bool card_detect_target(void)
{
#if defined(HAVE_HOTSWAP) && \
(defined(SANSA_E200V2) || defined(SANSA_FUZE) || defined(SANSA_C200V2))
return !(GPIOA_PIN(2));
#else
return false;
#endif
}
#ifdef HAVE_HOTSWAP
void card_enable_monitoring_target(bool on)
{
if (on)
{
/* add e200v2/c200v2 here */
#if defined(SANSA_E200V2) || defined(SANSA_FUZE) || defined(SANSA_C200V2)
/* enable isr*/
GPIOA_IE |= (1<<2);
#endif
}
else
{
#if defined(SANSA_E200V2) || defined(SANSA_FUZE) || defined(SANSA_C200V2)
/* edisable isr*/
GPIOA_IE &= ~(1<<2);
#endif
}
}
#endif
#endif /* BOOTLOADER */