rockbox/apps/plugins/lua/lmem.c
Richard Quirk 36378988ad Update lua plugin to 5.2.3
Prior to this patch the Lua plugin used version 5.1.4. This change
reduces the number of modifications in the Lua source using some new
defines and because the upstream source is now more flexible.

Unless otherwise stated, l*.[ch] files are taken unmodified from the
upstream lua-5.2.3.

fscanf.c:
file descriptors in rockbox are just ints, they are hidden behind a
void* now so liolib requires less modifications. fscanf is updated to
use void* too.

getc.c: this is a new file required for getc implementation in lauxlib.c

lauxlib.c: LoadF replaced FILE* with int, the rockbox file
descriptor int are cast to FILE* (actually void* due to typedef).
getc uses the PREFIX version. stdin is not used, as per 5.1.4.

lbaselib.c: now uses strspn in the number parsing. print uses DEBUGF now
rather than being commented out.

lbitlib.c: use the built-in version from 5.2.3 rather than Reuben
Thomas's external library. Backwards compatible and adds some new bit
operations.

ldo.c: the LUAI_THROW/TRY defines are now in the core lua code, so have
been removed from rockconf.h

liolib.c: here the implementation has changed to use the LStream from
the original source, and cast the FILE* pointers to int. This has
reduced the number of modifications from the upstream version.

llex.c: the only change from upstream is to remove the locale include.

lmathlib.c: updated from the 5.2.3 version and re-applied the changes
that were made vs 5.1.4 for random numbers and to remove unsupported
float functions.

loadlib.c: upstream version, with the 5.1.4 changes for missing
functions.

lobject.c: upstream version, with ctype.h added and sprintf changed to
snprintf.

loslib.c: upstream version with locale.h removed and 5.1.4 changes for
unsupportable functions.

lstrlib.c: sprintf changed to snprintf.

ltable.c: upstream with the hashnum function from 5.1.4 to avoid frexp
in luai_hashnum.

luaconf.h: updated to 5.2.3 version, restored relevant parts from the
original 5.1.4 configuration. The COMPAT defines that are no longer
available are not included.

lundump.c: VERSION macro conflicts with the core Rockbox equivalent.

rocklib.c: luaL_reg is no longer available, replaced by luaL_Reg
equivalent. Moved checkboolean/optboolean functions to this file and out
of core lua files. luaL_getn is no longer available, replaced by
luaL_rawlen. luaL_register is deprecated, use the newlib/setfuncs
replacements. rli_init has to be called before setting up the newlib to
avoid overwriting the rb table.

rocklib_aux.pl: use rli_checkboolean from rocklib.c.

rocklua.c: new default bits library used, update the library loading
code with idiomatic 5.2 code.

strcspn.c: no longer needed, but strspn.c is required for strspn in
lbaselib.c

Change-Id: I0c7945c755f79083afe98ec117e1e8cf13de2651
Reviewed-on: http://gerrit.rockbox.org/774
Tested: Richard Quirk <richard.quirk@gmail.com>
Reviewed-by: Marcin Bukat <marcin.bukat@gmail.com>
2014-04-02 20:31:54 +02:00

99 lines
2.6 KiB
C

/*
** $Id: lmem.c,v 1.84.1.1 2013/04/12 18:48:47 roberto Exp $
** Interface to Memory Manager
** See Copyright Notice in lua.h
*/
#include <stddef.h>
#define lmem_c
#define LUA_CORE
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
/*
** About the realloc function:
** void * frealloc (void *ud, void *ptr, size_t osize, size_t nsize);
** (`osize' is the old size, `nsize' is the new size)
**
** * frealloc(ud, NULL, x, s) creates a new block of size `s' (no
** matter 'x').
**
** * frealloc(ud, p, x, 0) frees the block `p'
** (in this specific case, frealloc must return NULL);
** particularly, frealloc(ud, NULL, 0, 0) does nothing
** (which is equivalent to free(NULL) in ANSI C)
**
** frealloc returns NULL if it cannot create or reallocate the area
** (any reallocation to an equal or smaller size cannot fail!)
*/
#define MINSIZEARRAY 4
void *luaM_growaux_ (lua_State *L, void *block, int *size, size_t size_elems,
int limit, const char *what) {
void *newblock;
int newsize;
if (*size >= limit/2) { /* cannot double it? */
if (*size >= limit) /* cannot grow even a little? */
luaG_runerror(L, "too many %s (limit is %d)", what, limit);
newsize = limit; /* still have at least one free place */
}
else {
newsize = (*size)*2;
if (newsize < MINSIZEARRAY)
newsize = MINSIZEARRAY; /* minimum size */
}
newblock = luaM_reallocv(L, block, *size, newsize, size_elems);
*size = newsize; /* update only when everything else is OK */
return newblock;
}
l_noret luaM_toobig (lua_State *L) {
luaG_runerror(L, "memory allocation error: block too big");
}
/*
** generic allocation routine.
*/
void *luaM_realloc_ (lua_State *L, void *block, size_t osize, size_t nsize) {
void *newblock;
global_State *g = G(L);
size_t realosize = (block) ? osize : 0;
lua_assert((realosize == 0) == (block == NULL));
#if defined(HARDMEMTESTS)
if (nsize > realosize && g->gcrunning)
luaC_fullgc(L, 1); /* force a GC whenever possible */
#endif
newblock = (*g->frealloc)(g->ud, block, osize, nsize);
if (newblock == NULL && nsize > 0) {
api_check(L, nsize > realosize,
"realloc cannot fail when shrinking a block");
if (g->gcrunning) {
luaC_fullgc(L, 1); /* try to free some memory... */
newblock = (*g->frealloc)(g->ud, block, osize, nsize); /* try again */
}
if (newblock == NULL)
luaD_throw(L, LUA_ERRMEM);
}
lua_assert((nsize == 0) == (newblock == NULL));
g->GCdebt = (g->GCdebt + nsize) - realosize;
return newblock;
}