rockbox/firmware/drivers/ata_mmc.c
Jens Arnold 36813086e6 MMC: 10 % faster reading and 15 % faster writing
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@5161 a1c6a512-1295-4272-9138-f99709370657
2004-10-04 17:53:53 +00:00

686 lines
18 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2004 by Jens Arnold
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdbool.h>
#include "ata.h"
#include "kernel.h"
#include "thread.h"
#include "led.h"
#include "sh7034.h"
#include "system.h"
#include "debug.h"
#include "panic.h"
#include "usb.h"
#include "power.h"
#include "string.h"
#include "hwcompat.h"
#include "adc.h"
#include "bitswap.h"
/* use file for an MMC-based system, FIXME in makefile */
#ifdef HAVE_MMC
#define SECTOR_SIZE 512
/* Command definitions */
#define CMD_GO_IDLE_STATE 0x40 /* R1 */
#define CMD_SEND_OP_COND 0x41 /* R1 */
#define CMD_SEND_CSD 0x49 /* R1 */
#define CMD_SEND_CID 0x4a /* R1 */
#define CMD_STOP_TRANSMISSION 0x4c /* R1 */
#define CMD_SEND_STATUS 0x4d /* R2 */
#define CMD_READ_SINGLE_BLOCK 0x51 /* R1 */
#define CMD_READ_MULTIPLE_BLOCK 0x52 /* R1 */
#define CMD_WRITE_BLOCK 0x58 /* R1b */
#define CMD_WRITE_MULTIPLE_BLOCK 0x59 /* R1b */
#define CMD_READ_OCR 0x7a /* R3 */
/* Response formats:
R1 = single byte, msb=0, various error flags
R1b = R1 + busy token(s)
R2 = 2 bytes (1st byte identical to R1), additional flags
R3 = 5 bytes (R1 + OCR register)
*/
#define R1_PARAMETER_ERR 0x40
#define R1_ADDRESS_ERR 0x20
#define R1_ERASE_SEQ_ERR 0x10
#define R1_COM_CRC_ERR 0x08
#define R1_ILLEGAL_CMD 0x04
#define R1_ERASE_RESET 0x02
#define R1_IN_IDLE_STATE 0x01
#define R2_OUT_OF_RANGE 0x80
#define R2_ERASE_PARAM 0x40
#define R2_WP_VIOLATION 0x20
#define R2_CARD_ECC_FAIL 0x10
#define R2_CC_ERROR 0x08
#define R2_ERROR 0x04
#define R2_ERASE_SKIP 0x02
#define R2_CARD_LOCKED 0x01
/* Data start tokens */
#define DT_START_BLOCK 0xfe
#define DT_START_WRITE_MULTIPLE 0xfc
#define DT_STOP_TRAN 0xfd
// DEBUG
#include "../../apps/screens.h"
/* for compatibility */
bool old_recorder = false; /* FIXME: get rid of this cross-dependency */
int ata_spinup_time = 0;
char ata_device = 0; /* device 0 (master) or 1 (slave) */
int ata_io_address = 0; /* 0x300 or 0x200, only valid on recorder */
long last_disk_activity = -1;
/* private variables */
static struct mutex mmc_mutex;
static char mmc_stack[DEFAULT_STACK_SIZE];
static const char mmc_thread_name[] = "mmc";
static struct event_queue mmc_queue;
static bool initialized = false;
static int current_card = 0;
static const unsigned char dummy[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
typedef struct
{
bool initialized;
unsigned char bitrate_register;
unsigned char rev;
unsigned char rev_fract;
unsigned int speed; /* bps */
unsigned int read_timeout; /* n * 8 clock cycles */
unsigned int write_timeout; /* n * 8 clock cycles */
unsigned int size; /* in bytes */
unsigned int manuf_month;
unsigned int manuf_year;
unsigned long serial_number;
unsigned char name[7];
} tCardInfo;
static tCardInfo card_info[2];
/* private function declarations */
static int select_card(int card_no);
static void deselect_card(void);
static void setup_sci1(int bitrate_register);
static void write_transfer(const unsigned char *buf, int len)
__attribute__ ((section(".icode")));
static void read_transfer(unsigned char *buf, int len)
__attribute__ ((section(".icode")));
static unsigned char poll_byte(int timeout);
static unsigned char poll_busy(int timeout);
static int send_cmd(int cmd, unsigned long parameter, unsigned char *response);
static int receive_data(unsigned char *buf, int len, int timeout);
static int send_data(char start_token, const unsigned char *buf, int len,
