db9e5b404d
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@28778 a1c6a512-1295-4272-9138-f99709370657
311 lines
8.1 KiB
C
311 lines
8.1 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* adopted for HD300 by Marcin Bukat
|
|
* Copyright (C) 2009 by Bertrik Sikken
|
|
* Copyright (C) 2008 by Robert Kukla
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include "rtc.h"
|
|
#include "i2c-coldfire.h"
|
|
|
|
/* Driver for the Seiko S35380A real-time clock chip with i2c interface
|
|
|
|
This driver was derived from rtc_s3539a.c and adapted for the MPIO HD300
|
|
*/
|
|
|
|
#define RTC_ADDR 0x60
|
|
|
|
#define STATUS_REG1 0
|
|
#define STATUS_REG2 1
|
|
#define REALTIME_DATA1 2
|
|
#define REALTIME_DATA2 3
|
|
#define INT1_REG 4
|
|
#define INT2_REG 5
|
|
#define CLOCK_CORR_REG 6
|
|
#define FREE_REG 7
|
|
|
|
/* STATUS_REG1 flags */
|
|
#define STATUS_REG1_POC 0x80
|
|
#define STATUS_REG1_BLD 0x40
|
|
#define STATUS_REG1_INT2 0x20
|
|
#define STATUS_REG1_INT1 0x10
|
|
#define STATUS_REG1_SC1 0x08
|
|
#define STATUS_REG1_SC0 0x04
|
|
#define STATUS_REG1_H1224 0x02
|
|
#define STATUS_REG1_RESET 0x01
|
|
|
|
/* STATUS_REG2 flags */
|
|
#define STATUS_REG2_TEST 0x80
|
|
#define STATUS_REG2_INT2AE 0x40
|
|
#define STATUS_REG2_INT2ME 0x20
|
|
#define STATUS_REG2_INT2FE 0x10
|
|
#define STATUS_REG2_32kE 0x08
|
|
#define STATUS_REG2_INT1AE 0x04
|
|
#define STATUS_REG2_INT1ME 0x02
|
|
#define STATUS_REG2_INT1FE 0x01
|
|
|
|
/* REALTIME_DATA register bytes */
|
|
#define TIME_YEAR 0
|
|
#define TIME_MONTH 1
|
|
#define TIME_DAY 2
|
|
#define TIME_WEEKDAY 3
|
|
#define TIME_HOUR 4
|
|
#define TIME_MINUTE 5
|
|
#define TIME_SECOND 6
|
|
#define TIME_REG_SIZE 7
|
|
|
|
/* INT1, INT2 register bytes */
|
|
#define ALARM_WEEKDAY 0
|
|
#define ALARM_HOUR 1
|
|
#define ALARM_MINUTE 2
|
|
#define ALARM_REG_SIZE 3
|
|
|
|
/* INT1, INT2 register bits */
|
|
#define A1WE 0x80
|
|
#define A1HE 0x80
|
|
#define A1mE 0x80
|
|
|
|
#define A2WE 0x80
|
|
#define A2HE 0x80
|
|
#define A2mE 0x80
|
|
|
|
#define AMPM 0x40
|
|
|
|
static bool int_flag;
|
|
|
|
/* s35380a chip has reversed bits order in byte
|
|
* This is little helper function to deal with
|
|
*/
|
|
static void reverse_bits(unsigned char* v, int size)
|
|
{
|
|
static const unsigned char flipnibble[] =
|
|
{0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
|
|
0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F};
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
v[i] = (flipnibble[v[i] & 0x0F] << 4) |
|
|
flipnibble[(v[i] >> 4) & 0x0F];
|
|
}
|
|
}
|
|
|
|
/* Read 'size' bytes from RTC 'reg' and put data in 'buf'
|
|
* bits are reversed in data bytes afterwards so they appear in regular order
|
|
* return i2c transfer code
|
|
*/
|
|
static int rtc_read(unsigned char reg, unsigned char *buf, int size)
|
|
{
|
|
int rc;
|
|
rc = i2c_read(I2C_IFACE_1, RTC_ADDR|(reg<<1), buf, size);
|
|
reverse_bits(buf, size);
|
|
return rc;
|
|
}
|
|
|
|
/* Write 'size' bytes to RTC 'reg' and put data in 'buf'
|
|
* bits are reversed in data bytes prior to sending them to RTC
|
|
* return i2c transfer code
|
|
*/
|
|
static int rtc_write(unsigned char reg, unsigned char *buf, int size)
|
|
{
|
|
int rc;
|
|
reverse_bits(buf, size);
|
|
rc = i2c_write(I2C_IFACE_1, RTC_ADDR|(reg<<1), buf, size);
|
|
return rc;
|
|
}
|
|
|
|
/* Reset RTC by writing '1' to RESET bit in STATUS_REG1 */
|
|
static inline void rtc_reset(void)
|
|
{
|
|
unsigned char reg = STATUS_REG1_RESET;
|
|
rtc_write(STATUS_REG1, ®, 1);
|
|
}
|
|
|
|
/* Initialize RTC (according to scheme outlined in datasheet).
