rockbox/apps/plugins/sdl/progs/quake/r_bsp.c
Franklin Wei 5d05b9d3e9 Quake!
This ports id Software's Quake to run on the SDL plugin runtime. The
source code originated from id under the GPLv2 license. I used
https://github.com/ahefner/sdlquake as the base of my port.

Performance is, unsurprisingly, not on par with what you're probably
used to on PC. I average about 10FPS on ipod6g, but it's still
playable.

Sound works well enough, but in-game music is not supported. I've
written ARM assembly routines for the inner sound loop. Make sure you
turn the "brightness" all the way down, or colors will look funky.

To run, extract Quake's data files to /.rockbox/quake. Have fun!

Change-Id: I4285036e967d7f0722802d43cf2096c808ca5799
2019-07-19 22:37:40 -04:00

675 lines
14 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_bsp.c
#include "quakedef.h"
#include "r_local.h"
//
// current entity info
//
qboolean insubmodel;
entity_t *currententity;
vec3_t modelorg, base_modelorg;
// modelorg is the viewpoint reletive to
// the currently rendering entity
vec3_t r_entorigin; // the currently rendering entity in world
// coordinates
float entity_rotation[3][3];
vec3_t r_worldmodelorg;
int r_currentbkey;
typedef int solidstate_t;
enum {touchessolid, drawnode, nodrawnode};
#define MAX_BMODEL_VERTS 500 // 6K
#define MAX_BMODEL_EDGES 1000 // 12K
static mvertex_t *pbverts;
static bedge_t *pbedges;
static int numbverts, numbedges;
static mvertex_t *pfrontenter, *pfrontexit;
static qboolean makeclippededge;
//===========================================================================
/*
================
R_EntityRotate
================
*/
void R_EntityRotate (vec3_t vec)
{
vec3_t tvec;
VectorCopy (vec, tvec);
vec[0] = DotProduct (entity_rotation[0], tvec);
vec[1] = DotProduct (entity_rotation[1], tvec);
vec[2] = DotProduct (entity_rotation[2], tvec);
}
/*
================
R_RotateBmodel
================
*/
void R_RotateBmodel (void)
{
float angle, s, c, temp1[3][3], temp2[3][3], temp3[3][3];
// TODO: should use a look-up table
// TODO: should really be stored with the entity instead of being reconstructed
// TODO: could cache lazily, stored in the entity
// TODO: share work with R_SetUpAliasTransform
// yaw
angle = currententity->angles[YAW];
angle = angle * M_PI*2 / 360;
s = sin(angle);
c = cos(angle);
temp1[0][0] = c;
temp1[0][1] = s;
temp1[0][2] = 0;
temp1[1][0] = -s;
temp1[1][1] = c;
temp1[1][2] = 0;
temp1[2][0] = 0;
temp1[2][1] = 0;
temp1[2][2] = 1;
// pitch
angle = currententity->angles[PITCH];
angle = angle * M_PI*2 / 360;
s = sin(angle);
c = cos(angle);
temp2[0][0] = c;
temp2[0][1] = 0;
temp2[0][2] = -s;
temp2[1][0] = 0;
temp2[1][1] = 1;
temp2[1][2] = 0;
temp2[2][0] = s;
temp2[2][1] = 0;
temp2[2][2] = c;
R_ConcatRotations (temp2, temp1, temp3);
// roll
angle = currententity->angles[ROLL];
angle = angle * M_PI*2 / 360;
s = sin(angle);
c = cos(angle);
temp1[0][0] = 1;
temp1[0][1] = 0;
temp1[0][2] = 0;
temp1[1][0] = 0;
temp1[1][1] = c;
temp1[1][2] = s;
temp1[2][0] = 0;
temp1[2][1] = -s;
temp1[2][2] = c;
R_ConcatRotations (temp1, temp3, entity_rotation);
//
// rotate modelorg and the transformation matrix
//
R_EntityRotate (modelorg);
R_EntityRotate (vpn);
R_EntityRotate (vright);
R_EntityRotate (vup);
R_TransformFrustum ();
}
/*
================
R_RecursiveClipBPoly
================
*/
void R_RecursiveClipBPoly (bedge_t *pedges, mnode_t *pnode, msurface_t *psurf)
{
bedge_t *psideedges[2], *pnextedge, *ptedge;
int i, side, lastside;
float dist, frac, lastdist;
mplane_t *splitplane, tplane;
mvertex_t *pvert, *plastvert, *ptvert;
mnode_t *pn;
psideedges[0] = psideedges[1] = NULL;
makeclippededge = false;
// transform the BSP plane into model space
// FIXME: cache these?
splitplane = pnode->plane;
tplane.dist = splitplane->dist -
DotProduct(r_entorigin, splitplane->normal);
tplane.normal[0] = DotProduct (entity_rotation[0], splitplane->normal);
tplane.normal[1] = DotProduct (entity_rotation[1], splitplane->normal);
tplane.normal[2] = DotProduct (entity_rotation[2], splitplane->normal);
// clip edges to BSP plane
for ( ; pedges ; pedges = pnextedge)
{
pnextedge = pedges->pnext;
// set the status for the last point as the previous point
// FIXME: cache this stuff somehow?
plastvert = pedges->v[0];
