rockbox/firmware/target/arm/tcc780x/sd-tcc780x.c
2010-08-12 13:38:25 +00:00

830 lines
19 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Daniel Ankers
* Copyright (C) 2009 Rob Purchase
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "sd.h"
#include "system.h"
#include <string.h>
#include "gcc_extensions.h"
#include "sdmmc.h"
#include "storage.h"
#include "led.h"
#include "thread.h"
#include "disk.h"
#include "fat.h"
#include "ata_idle_notify.h"
#include "usb.h"
#if defined(HAVE_INTERNAL_SD) && defined(HAVE_HOTSWAP)
#define CARD_NUM_INTERNAL 0
#define CARD_NUM_SLOT 1
#elif !defined(HAVE_INTERNAL_SD) && defined(HAVE_HOTSWAP)
#define CARD_NUM_SLOT 0
#endif
#define EC_OK 0
#define EC_FAILED 1
#define EC_NOCARD 2
#define EC_WAIT_STATE_FAILED 3
#define EC_POWER_UP 4
#define EC_FIFO_WR_EMPTY 5
#define EC_FIFO_WR_DONE 6
#define EC_TRAN_READ_ENTRY 7
#define EC_TRAN_READ_EXIT 8
#define EC_TRAN_WRITE_ENTRY 9
#define EC_TRAN_WRITE_EXIT 10
#define EC_COMMAND 11
#define EC_WRITE_PROTECT 12
/* for compatibility */
static long last_disk_activity = -1;
/** static, private data **/
static bool initialized = false;
static long next_yield = 0;
#define MIN_YIELD_PERIOD 1000
static tCardInfo card_info[NUM_DRIVES];
static tCardInfo *currcard = NULL; /* current active card */
struct sd_card_status
{
int retry;
int retry_max;
};
static struct sd_card_status sd_status[NUM_DRIVES] =
{
#ifdef HAVE_INTERNAL_SD
{ 0, 1 },
#endif
#ifdef HAVE_HOTSWAP
{ 0, 10 }
#endif
};
/* Shoot for around 75% usage */
static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x1c0)/sizeof(long)];
static const char sd_thread_name[] = "sd";
static struct mutex sd_mtx SHAREDBSS_ATTR;
static struct event_queue sd_queue;
static int sd_first_drive = 0;
static bool sd_poll_status(unsigned int trigger, long timeout)
{
long t = USEC_TIMER;
while ((SDISTATUS & trigger) != trigger)
{
long time = USEC_TIMER;
if (TIME_AFTER(time, next_yield))
{
long ty = USEC_TIMER;
yield();
timeout += USEC_TIMER - ty;
next_yield = ty + MIN_YIELD_PERIOD;
}
if (TIME_AFTER(time, t + timeout))
return false;
}
return true;
}
static int sd_command(unsigned int cmd, unsigned int arg,
unsigned long* response, unsigned int resp_type)
{
int sdi_cmd = cmd;
sdi_cmd |= (127<<12) | (1<<11); /* max wait time | enable */
if (resp_type)
{
/* response type & response required flag */
sdi_cmd |= (resp_type<<7) | (1<<6);
}
if (cmd == SD_READ_SINGLE_BLOCK ||
cmd == SD_READ_MULTIPLE_BLOCK ||
cmd == SD_WRITE_BLOCK ||
cmd == SD_WRITE_MULTIPLE_BLOCK)
{
sdi_cmd |= (1<<10); /* request data transfer */
}
if (!sd_poll_status(SDISTATUS_CMD_PATH_RDY, 100000))
return -EC_COMMAND;
SDIARGU = arg;
SDICMD = sdi_cmd;
udelay(10);
if (response == NULL)
return 0;
if (!sd_poll_status(SDISTATUS_RESP_RCVD, 100000))
return -EC_COMMAND;
if (resp_type == SDICMD_RES_TYPE2)
{
response[0] = SDIRSPARGU0;
response[1] = SDIRSPARGU1;
response[2] = SDIRSPARGU2;
response[3] = SDIRSPARGU3;
}
else
{
response[0] = SDIRSPARGU0;
}
return 0;
}
static int sd_wait_for_state(unsigned int state, int id)