int timeout);
static int initialize_card(int card_no);
/* implementation */
static int select_card(int card_no)
{
if (card_no == 0) /* internal */
or_b(0x10, &PADRH); /* set clock gate PA12 CHECKME: mask? */
else /* external */
and_b(~0x10, &PADRH); /* clear clock gate PA12 CHECKME: mask?*/
if (!card_info[card_no].initialized)
{
setup_sci1(7); /* Initial rate: 375 kbps (need <= 400 per mmc specs) */
write_transfer(dummy, 10); /* allow the card to synchronize */
while (!(SSR1 & SCI_TEND));
}
if (card_no == 0) /* internal */
and_b(~0x04, &PADRH); /* assert CS */
else /* external */
and_b(~0x02, &PADRH); /* assert CS */
if (card_info[card_no].initialized)
{
setup_sci1(card_info[card_no].bitrate_register);
return 0;
}
else
{
return initialize_card(card_no);
}
}
static void deselect_card(void)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
or_b(0x06, &PADRH); /* deassert CS (both cards) */
}
static void setup_sci1(int bitrate_register)
{
int i;
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable serial port */
SMR1 = SYNC_MODE; /* no prescale */
BRR1 = bitrate_register;
SCR1 = SCI_CKE0;
SSR1 = 0;
for (i = 0; i <= bitrate_register; i++); /* wait at least one bit time */
or_b((SCI_TE|SCI_RE), &SCR1); /* enable transmitter & receiver */
}
static void write_transfer(const unsigned char *buf, int len)
{
const unsigned char *buf_end = buf + len;
register unsigned char data;
/* TODO: DMA */
while (buf < buf_end)
{
data = fliptable[(signed char)(*buf++)]; /* bitswap */
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
TDR1 = data; /* write byte */
SSR1 = 0; /* start transmitting */
}
}
/* don't call this with len == 0 */
static void read_transfer(unsigned char *buf, int len)
{
unsigned char *buf_end = buf + len - 1;
register signed char data;
/* TODO: DMA */
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
TDR1 = 0xFF; /* send do-nothing data in parallel */
SSR1 = 0; /* start receiving first byte */
while (buf < buf_end)
{
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = RDR1; /* read byte */
SSR1 = 0; /* start receiving */
*buf++ = fliptable[data]; /* bitswap */
}
while (!(SSR1 & SCI_RDRF)); /* wait for last byte */
*buf = fliptable[(signed char)(RDR1)]; /* read & bitswap */
}
/* timeout is in bytes */
static unsigned char poll_byte(int timeout)
{
int i;
unsigned char data = 0; /* stop the compiler complaining */
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
TDR1 = 0xFF; /* send do-nothing data in parallel */
i = 0;
do {
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = RDR1; /* read byte */
} while ((data == 0xFF) && (++i < timeout));
return fliptable[(signed char)data];
}
static unsigned char poll_busy(int timeout)
{
int i;
unsigned char data, dummy;
while (!(SSR1 &SCI_TEND)); /* wait for end of transfer */
TDR1 = 0xFF; /* send do-nothing data in parallel */
/* get data response */
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = RDR1; /* read byte */
/* wait until the card is ready again */
i = 0;
do {
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
dummy = RDR1; /* read byte */
} while ((dummy != 0xFF) && (++i < timeout));
return fliptable[(signed char)data];
}
static int send_cmd(int cmd, unsigned long parameter, unsigned char *response)
{
unsigned char command[] = {0x40, 0x00, 0x00, 0x00, 0x00, 0x95, 0xFF};
command[0] = cmd;
if (parameter != 0)
{
command[1] = (parameter >> 24) & 0xFF;
command[2] = (parameter >> 16) & 0xFF;
command[3] = (parameter >> 8) & 0xFF;
command[4] = parameter & 0xFF;
}
write_transfer(command, 7);
response[0] = poll_byte(20);
if (response[0] != 0x00)
{
write_transfer(dummy, 1);
return -1;
}
switch (cmd)
{
case CMD_SEND_CSD: /* R1 response, leave open */
