rockbox/firmware/target/arm/imx233/pcm-imx233.c
Amaury Pouly eac1ca22bd imx233: generate register headers using headergen_v2 and update code for it
NOTE: this commit does not introduce any change, ideally even the binary should
be almost the same. I checked the disassembly by hand and there are only a few
differences here and there, mostly the compiler decides to compile very close
expressions slightly differently. I tried to run the new code on several targets
to make sure and saw no difference.

The major syntax changes of the new headers are as follows:
- BF_{WR,SET,CLR} are now superpowerful and allows to set several fileds at once:
  BF_WR(reg, field1(value1), field2(value2), ...)
- BF_CS (use like BF_WR) does a write to reg_CLR and then reg_SET instead of RMW
- there is no more need for macros like BF_{WR_,SET,CLR}_V, since one can simply
  BF_WR with field_V(name)
- the old BF_SETV macro has no trivial equivalent and is replaced with its
  its equivalent for BF_WR(reg_SET, ...)

I also rename the register headers: "regs/regs-x.h" -> "regs/x.h" to avoid the
redundant "regs".

Final note: the registers were generated using the following command:
./headergen_v2 -g imx -o ../../firmware/target/arm/imx233/regs/ desc/regs-stmp3{600,700,780}.xml

Change-Id: I7485e8b4315a0929a8edb63e7fa1edcaa54b1edc
2016-05-28 16:49:22 +02:00

326 lines
9 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "audiohw.h"
#include "pcm.h"
#include "dma-imx233.h"
#include "pcm-internal.h"
#include "audioout-imx233.h"
struct pcm_dma_command_t
{
struct apb_dma_command_t dma;
/* padded to next multiple of cache line size (32 bytes) */
uint32_t pad[5];
} __attribute__((packed)) CACHEALIGN_ATTR;
__ENSURE_STRUCT_CACHE_FRIENDLY(struct pcm_dma_command_t)
/* Because we have no way of stopping the DMA properly (see below), we can only
* let the tranfer finish on stop. However if the transfer is very long it could
* take a while. We work around this by splitting big transfers into small burst
* to make sure we can stop quickly. */
static int dac_locked = 0;
static struct pcm_dma_command_t dac_dma;
static bool dac_freezed = false;
static const void *dac_buf; /* current buffer */
static size_t dac_size; /* remaining size */
/* for both recording and playback: maximum transfer size, see
* pcm_dma_apply_settings */
static size_t dma_max_size = CACHEALIGN_UP(1600);
enum
{
DAC_PLAYING,
DAC_STOP_PENDING,
DAC_STOPPED,
}dac_state = DAC_STOPPED;
/**
* WARNING !
* Never reset the dma channel, otherwise it will halt the DAC for some reason
* and I don't know how to recover from this state
* */
static void play(void)
{
/* split transfer if needed */
size_t xfer = MIN(dac_size, dma_max_size);
dac_dma.dma.next = NULL;
dac_dma.dma.buffer = (void *)dac_buf;
dac_dma.dma.cmd = BF_OR(APB_CHx_CMD, COMMAND_V(READ),
IRQONCMPLT(1), SEMAPHORE(1), XFER_COUNT(xfer));
/* dma subsystem will make sure cached stuff is written to memory */
dac_state = DAC_PLAYING;
imx233_dma_start_command(APB_AUDIO_DAC, &dac_dma.dma);
/* advance buffer */
dac_buf += xfer;
dac_size -= xfer;
}
void INT_DAC_DMA(void)
{
/* if stop is pending, ackonowledge stop
* otherwise try to get some more and stop if there is none */
if(dac_state == DAC_STOP_PENDING)
{
dac_state = DAC_STOPPED;
}
else if(dac_state == DAC_PLAYING)
{
/* continue if buffer is not done, otherwise try to get some new data */
if(dac_size != 0 || pcm_play_dma_complete_callback(PCM_DMAST_OK, &dac_buf, &dac_size))
{
play();
pcm_play_dma_status_callback(PCM_DMAST_STARTED);
}
else
dac_state = DAC_STOPPED;
}
imx233_dma_clear_channel_interrupt(APB_AUDIO_DAC);
}
void INT_DAC_ERROR(void)
{
dac_state = DAC_STOPPED;
pcm_play_dma_status_callback(PCM_DMAST_ERR_DMA);
imx233_dma_clear_channel_interrupt(APB_AUDIO_DAC);
}
void pcm_play_lock(void)
{
if(dac_locked++ == 0)
imx233_dma_enable_channel_interrupt(APB_AUDIO_DAC, false);
}
void pcm_play_unlock(void)
{
if(--dac_locked == 0)
imx233_dma_enable_channel_interrupt(APB_AUDIO_DAC, true);
}
void pcm_play_dma_stop(void)
{
/* do not interrupt the current transaction because resetting the dma
* would halt the DAC and clearing RUN causes sound havoc so simply
* wait for the end of transfer */
pcm_play_lock();
dac_buf = NULL;
dac_size = 0;
dac_state = DAC_STOP_PENDING;
pcm_play_unlock();
}
void pcm_play_dma_start(const void *addr, size_t size)
{
pcm_play_lock();
/* update pending buffer */
dac_buf = addr;
dac_size = size;