{
unsigned long response = 0;
unsigned int timeout = 0x80000;
long start_time = USEC_TIMER;
while (1)
{
int ret = sd_command
(SD_SEND_STATUS, currcard->rca, &response, SDICMD_RES_TYPE1);
long us;
if (ret < 0)
return ret*100 - id;
if (((response >> 9) & 0xf) == state)
{
return 0;
}
if (TIME_AFTER(USEC_TIMER, start_time + timeout))
return -EC_WAIT_STATE_FAILED*100 - id;
us = USEC_TIMER;
if (TIME_AFTER(us, next_yield))
{
yield();
timeout += USEC_TIMER - us;
next_yield = us + MIN_YIELD_PERIOD;
}
}
}
static void sd_card_mux(int card_no)
{
/* We only support the default card */
(void)card_no;
}
#ifdef HAVE_HOTSWAP
static inline bool card_detect_target(void)
{
#ifdef HAVE_HOTSWAP
return (GPIOB & (1<<26)) == 0; /* low active */
#else
return false;
#endif
}
static int sd1_oneshot_callback(struct timeout *tmo)
{
(void)tmo;
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
if (card_detect_target())
queue_broadcast(SYS_HOTSWAP_INSERTED, 0);
else
queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0);
return 0;
}
void EXT0(void)
{
static struct timeout sd1_oneshot;
timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0);
}
bool sd_removable(IF_MD_NONVOID(int card_no))
{
#ifndef HAVE_MULTIDRIVE
const int card_no = 0;
#endif
return (card_no == CARD_NUM_SLOT);
}
bool sd_present(IF_MD_NONVOID(int card_no))
{
#ifdef HAVE_MULTIDRIVE
(void)card_no;
#endif
return card_detect_target();
}
#else
bool sd_removable(IF_MD_NONVOID(int card_no))
{
#ifndef HAVE_MULTIDRIVE
const int card_no = 0;
#endif
(void)card_no;
return false;
}
#endif /* HAVE_HOTSWAP */
static void sd_init_device(int card_no)
{
int ret;
unsigned long response;
/* Initialise card data as blank */
memset(currcard, 0, sizeof(*currcard));
/* Switch card mux to card to initialize */
sd_card_mux(card_no);
#ifdef HAVE_HOTSWAP
/* Check card is inserted */
if (card_no == CARD_NUM_SLOT)
{
if (GPIOB & (1<<26))
{
ret = -EC_NOCARD;
goto card_init_error;
}
/* Card will not power up unless this is done */
GPIOC_CLEAR = (1<<24);
}
#endif
ret = sd_command(SD_GO_IDLE_STATE, 0, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto card_init_error;
/* Use slow clock during identification (24MHz / 60 = 400kHz) */
SDICLK = (1<<12) | 59;
sd_command(SD_SEND_IF_COND, 0x1aa, &response, SDICMD_RES_TYPE3);
if (!sd_poll_status(SDISTATUS_CMD_PATH_RDY, 100000))
goto card_init_error;
currcard->ocr = 0;
long start_tick = current_tick;
while ((currcard->ocr & (1<<31)) == 0
&& TIME_BEFORE(current_tick, start_tick + HZ))
{
udelay(100);
sd_command(SD_APP_CMD, 0, NULL, SDICMD_RES_TYPE1);
int arg = 0x100000 | ((response == 0x1aa) ? (1<<30):0);
sd_command(SD_APP_OP_COND, arg, &currcard->ocr, SDICMD_RES_TYPE3);
}
if ((currcard->ocr & (1<<31)) == 0)
{
ret = -EC_POWER_UP;
goto card_init_error;
}
ret = sd_command
(SD_ALL_SEND_CID, 0, currcard->cid, SDICMD_RES_TYPE2);
if (ret < 0)
goto card_init_error;
ret = sd_command
(SD_SEND_RELATIVE_ADDR, 0, &currcard->rca, SDICMD_RES_TYPE1);
if (ret < 0)
goto card_init_error;