case CMD_SEND_CID:
case CMD_READ_SINGLE_BLOCK:
case CMD_READ_MULTIPLE_BLOCK:
break;
case CMD_SEND_STATUS: /* R2 response, close with dummy */
read_transfer(response + 1, 1);
write_transfer(dummy, 1);
break;
case CMD_READ_OCR: /* R3 response, close with dummy */
read_transfer(response + 1, 4);
write_transfer(dummy, 1);
break;
default: /* R1 response, close with dummy */
write_transfer(dummy, 1);
break; /* also catches block writes */
}
return 0;
}
static int receive_data(unsigned char *buf, int len, int timeout)
{
unsigned char crc[2]; /* unused */
if (poll_byte(timeout) != DT_START_BLOCK)
{
write_transfer(dummy, 1);
return -1; /* not start of data */
}
read_transfer(buf, len);
read_transfer(crc, 2); /* throw away */
write_transfer(dummy, 1);
return 0;
}
static int send_data(char start_token, const unsigned char *buf, int len,
int timeout)
{
int ret = 0;
write_transfer(&start_token, 1);
write_transfer(buf, len);
write_transfer(dummy, 2); /* crc - dontcare */
if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */
ret = -1;
write_transfer(dummy, 1);
return ret;
}
static int initialize_card(int card_no)
{
int i, temp;
unsigned char response;
unsigned char cxd[16];
tCardInfo *card = &card_info[card_no];
static const char mantissa[] = { /* *10 */
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80
};
static const int speed_exponent[] = { /* /10 */
10000, 100000, 1000000, 10000000, 0, 0, 0, 0
};
static const int time_exponent[] = { /* reciprocal */
1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100
};
/* switch to SPI mode */
send_cmd(CMD_GO_IDLE_STATE, 0, &response);
if (response != 0x01)
return -1; /* error response */
/* initialize card */
i = 0;
while (send_cmd(CMD_SEND_OP_COND, 0, &response) && (++i < 200));
if (response != 0x00)
return -2; /* not ready */
/* get CSD register */
if (send_cmd(CMD_SEND_CSD, 0, &response))
return -3;
if (receive_data(cxd, 16, 50))
return -4;
/* check block size */
if (1 << (cxd[5] & 0x0F) != SECTOR_SIZE)
return -5;
/* max transmission speed the card is capable of */
card->speed = mantissa[(cxd[3] & 0x78) >> 3]
* speed_exponent[(cxd[3] & 0x07)];
/* calculate the clock divider */
card->bitrate_register = (FREQ/4-1) / card->speed;
/* calculate read timeout in clock cycles from TSAC, NSAC and the actual
* clock frequency */
temp = (FREQ/4) / (card->bitrate_register + 1); /* actual frequency */
card->read_timeout =
(temp * mantissa[(cxd[1] & 0x78) >> 3] + (1000 * cxd[2]))
/ (time_exponent[cxd[1] & 0x07] * 8);
/* calculate write timeout */
temp = (cxd[12] & 0x1C) >> 2;
if (temp > 5)
temp = 5;
card->write_timeout = card->read_timeout * (1 << temp);
/* calculate size */
card->size = ((unsigned int)(cxd[6] & 0x03) << 10)
+ ((unsigned int)cxd[7] << 2)
+ ((unsigned int)(cxd[8] & 0xC0) >> 6);
temp = ((cxd[9] & 0x03) << 1) + ((cxd[10] & 0x80) >> 7) + 2;
card->size *= (SECTOR_SIZE << temp);
/* switch to full speed */
setup_sci1(card->bitrate_register);
/* get CID register */
if (send_cmd(CMD_SEND_CID, 0, &response))
return -6;
if (receive_data(cxd, 16, 50))
return -7;
/* get data from CID */
strncpy(card->name, &cxd[3], 6);
card->name[6] = '\0';
card->rev = (cxd[9] & 0xF0) >> 4;
card->rev_fract = cxd[9] & 0x0F;
card->manuf_month = (cxd[14] & 0xF0) >> 4;
card->manuf_year = (cxd[14] & 0x0F) + 1997;
card->serial_number = ((unsigned long)cxd[10] << 24)
+ ((unsigned long)cxd[11] << 16)
+ ((unsigned long)cxd[12] << 8)
+ (unsigned long)cxd[13];
card->initialized = true;
return 0;
}
int ata_read_sectors(unsigned long start,
int incount,
void* inbuf)
{
int ret = 0;
int i;
unsigned long addr;
unsigned char response;
tCardInfo *card = &card_info[current_card];