/* if we are stopped restart playback, otherwise IRQ will pick up */
if(dac_state == DAC_STOPPED)
play();
else
dac_state = DAC_PLAYING;
pcm_play_unlock();
}
void pcm_play_dma_pause(bool pause)
{
imx233_dma_freeze_channel(APB_AUDIO_DAC, pause);
dac_freezed = pause;
}
void pcm_play_dma_init(void)
{
audiohw_preinit();
}
void pcm_play_dma_postinit(void)
{
audiohw_postinit();
imx233_icoll_enable_interrupt(INT_SRC_DAC_DMA, true);
imx233_icoll_enable_interrupt(INT_SRC_DAC_ERROR, true);
imx233_icoll_set_priority(INT_SRC_DAC_DMA, ICOLL_PRIO_AUDIO);
imx233_dma_enable_channel_interrupt(APB_AUDIO_DAC, true);
}
void pcm_dma_apply_settings(void)
{
pcm_play_lock();
/* update frequency */
audiohw_set_frequency(pcm_fsel);
/* compute maximum transfer size: aim at ~1/100s stop time maximum, make sure
* the resulting value is a multiple of cache line. At sample rate F we
* transfer two samples (2 x 2 bytes) F times per second = 4F b/s */
dma_max_size = CACHEALIGN_UP(4 * pcm_sampr / 100);
pcm_play_unlock();
}
size_t pcm_get_bytes_waiting(void)
{
struct imx233_dma_info_t info = imx233_dma_get_info(APB_AUDIO_DAC, DMA_INFO_AHB_BYTES);
return info.ahb_bytes;
}
const void *pcm_play_dma_get_peak_buffer(int *count)
{
if(!dac_freezed)
imx233_dma_freeze_channel(APB_AUDIO_DAC, true);
struct imx233_dma_info_t info = imx233_dma_get_info(APB_AUDIO_DAC, DMA_INFO_AHB_BYTES | DMA_INFO_BAR);
if(!dac_freezed)
imx233_dma_freeze_channel(APB_AUDIO_DAC, false);
*count = info.ahb_bytes;
return (void *)info.bar;
}
/*
* Recording
*/
/* Because we have no way of stopping the DMA properly (like for the DAC),
* we can only let the tranfer finish on stop. However if the transfer is very
* long it could take a while. We work around this by splitting big transfers
* into small burst to make sure we can stop quickly. */
#ifdef HAVE_RECORDING
static int adc_locked = 0;
static struct pcm_dma_command_t adc_dma;
static void *adc_buf; /* current buffer */
static size_t adc_size; /* remaining size */
enum
{
ADC_RECORDING,
ADC_STOP_PENDING,
ADC_STOPPED,
}adc_state = ADC_STOPPED;
void pcm_rec_lock(void)
{
if(adc_locked++ == 0)
imx233_dma_enable_channel_interrupt(APB_AUDIO_ADC, false);
}
void pcm_rec_unlock(void)
{
if(--adc_locked == 0)
imx233_dma_enable_channel_interrupt(APB_AUDIO_ADC, true);
}
void pcm_rec_dma_init(void)
{
imx233_icoll_enable_interrupt(INT_SRC_ADC_DMA, true);
imx233_icoll_enable_interrupt(INT_SRC_ADC_ERROR, true);
imx233_dma_enable_channel_interrupt(APB_AUDIO_ADC, true);
}
void pcm_rec_dma_close(void)
{
pcm_rec_dma_stop();
}
static void rec(void)
{
/* split transfer if needed */
size_t xfer = MIN(adc_size, dma_max_size);
adc_dma.dma.next = NULL;
adc_dma.dma.buffer = (void *)adc_buf;
adc_dma.dma.cmd = BF_OR(APB_CHx_CMD, COMMAND_V(WRITE),
IRQONCMPLT(1), SEMAPHORE(1), XFER_COUNT(xfer));
/* dma subsystem will make sure cached stuff is written to memory */
adc_state = ADC_RECORDING;
imx233_dma_start_command(APB_AUDIO_ADC, &adc_dma.dma);
/* advance buffer */
adc_buf += xfer;
adc_size -= xfer;
}
void INT_ADC_DMA(void)
{
/* if stop is pending, ackonowledge stop
* otherwise try to get some more and stop if there is none */
if(adc_state == ADC_STOP_PENDING)
{
adc_state = ADC_STOPPED;
}
else if(adc_state == ADC_RECORDING)
{
/* continue if buffer is not done, otherwise try to get some new data */
if(adc_size != 0 || pcm_rec_dma_complete_callback(PCM_DMAST_OK, &adc_buf, &adc_size))
{
rec();
pcm_rec_dma_status_callback(PCM_DMAST_STARTED);
}
else
adc_state = ADC_STOPPED;
}
imx233_dma_clear_channel_interrupt(APB_AUDIO_ADC);
}
void INT_ADC_ERROR(void)
{
adc_state = ADC_STOPPED;
pcm_rec_dma_status_callback(PCM_DMAST_ERR_DMA);
imx233_dma_clear_channel_interrupt(APB_AUDIO_ADC);
}
void pcm_rec_dma_start(void *addr, size_t size)
{
pcm_rec_lock();
/* update pending buffer */
adc_buf = addr;
adc_size = size;
/* if we are stopped restart recording, otherwise IRQ will pick up */
if(adc_state == ADC_STOPPED)
rec();
else
adc_state = ADC_RECORDING;
pcm_rec_unlock();
}
void pcm_rec_dma_stop(void)
{
/* do not interrupt the current transaction because resetting the dma
* would halt the ADC and clearing RUN causes sound havoc so simply
* wait for the end of transfer */
pcm_rec_lock();
adc_buf = NULL;
adc_size = 0;
adc_state = ADC_STOP_PENDING;
pcm_rec_unlock();
}
const void *pcm_rec_dma_get_peak_buffer(void)
{
struct imx233_dma_info_t info = imx233_dma_get_info(APB_AUDIO_ADC, DMA_INFO_BAR);
return (void *)info.bar;
}
#endif /* HAVE_RECORDING */