rockbox/firmware/target/arm/as3525/sansa-clip/lcd-ssd1303.c
Rafaël Carré 3f43765925 Sansa Clip+: use 8 bits transfers, like DMA transfers
The code assumed LCD pixels were packed on 16 bits values but for the
Clip we use 8 bits values.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@24563 a1c6a512-1295-4272-9138-f99709370657
2010-02-08 08:20:42 +00:00

450 lines
12 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Alan Korr
* Copyright (C) 2008 François Dinel
* Copyright (C) 2008-2009 Rafaël Carré
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "hwcompat.h"
#include "kernel.h"
#include "lcd.h"
#include "system.h"
#include "cpu.h"
#include "string.h"
/*** AS3525 specifics ***/
#ifdef SANSA_CLIPV2
#include "as3525v2.h"
#else
#include "as3525.h"
#endif
#include "ascodec.h"
/*** definitions ***/
#define LCD_SET_LOWER_COLUMN_ADDRESS ((char)0x00)
#define LCD_SET_HIGHER_COLUMN_ADDRESS ((char)0x10)
#define LCD_SET_DISPLAY_START_LINE ((char)0x40)
#define LCD_SET_CONTRAST_CONTROL_REGISTER ((char)0x81)
#define LCD_SET_SEGMENT_REMAP ((char)0xA0)
#define LCD_SET_SEGMENT_REMAP_INV ((char)0xA1)
#define LCD_SET_ENTIRE_DISPLAY_OFF ((char)0xA4)
#define LCD_SET_ENTIRE_DISPLAY_ON ((char)0xA5)
#define LCD_SET_NORMAL_DISPLAY ((char)0xA6)
#define LCD_SET_REVERSE_DISPLAY ((char)0xA7)
#define LCD_SET_MULTIPLEX_RATIO ((char)0xA8)
#define LCD_SET_DC_DC ((char)0xAD)
#define LCD_SET_DC_DC_PART2 ((char)0x8A)
#define LCD_SET_DISPLAY_OFF ((char)0xAE)
#define LCD_SET_DISPLAY_ON ((char)0xAF)
#define LCD_SET_PAGE_ADDRESS ((char)0xB0)
#define LCD_SET_COM_OUTPUT_SCAN_DIRECTION ((char)0xC0)
#define LCD_SET_COM_OUTPUT_SCAN_DIRECTION_INV ((char)0xC8)
#define LCD_SET_DISPLAY_CLOCK_AND_OSC_FREQ ((char)0xD5)
#define LCD_SET_VCOM_DESELECT_LEVEL ((char)0xDB)
#define LCD_SET_PRECHARGE_PERIOD ((char)0xD9)
#define LCD_NOP ((char)0xE3)
/* LCD command codes */
#define LCD_CNTL_CONTRAST 0x81 /* Contrast */
#define LCD_CNTL_OUTSCAN 0xc8 /* Output scan direction */
#define LCD_CNTL_SEGREMAP 0xa1 /* Segment remap */
#define LCD_CNTL_DISPON 0xaf /* Display on */
#define LCD_CNTL_PAGE 0xb0 /* Page address */
#define LCD_CNTL_HIGHCOL 0x10 /* Upper column address */
#define LCD_CNTL_LOWCOL 0x00 /* Lower column address */
static void lcd_hw_init(void)
{
#if defined(SANSA_CLIP)
/* DBOP initialisation, do what OF does */
CGU_DBOP = (1<<3) | AS3525_DBOP_DIV;
GPIOB_AFSEL = 0x08; /* DBOP on pin 3 */
GPIOC_AFSEL = 0x0f; /* DBOP on pins 3:0 */
DBOP_CTRL = 0x51008;
DBOP_TIMPOL_01 = 0x6E167;
DBOP_TIMPOL_23 = 0xA167E06F;
#elif defined(SANSA_CLIPV2)
/* DBOP initialisation, do what OF does */
CCU_IO |= (1<<12); /* ?? */
CGU_DBOP |= /*(1<<3)*/ 0x18 | AS3525_DBOP_DIV;
DBOP_CTRL = 0x51004;
DBOP_TIMPOL_01 = 0x36A12F;
DBOP_TIMPOL_23 = 0xE037E037;
#elif defined(SANSA_CLIPPLUS)
CGU_PERI |= CGU_SSP_CLOCK_ENABLE;
SSP_CPSR = AS3525_SSP_PRESCALER; /* OF = 0x10 */
SSP_CR0 = (1<<7) | (1<<6) | 7; /* Motorola SPI frame format, 8 bits */
SSP_CR1 = (1<<3) | (1<<1); /* SSP Operation enabled */
SSP_IMSC = 0; /* No interrupts */
#endif
}
#ifdef SANSA_CLIP
#define LCD_DELAY 1
#else /* SANSA_CLIPV2 */
#define LCD_DELAY 10
#endif
#if defined(SANSA_CLIP) || defined(SANSA_CLIPV2)
void lcd_write_command(int byte)
{
volatile int i = 0;
while(i<LCD_DELAY) i++;
/* unset D/C# (data or command) */
#ifdef SANSA_CLIP
GPIOA_PIN(5) = 0;
#else /* SANSA_CLIPV2 */
GPIOB_PIN(2) = 0;
DBOP_TIMPOL_23 = 0xE0370036;
#endif
/* Write command */