if (incount <= 0)
return ret;
addr = start * SECTOR_SIZE;
mutex_lock(&mmc_mutex);
ret = select_card(current_card);
if (ret == 0)
{
if (incount == 1)
{
ret = send_cmd(CMD_READ_SINGLE_BLOCK, addr, &response);
if (ret == 0)
ret = receive_data(inbuf, SECTOR_SIZE, card->read_timeout);
}
else
{
ret = send_cmd(CMD_READ_MULTIPLE_BLOCK, addr, &response);
for (i = 0; (i < incount) && (ret == 0); i++)
{
ret = receive_data(inbuf, SECTOR_SIZE, card->read_timeout);
inbuf += SECTOR_SIZE;
}
if (ret == 0)
ret = send_cmd(CMD_STOP_TRANSMISSION, 0, &response);
}
}
deselect_card();
mutex_unlock(&mmc_mutex);
return ret;
}
int ata_write_sectors(unsigned long start,
int count,
const void* buf)
{
int ret = 0;
int i;
unsigned long addr;
unsigned char response;
tCardInfo *card = &card_info[current_card];
if (start == 0)
panicf("Writing on sector 0\n");
if (count <= 0)
return ret;
addr = start * SECTOR_SIZE;
mutex_lock(&mmc_mutex);
ret = select_card(current_card);
if (ret == 0)
{
if (count == 1)
{
ret = send_cmd(CMD_WRITE_BLOCK, addr, &response);
if (ret == 0)
ret = send_data(DT_START_BLOCK, buf, SECTOR_SIZE,
card->write_timeout);
}
else
{
ret = send_cmd(CMD_WRITE_MULTIPLE_BLOCK, addr, &response);
for (i = 0; (i < count) && (ret == 0); i++)
{
ret = send_data(DT_START_WRITE_MULTIPLE, buf, SECTOR_SIZE,
card->write_timeout);
buf += SECTOR_SIZE;
}
if (ret == 0)
{
response = DT_STOP_TRAN;
write_transfer(&response, 1);
poll_busy(card->write_timeout);
}
}
}
deselect_card();
mutex_unlock(&mmc_mutex);
return ret;
}
/* no need to delay with flash memory. There is no spinup :) */
extern void ata_delayed_write(unsigned long sector, const void* buf)
{
ata_write_sectors(sector, 1, buf);
}
extern void ata_flush(void)
{
}
void ata_spindown(int seconds)
{
(void)seconds;
}
bool ata_disk_is_active(void)
{
/* this is correct unless early return from write gets implemented */
return mmc_mutex.locked;
}
int ata_standby(int time)
{
(void)time;
return 0;
}
int ata_sleep(void)
{
return 0;
}
void ata_spin(void)
{
}
static void mmc_thread(void)
{
struct event ev;
while (1) {
while ( queue_empty( &mmc_queue ) ) {
sleep(HZ/4);
}
queue_wait(&mmc_queue, &ev);
switch ( ev.id ) {
#ifndef USB_NONE
case SYS_USB_CONNECTED:
/* Tell the USB thread that we are safe */
DEBUGF("mmc_thread got SYS_USB_CONNECTED\n");
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&mmc_queue);
break;
#endif
}
}
}
int ata_soft_reset(void)
{
int ret = 0;
return ret;
}
void ata_enable(bool on)
{
PBCR1 &= ~0x0CF0; /* PB13, PB11 and PB10 become GPIOs, if not modified below */
PACR2 &= ~0x4000; /* use PA7 (bridge reset) as GPIO */
if (on)
{
PBCR1 |= 0x08A0; /* as SCK1, TxD1, RxD1 */
IPRE &= 0x0FFF; /* disable SCI1 interrupts for the CPU */
}
and_b(~0x80, &PADRL); /* assert reset */
sleep(HZ/20);
or_b(0x80, &PADRL); /* de-assert reset */
sleep(HZ/20);
card_info[0].initialized = false;
card_info[1].initialized = false;
}
int ata_init(void)
{
int rc = 0;
mutex_init(&mmc_mutex);
led(false);
/* Port setup */
PACR1 &= ~0x0F00; /* GPIO function for PA12, /IRQ1 for PA13 */
PACR1 |= 0x0400;
PADR |= 0x0680; /* set all the selects + reset high (=inactive) */
PAIOR |= 0x1680; /* make outputs for them and the PA12 clock gate */
PBDR |= 0x2C00; /* SCK1, TxD1 and RxD1 high when GPIO CHECKME: mask */
PBIOR |= 0x2000; /* SCK1 output */
PBIOR &= ~0x0C00; /* TxD1, RxD1 input */
if(adc_read(ADC_MMC_SWITCH) < 0x200)
{ /* MMC inserted */
current_card = 1;
}
else
{ /* no MMC, use internal memory */
current_card = 0;
}
ata_enable(true);
if ( !initialized ) {
queue_init(&mmc_queue);
create_thread(mmc_thread, mmc_stack,
sizeof(mmc_stack), mmc_thread_name);
initialized = true;
}
return rc;
}
#endif /* #ifdef HAVE_MMC */