ret = sd_command
(SD_SEND_CSD, currcard->rca, currcard->csd, SDICMD_RES_TYPE2);
if (ret < 0)
goto card_init_error;
sd_parse_csd(currcard);
ret = sd_command
(SD_SELECT_CARD, currcard->rca, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto card_init_error;
ret = sd_command
(SD_APP_CMD, currcard->rca, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto card_init_error;
ret = sd_command /* 4 bit */
(SD_SET_BUS_WIDTH, currcard->rca | 2, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto card_init_error;
ret = sd_command
(SD_SET_BLOCKLEN, currcard->blocksize, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto card_init_error;
currcard->initialized = 1;
return;
/* Card failed to initialize so disable it */
card_init_error:
currcard->initialized = ret;
return;
}
/* lock must already be acquired */
static void sd_select_device(int card_no)
{
currcard = &card_info[card_no];
if (currcard->initialized > 0)
{
/* This card is already initialized - switch to it */
sd_card_mux(card_no);
return;
}
if (currcard->initialized == 0)
{
/* Card needs (re)init */
sd_init_device(card_no);
}
}
int sd_read_sectors(IF_MD2(int card_no,) unsigned long start, int incount,
void* inbuf)
{
#ifndef HAVE_MULTIDRIVE
const int card_no = 0;
#endif
int ret = 0;
bool aligned;
unsigned char* buf_end;
mutex_lock(&sd_mtx);
sd_enable(true);
led(true);
sd_read_retry:
if ((card_no == CARD_NUM_SLOT) && !card_detect_target())
{
/* no external sd-card inserted */
ret = -EC_NOCARD;
goto sd_read_error;
}
sd_select_device(card_no);
if (currcard->initialized < 0)
{
ret = currcard->initialized;
goto sd_read_error;
}
last_disk_activity = current_tick;
ret = sd_wait_for_state(SD_TRAN, EC_TRAN_READ_ENTRY);
if (ret < 0)
goto sd_read_error;
/* Use full SD clock for data transfer (PCK_SDMMC) */
SDICLK = (1<<13) | (1<<12); /* bypass divider | enable */
/* Block count | FIFO count | Block size (2^9) | 4-bit bus */
SDIDCTRL = (incount << 13) | (4<<8) | (9<<4) | (1<<2);
SDIDCTRL |= (1<<12); /* nReset */
SDIDCTRL2 = (1<<2); /* multi block, read */
if (currcard->ocr & (1<<30))
ret = sd_command(SD_READ_MULTIPLE_BLOCK, start, NULL, SDICMD_RES_TYPE1);
else
ret = sd_command(SD_READ_MULTIPLE_BLOCK, start * 512, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto sd_read_error;
aligned = (((int)inbuf & 3) == 0);
buf_end = (unsigned char *)inbuf + incount * currcard->blocksize;
while (inbuf < (void*)buf_end)
{
if (!sd_poll_status(SDISTATUS_FIFO_FETCH_REQ, 100000))
goto sd_read_error;
if (aligned)
{
unsigned int* ptr = (unsigned int*)inbuf;
*ptr++ = SDIRDATA;
*ptr++ = SDIRDATA;
*ptr++ = SDIRDATA;
*ptr = SDIRDATA;
}
else
{
int tmp_buf[4];
tmp_buf[0] = SDIRDATA;
tmp_buf[1] = SDIRDATA;
tmp_buf[2] = SDIRDATA;
tmp_buf[3] = SDIRDATA;
memcpy(inbuf, tmp_buf, 16);
}
inbuf += 16;
}
ret = sd_command(SD_STOP_TRANSMISSION, 0, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto sd_read_error;
ret = sd_wait_for_state(SD_TRAN, EC_TRAN_READ_EXIT);
if (ret < 0)
goto sd_read_error;
while (1)
{
led(false);
sd_enable(false);