/* Only bits 15:12 and 3:0 of DBOP_DOUT are meaningful */
DBOP_DOUT = (byte << 8) | byte;
/* While push fifo is not empty */
while ((DBOP_STAT & (1<<10)) == 0)
;
#ifdef SANSA_CLIPV2
DBOP_TIMPOL_23 = 0xE037E037;
#endif
}
#elif defined(SANSA_CLIPPLUS)
void lcd_write_command(int byte)
{
while(SSP_SR & (1<<4)) /* BSY flag */
;
GPIOB_PIN(2) = 0;
SSP_DATA = byte;
while(SSP_SR & (1<<4)) /* BSY flag */
;
}
#endif
#if defined(SANSA_CLIP) || defined(SANSA_CLIPV2)
void lcd_write_data(const fb_data* p_bytes, int count)
{
volatile int i = 0;
while(i<LCD_DELAY) i++;
/* set D/C# (data or command) */
#ifdef SANSA_CLIP
GPIOA_PIN(5) = (1<<5);
#else /* SANSA_CLIPV2 */
GPIOB_PIN(2) = (1<<2);
#endif
while (count--)
{
/* Write pixels */
/* Only bits 15:12 and 3:0 of DBOP_DOUT are meaningful */
DBOP_DOUT = (*p_bytes << 8) | *p_bytes;
p_bytes++; /* next packed pixels */
/* Wait if push fifo is full */
while ((DBOP_STAT & (1<<6)) != 0);
}
/* While push fifo is not empty */
while ((DBOP_STAT & (1<<10)) == 0);
}
#elif defined(SANSA_CLIPPLUS)
void lcd_write_data(const fb_data* p_bytes, int count)
{
GPIOB_PIN(2) = (1<<2);
while (count--)
{
while(SSP_SR & (1<<1)) /* Transmit FIFO is not full */
SSP_DATA = *p_bytes++;
while(!(SSP_SR & (1<<0))) /* Transmit FIFO is not empty */
;
}
}
#endif
/** globals **/
static bool display_on; /* used by lcd_enable */
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val)
{
lcd_write_command(LCD_CNTL_CONTRAST);
lcd_write_command(val);
}
void lcd_set_invert_display(bool yesno)
{
if (yesno)
lcd_write_command(LCD_SET_REVERSE_DISPLAY);
else
lcd_write_command(LCD_SET_NORMAL_DISPLAY);
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
if (yesno)
{
lcd_write_command(LCD_SET_SEGMENT_REMAP);
lcd_write_command(LCD_SET_COM_OUTPUT_SCAN_DIRECTION);
}
else
{
lcd_write_command(LCD_SET_SEGMENT_REMAP_INV);
lcd_write_command(LCD_SET_COM_OUTPUT_SCAN_DIRECTION_INV);
}
}
#ifdef HAVE_LCD_ENABLE
void lcd_enable(bool enable)
{
if(display_on == enable)
return;
if( (display_on = enable) ) /* simple '=' is not a typo ! */
{
#ifdef SANSA_CLIP
/* Enable DC-DC AS3525 for some Clip v1 that need it */
ascodec_write(AS3514_DCDC15, 1);
#endif
lcd_write_command(LCD_SET_DISPLAY_ON);
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else {
lcd_write_command(LCD_SET_DISPLAY_OFF);
#ifdef SANSA_CLIP
/* Disable DC-DC AS3525 */
ascodec_write(AS3514_DCDC15, 0);
#endif
}
}
bool lcd_active(void)
{
return display_on;
}
#endif
/* LCD init, largely based on what OF does */
void lcd_init_device(void)
{
int i;
#define LCD_FULLSCREEN (128+4)
fb_data p_bytes[LCD_FULLSCREEN]; /* framebuffer used to clear the screen */
lcd_hw_init();
#if defined(SANSA_CLIP)
GPIOA_DIR |= 0x33; /* pins 5:4 and 1:0 out */
GPIOB_DIR |= 0x40; /* pin 6 out */
GPIOA_PIN(1) = (1<<1);
GPIOA_PIN(0) = (1<<0);
GPIOA_PIN(4) = 0;
GPIOB_PIN(6) = (1<<6);
#elif defined(SANSA_CLIPV2)
GPIOB_DIR |= (1<<2)|(1<<5);
GPIOB_PIN(5) = (1<<5);
#elif defined(SANSA_CLIPPLUS)
GPIOA_DIR |= (1<<5);
GPIOB_DIR |= (1<<2) | (1<<7);
GPIOA_PIN(5) = 0;
GPIOA_DIR &= (1<<0);
GPIOA_PIN(0) = (1<<0);
GPIOB_PIN(7) = (1<<7);
#endif
/* Set display clock (divide ratio = 1) and oscillator frequency (1) */
lcd_write_command(LCD_SET_DISPLAY_CLOCK_AND_OSC_FREQ);
lcd_write_command(0x10);
/* Set VCOM deselect level to 0.76V */
lcd_write_command(LCD_SET_VCOM_DESELECT_LEVEL);
lcd_write_command(0x34);
/* Set pre-charge period (p1period is 2 dclk and p2period is 5 dclk) */