lastdist = DotProduct (plastvert->position, tplane.normal) -
tplane.dist;
if (lastdist > 0)
lastside = 0;
else
lastside = 1;
pvert = pedges->v[1];
dist = DotProduct (pvert->position, tplane.normal) - tplane.dist;
if (dist > 0)
side = 0;
else
side = 1;
if (side != lastside)
{
// clipped
if (numbverts >= MAX_BMODEL_VERTS)
return;
// generate the clipped vertex
frac = lastdist / (lastdist - dist);
ptvert = &pbverts[numbverts++];
ptvert->position[0] = plastvert->position[0] +
frac * (pvert->position[0] -
plastvert->position[0]);
ptvert->position[1] = plastvert->position[1] +
frac * (pvert->position[1] -
plastvert->position[1]);
ptvert->position[2] = plastvert->position[2] +
frac * (pvert->position[2] -
plastvert->position[2]);
// split into two edges, one on each side, and remember entering
// and exiting points
// FIXME: share the clip edge by having a winding direction flag?
if (numbedges >= (MAX_BMODEL_EDGES - 1))
{
Con_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[lastside];
psideedges[lastside] = ptedge;
ptedge->v[0] = plastvert;
ptedge->v[1] = ptvert;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[side];
psideedges[side] = ptedge;
ptedge->v[0] = ptvert;
ptedge->v[1] = pvert;
numbedges += 2;
if (side == 0)
{
// entering for front, exiting for back
pfrontenter = ptvert;
makeclippededge = true;
}
else
{
pfrontexit = ptvert;
makeclippededge = true;
}
}
else
{
// add the edge to the appropriate side
pedges->pnext = psideedges[side];
psideedges[side] = pedges;
}
}
// if anything was clipped, reconstitute and add the edges along the clip
// plane to both sides (but in opposite directions)
if (makeclippededge)
{
if (numbedges >= (MAX_BMODEL_EDGES - 2))
{
Con_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[0];
psideedges[0] = ptedge;
ptedge->v[0] = pfrontexit;
ptedge->v[1] = pfrontenter;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[1];
psideedges[1] = ptedge;
ptedge->v[0] = pfrontenter;
ptedge->v[1] = pfrontexit;
numbedges += 2;
}
// draw or recurse further
for (i=0 ; i<2 ; i++)
{
if (psideedges[i])
{
// draw if we've reached a non-solid leaf, done if all that's left is a
// solid leaf, and continue down the tree if it's not a leaf
pn = pnode->children[i];
// we're done with this branch if the node or leaf isn't in the PVS
if (pn->visframe == r_visframecount)
{
if (pn->contents < 0)
{
if (pn->contents != CONTENTS_SOLID)
{
r_currentbkey = ((mleaf_t *)pn)->key;
R_RenderBmodelFace (psideedges[i], psurf);
}
}
else
{
R_RecursiveClipBPoly (psideedges[i], pnode->children[i],
psurf);
}
}
}
}
}
/*
================
R_DrawSolidClippedSubmodelPolygons
================
*/
void R_DrawSolidClippedSubmodelPolygons (model_t *pmodel)
{
int i, j, lindex;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
mplane_t *pplane;
mvertex_t bverts[MAX_BMODEL_VERTS];
bedge_t bedges[MAX_BMODEL_EDGES], *pbedge;
medge_t *pedge, *pedges;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &pmodel->surfaces[pmodel->firstmodelsurface];
numsurfaces = pmodel->nummodelsurfaces;
pedges = pmodel->edges;
for (i=0 ; i<numsurfaces ; i++, psurf++)
{
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON)))
{
// FIXME: use bounding-box-based frustum clipping info?
// copy the edges to bedges, flipping if necessary so always
// clockwise winding
// FIXME: if edges and vertices get caches, these assignments must move
// outside the loop, and overflow checking must be done here
pbverts = bverts;
pbedges = bedges;
numbverts = numbedges = 0;
if (psurf->numedges > 0)
{
pbedge = &bedges[numbedges];
numbedges += psurf->numedges;
for (j=0 ; j<psurf->numedges ; j++)
{
lindex = pmodel->surfedges[psurf->firstedge+j];
if (lindex > 0)
{
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[0]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[1]];
}
else
{
lindex = -lindex;
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[1]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[0]];
}
pbedge[j].pnext = &pbedge[j+1];
}
pbedge[j-1].pnext = NULL; // mark end of edges
R_RecursiveClipBPoly (pbedge, currententity->topnode, psurf);
}
else
{
Sys_Error ("no edges in bmodel");
}
}
}
}
/*
================
R_DrawSubmodelPolygons
================
*/
void R_DrawSubmodelPolygons (model_t *pmodel, int clipflags)
{
int i;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