mutex_unlock(&sd_mtx);
return ret;
sd_read_error:
if (sd_status[card_no].retry < sd_status[card_no].retry_max
&& ret != -EC_NOCARD)
{
sd_status[card_no].retry++;
currcard->initialized = 0;
goto sd_read_retry;
}
}
}
int sd_write_sectors(IF_MD2(int card_no,) unsigned long start, int count,
const void* outbuf)
{
/* Write support is not finished yet */
/* TODO: The standard suggests using ACMD23 prior to writing multiple blocks
to improve performance */
#ifndef HAVE_MULTIDRIVE
const int card_no = 0;
#endif
int ret;
const unsigned char *buf_end;
bool aligned;
if ((card_no == CARD_NUM_SLOT) && (GPIOA & 0x10))
{
/* write protect tab set */
return -EC_WRITE_PROTECT;
}
mutex_lock(&sd_mtx);
sd_enable(true);
led(true);
sd_write_retry:
if ((card_no == CARD_NUM_SLOT) && !card_detect_target())
{
/* no external sd-card inserted */
ret = -EC_NOCARD;
goto sd_write_error;
}
sd_select_device(card_no);
if (currcard->initialized < 0)
{
ret = currcard->initialized;
goto sd_write_error;
}
ret = sd_wait_for_state(SD_TRAN, EC_TRAN_WRITE_ENTRY);
if (ret < 0)
goto sd_write_error;
/* Use full SD clock for data transfer (PCK_SDMMC) */
SDICLK = (1<<13) | (1<<12); /* bypass divider | enable */
/* Block count | FIFO count | Block size (2^9) | 4-bit bus */
SDIDCTRL = (count<<13) | (4<<8) | (9<<4) | (1<<2);
SDIDCTRL |= (1<<12); /* nReset */
SDIDCTRL2 = (1<<2) | (1<<1); /* multi block, write */
if (currcard->ocr & (1<<30))
ret = sd_command(SD_WRITE_MULTIPLE_BLOCK, start, NULL, SDICMD_RES_TYPE1);
else
ret = sd_command(SD_WRITE_MULTIPLE_BLOCK, start * 512, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto sd_write_error;
aligned = (((int)outbuf & 3) == 0);
buf_end = (unsigned char *)outbuf + count * currcard->blocksize;
while (outbuf < (void*)buf_end)
{
if (aligned)
{
unsigned int* ptr = (unsigned int*)outbuf;
SDIWDATA = *ptr++;
SDIWDATA = *ptr++;
SDIWDATA = *ptr++;
SDIWDATA = *ptr;
}
else
{
int tmp_buf[4];
memcpy(tmp_buf, outbuf, 16);
SDIWDATA = tmp_buf[0];
SDIWDATA = tmp_buf[1];
SDIWDATA = tmp_buf[2];
SDIWDATA = tmp_buf[3];
}
outbuf += 16;
/* Wait for the FIFO to empty */
if (!sd_poll_status(SDISTATUS_FIFO_LOAD_REQ, 0x80000))
{
ret = -EC_FIFO_WR_EMPTY;
goto sd_write_error;
}
}
last_disk_activity = current_tick;
if (!sd_poll_status(SDISTATUS_MULTIBLOCK_END, 0x80000))
{
ret = -EC_FIFO_WR_DONE;
goto sd_write_error;
}
ret = sd_command(SD_STOP_TRANSMISSION, 0, NULL, SDICMD_RES_TYPE1);
if (ret < 0)
goto sd_write_error;
ret = sd_wait_for_state(SD_TRAN, EC_TRAN_WRITE_EXIT);
if (ret < 0)
goto sd_write_error;
while (1)
{
led(false);
sd_enable(false);
mutex_unlock(&sd_mtx);
return ret;
sd_write_error:
if (sd_status[card_no].retry < sd_status[card_no].retry_max
&& ret != -EC_NOCARD)
{
sd_status[card_no].retry++;
currcard->initialized = 0;
goto sd_write_retry;
}
}
}
static void sd_thread(void) NORETURN_ATTR;
static void sd_thread(void)
{
struct queue_event ev;
bool idle_notified = false;
while (1)
{
queue_wait_w_tmo(&sd_queue, &ev, HZ);
switch ( ev.id )
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