lcd_write_command(LCD_SET_PRECHARGE_PERIOD);
lcd_write_command(0x25);
/* Set contrast register to 12% */
lcd_set_contrast(lcd_default_contrast());
/* Disable DC-DC */
lcd_write_command(LCD_SET_DC_DC);
lcd_write_command(LCD_SET_DC_DC_PART2/*|0*/);
/* Set starting line as 0 */
lcd_write_command(LCD_SET_DISPLAY_START_LINE /*|(0 & 0x3f)*/);
/* Column 131 is remapped to SEG0 */
lcd_write_command(LCD_SET_SEGMENT_REMAP_INV);
/* Invert COM scan direction (N-1 to 0) */
lcd_write_command(LCD_SET_COM_OUTPUT_SCAN_DIRECTION_INV);
/* Set normal display mode (not every pixel ON) */
lcd_write_command(LCD_SET_ENTIRE_DISPLAY_OFF);
/* Set normal display mode (not inverted) */
lcd_write_command(LCD_SET_NORMAL_DISPLAY);
/* Clear whole framebuffer, including "overscan"
* We don't need to handle that out of screen columns in lcd_clear_display()
* since we will never write into it anymore
*/
lcd_write_command (LCD_SET_HIGHER_COLUMN_ADDRESS /*| 0*/);
lcd_write_command (LCD_SET_LOWER_COLUMN_ADDRESS /*| 0*/);
memset(p_bytes, 0, sizeof(p_bytes)); /* fills with 0 : pixel off */
for(i = 0; i < 8; i++)
{
lcd_write_command (LCD_SET_PAGE_ADDRESS | (i /*& 0xf*/));
lcd_write_data(p_bytes, LCD_FULLSCREEN /* overscan */);
}
lcd_enable(true);
lcd_update();
}
/*** Update functions ***/
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit_mono(const unsigned char *data, int x, int by, int width,
int bheight, int stride)
{
if(!display_on)
return;
/* Copy display bitmap to hardware */
while (bheight--)
{
lcd_write_command (LCD_CNTL_PAGE | (by++ & 0xf));
lcd_write_command (LCD_CNTL_HIGHCOL | (((x+2)>>4) & 0xf));
lcd_write_command (LCD_CNTL_LOWCOL | ((x+2) & 0xf));
lcd_write_data(data, width);
data += stride;
}
}
/* Helper function for lcd_grey_phase_blit(). */
void lcd_grey_data(unsigned char *values, unsigned char *phases, int count);
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit_grey_phase(unsigned char *values, unsigned char *phases,
int x, int by, int width, int bheight, int stride)
{
if(!display_on)
return;
stride <<= 3; /* 8 pixels per block */
/* Copy display bitmap to hardware */
while (bheight--)
{
lcd_write_command (LCD_CNTL_PAGE | (by++ & 0xf));
lcd_write_command (LCD_CNTL_HIGHCOL | (((x+2)>>4) & 0xf));
lcd_write_command (LCD_CNTL_LOWCOL | ((x+2) & 0xf));
lcd_grey_data(values, phases, width);
values += stride;
phases += stride;
}
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
int y;
if(!display_on)
return;
/* Copy display bitmap to hardware */
for (y = 0; y < LCD_FBHEIGHT; y++)
{
lcd_write_command (LCD_CNTL_PAGE | (y & 0xf));
lcd_write_command (LCD_CNTL_HIGHCOL | ((2 >> 4) & 0xf));
lcd_write_command (LCD_CNTL_LOWCOL | (2 & 0xf));
lcd_write_data (lcd_framebuffer[y], LCD_WIDTH);
}
}
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
int ymax;
if(!display_on)
return;
/* The Y coordinates have to work on even 8 pixel rows */
ymax = (y + height-1) >> 3;
y >>= 3;
if(x + width > LCD_WIDTH)
width = LCD_WIDTH - x;
if (width <= 0)
return; /* nothing left to do, 0 is harmful to lcd_write_data() */
if(ymax >= LCD_FBHEIGHT)
ymax = LCD_FBHEIGHT-1;
/* Copy specified rectange bitmap to hardware */
for (; y <= ymax; y++)
{
lcd_write_command (LCD_CNTL_PAGE | (y & 0xf));
lcd_write_command (LCD_CNTL_HIGHCOL | (((x+2) >> 4) & 0xf));
lcd_write_command (LCD_CNTL_LOWCOL | ((x+2) & 0xf));
lcd_write_data (&lcd_framebuffer[y][x], width);
}
}