mplane_t *pplane;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &pmodel->surfaces[pmodel->firstmodelsurface];
numsurfaces = pmodel->nummodelsurfaces;
for (i=0 ; i<numsurfaces ; i++, psurf++)
{
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON)))
{
r_currentkey = ((mleaf_t *)currententity->topnode)->key;
// FIXME: use bounding-box-based frustum clipping info?
R_RenderFace (psurf, clipflags);
}
}
}
/*
================
R_RecursiveWorldNode
================
*/
void R_RecursiveWorldNode (mnode_t *node, int clipflags)
{
int i, c, side, *pindex;
vec3_t acceptpt, rejectpt;
mplane_t *plane;
msurface_t *surf, **mark;
mleaf_t *pleaf;
double d, dot;
if (node->contents == CONTENTS_SOLID)
return; // solid
if (node->visframe != r_visframecount)
return;
// cull the clipping planes if not trivial accept
// FIXME: the compiler is doing a lousy job of optimizing here; it could be
// twice as fast in ASM
if (clipflags)
{
for (i=0 ; i<4 ; i++)
{
if (! (clipflags & (1<<i)) )
continue; // don't need to clip against it
// generate accept and reject points
// FIXME: do with fast look-ups or integer tests based on the sign bit
// of the floating point values
pindex = pfrustum_indexes[i];
rejectpt[0] = (float)node->minmaxs[pindex[0]];
rejectpt[1] = (float)node->minmaxs[pindex[1]];
rejectpt[2] = (float)node->minmaxs[pindex[2]];
d = DotProduct (rejectpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
return;
acceptpt[0] = (float)node->minmaxs[pindex[3+0]];
acceptpt[1] = (float)node->minmaxs[pindex[3+1]];
acceptpt[2] = (float)node->minmaxs[pindex[3+2]];
d = DotProduct (acceptpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d >= 0)
clipflags &= ~(1<<i); // node is entirely on screen
}
}
// if a leaf node, draw stuff
if (node->contents < 0)
{
pleaf = (mleaf_t *)node;
mark = pleaf->firstmarksurface;
c = pleaf->nummarksurfaces;
if (c)
{
do
{
(*mark)->visframe = r_framecount;
mark++;
} while (--c);
}
// deal with model fragments in this leaf
if (pleaf->efrags)
{
R_StoreEfrags (&pleaf->efrags);
}
pleaf->key = r_currentkey;
r_currentkey++; // all bmodels in a leaf share the same key
}
else
{
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
plane = node->plane;
switch (plane->type)
{
case PLANE_X:
dot = modelorg[0] - plane->dist;
break;
case PLANE_Y:
dot = modelorg[1] - plane->dist;
break;
case PLANE_Z:
dot = modelorg[2] - plane->dist;
break;
default:
dot = DotProduct (modelorg, plane->normal) - plane->dist;
break;
}
if (dot >= 0)
side = 0;
else
side = 1;
// recurse down the children, front side first
R_RecursiveWorldNode (node->children[side], clipflags);
// draw stuff
c = node->numsurfaces;
if (c)
{
surf = cl.worldmodel->surfaces + node->firstsurface;
if (dot < -BACKFACE_EPSILON)
{
do
{
if ((surf->flags & SURF_PLANEBACK) &&
(surf->visframe == r_framecount))
{
if (r_drawpolys)
{
if (r_worldpolysbacktofront)
{
if (numbtofpolys < MAX_BTOFPOLYS)
{
pbtofpolys[numbtofpolys].clipflags =
clipflags;
pbtofpolys[numbtofpolys].psurf = surf;
numbtofpolys++;
}
}
else
{
R_RenderPoly (surf, clipflags);
}
}
else
{
R_RenderFace (surf, clipflags);
}
}
surf++;
} while (--c);
}
else if (dot > BACKFACE_EPSILON)
{
do
{
if (!(surf->flags & SURF_PLANEBACK) &&
(surf->visframe == r_framecount))
{
if (r_drawpolys)
{
if (r_worldpolysbacktofront)
{
if (numbtofpolys < MAX_BTOFPOLYS)
{
pbtofpolys[numbtofpolys].clipflags =
clipflags;
pbtofpolys[numbtofpolys].psurf = surf;
numbtofpolys++;
}
}
else
{
R_RenderPoly (surf, clipflags);
}
}
else
{
R_RenderFace (surf, clipflags);
}
}
surf++;
} while (--c);
}
// all surfaces on the same node share the same sequence number
r_currentkey++;
}
// recurse down the back side
R_RecursiveWorldNode (node->children[!side], clipflags);
}
}
/*
================
R_RenderWorld
================
*/
void R_RenderWorld (void)
{
int i;
model_t *clmodel;
btofpoly_t btofpolys[MAX_BTOFPOLYS];
pbtofpolys = btofpolys;
currententity = &cl_entities[0];
VectorCopy (r_origin, modelorg);
clmodel = currententity->model;
r_pcurrentvertbase = clmodel->vertexes;
R_RecursiveWorldNode (clmodel->nodes, 15);
// if the driver wants the polygons back to front, play the visible ones back
// in that order
if (r_worldpolysbacktofront)
{
for (i=numbtofpolys-1 ; i>=0 ; i--)
{
R_RenderPoly (btofpolys[i].psurf, btofpolys[i].clipflags);
}
}
}