fat_lock(); /* lock-out FAT activity first -
prevent deadlocking via disk_mount that
would cause a reverse-order attempt with
another thread */
mutex_lock(&sd_mtx); /* lock-out card activity - direct calls
into driver that bypass the fat cache */
/* We now have exclusive control of fat cache and ata */
/* Release "by force", ensure file descriptors aren't leaked and
any busy ones are invalid if mounting */
disk_unmount(sd_first_drive + CARD_NUM_SLOT);
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
card_info[CARD_NUM_SLOT].initialized = 0;
sd_status[CARD_NUM_SLOT].retry = 0;
if (ev.id == SYS_HOTSWAP_INSERTED)
disk_mount(sd_first_drive + CARD_NUM_SLOT);
queue_broadcast(SYS_FS_CHANGED, 0);
/* Access is now safe */
mutex_unlock(&sd_mtx);
fat_unlock();
break;
#endif
case SYS_TIMEOUT:
if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ)))
{
idle_notified = false;
}
else
{
/* never let a timer wrap confuse us */
next_yield = USEC_TIMER;
if (!idle_notified)
{
call_storage_idle_notifys(false);
idle_notified = true;
}
}
break;
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&sd_queue);
break;
case SYS_USB_DISCONNECTED:
usb_acknowledge(SYS_USB_DISCONNECTED_ACK);
break;
}
}
}
void sd_enable(bool on)
{
if(on)
{
/* Enable controller & clock */
BCLKCTR |= DEV_SDMMC;
PCLK_SDMMC = PCK_EN | (CKSEL_PLL0<<24) | 7; /* 192/8 = 24MHz */
}
else
{
/* Disable controller & clock */
BCLKCTR &= ~DEV_SDMMC;
PCLK_SDMMC &= ~PCK_EN;
}
}
int sd_init(void)
{
int ret = 0;
if (!initialized)
mutex_init(&sd_mtx);
mutex_lock(&sd_mtx);
led(false);
if (!initialized)
{
initialized = true;
SWRESET |= DEV_SDMMC;
SWRESET &= ~DEV_SDMMC;
/* Configure dual-purpose pins for SD usage */
PORTCFG0 &= ~(3<<16);
PORTCFG0 |= (1<<16); /* SD_D0 & SD_D1 */
PORTCFG2 &= ~((3<<2) | (3<<0));
PORTCFG2 |= ((1<<2) | (1<<0)); /* SD_D2/D3/CK/CMD */
/* Configure card detection GPIO as input */
GPIOB_DIR &= ~(1<<26);
/* Configure card power(?) GPIO as output */
GPIOC_DIR |= (1<<24);
queue_init(&sd_queue, true);
create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0,
sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE)
IF_COP(, CPU));
sleep(HZ/10);
#ifdef HAVE_HOTSWAP
/* Configure interrupts for the card slot */
TMODE &= ~EXT0_IRQ_MASK; /* edge-triggered */
TMODEA |= EXT0_IRQ_MASK; /* trigger on both edges */
IEN |= EXT0_IRQ_MASK; /* enable the interrupt */
#endif
}
mutex_unlock(&sd_mtx);
return ret;
}
long sd_last_disk_activity(void)
{
return last_disk_activity;
}
tCardInfo *card_get_info_target(int card_no)
{
return &card_info[card_no];
}
#ifdef CONFIG_STORAGE_MULTI
int sd_num_drives(int first_drive)
{
/* Store which logical drive number(s) we have been assigned */
sd_first_drive = first_drive;
#if defined(HAVE_INTERNAL_SD) && defined(HAVE_HOTSWAP)
return 2;
#else
return 1;
#endif
}
void sd_sleepnow(void)
{
}
bool sd_disk_is_active(void)
{
return false;
}
int sd_soft_reset(void)
{
return 0;
}
int sd_spinup_time(void)
{
return 0;
}
#endif /* CONFIG_STORAGE_MULTI */