|
|
* Configure chip to 24h time format.
|
|
*/
|
|
void rtc_init(void)
|
|
{
|
|
unsigned char reg;
|
|
static bool initialized = false;
|
|
|
|
if ( initialized )
|
|
return;
|
|
|
|
rtc_read(STATUS_REG1, ®, 1);
|
|
|
|
/* cache INT1, INT2 flags as reading the register seem to clear
|
|
* this bits (which is not described in datasheet)
|
|
*/
|
|
int_flag = ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2));
|
|
|
|
/* test POC and BLD flags */
|
|
if ( (reg & STATUS_REG1_POC) || (reg & STATUS_REG1_BLD))
|
|
rtc_reset();
|
|
|
|
rtc_read(STATUS_REG2, ®, 1);
|
|
|
|
/* test TEST flag */
|
|
if ( reg & STATUS_REG2_TEST )
|
|
rtc_reset();
|
|
|
|
/* setup 24h time format */
|
|
reg = STATUS_REG1_H1224;
|
|
rtc_write(STATUS_REG1, ®, 1);
|
|
|
|
initialized = true;
|
|
}
|
|
|
|
/* Read realtime data register */
|
|
int rtc_read_datetime(struct tm *tm)
|
|
{
|
|
unsigned char buf[TIME_REG_SIZE];
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
ret = rtc_read(REALTIME_DATA1, buf, sizeof(buf));
|
|
|
|
buf[TIME_HOUR] &= 0x3f; /* mask out p.m. flag */
|
|
|
|
for (i = 0; i < sizeof(buf); i++)
|
|
buf[i] = BCD2DEC(buf[i]);
|
|
|
|
tm->tm_sec = buf[TIME_SECOND];
|
|
tm->tm_min = buf[TIME_MINUTE];
|
|
tm->tm_hour = buf[TIME_HOUR];
|
|
tm->tm_wday = buf[TIME_WEEKDAY];
|
|
tm->tm_mday = buf[TIME_DAY];
|
|
tm->tm_mon = buf[TIME_MONTH] - 1;
|
|
tm->tm_year = buf[TIME_YEAR] + 100;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Write to realtime data register */
|
|
int rtc_write_datetime(const struct tm *tm)
|
|
{
|
|
unsigned char buf[TIME_REG_SIZE];
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
buf[TIME_SECOND] = tm->tm_sec;
|
|
buf[TIME_MINUTE] = tm->tm_min;
|
|
buf[TIME_HOUR] = tm->tm_hour;
|
|
buf[TIME_WEEKDAY] = tm->tm_wday;
|
|
buf[TIME_DAY] = tm->tm_mday;
|
|
buf[TIME_MONTH] = tm->tm_mon + 1;
|
|
buf[TIME_YEAR] = tm->tm_year - 100;
|
|
|
|
for (i = 0; i < sizeof(buf); i++)
|
|
buf[i] = DEC2BCD(buf[i]);
|
|
|
|
ret = rtc_write(REALTIME_DATA1, buf, sizeof(buf));
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef HAVE_RTC_ALARM
|
|
/* Set alarm (INT1) data register */
|
|
void rtc_set_alarm(int h, int m)
|
|
{
|
|
unsigned char buf[ALARM_REG_SIZE];
|
|
|
|
/* INT1 register can be accessed only when IN1AE flag is set */
|
|
rtc_enable_alarm(true);
|
|
|
|
/* A1mE, A1HE - validity flags */
|
|
buf[ALARM_MINUTE] = DEC2BCD(m) | A1mE;
|
|
buf[ALARM_HOUR] = DEC2BCD(h) | A1HE;
|
|
buf[ALARM_WEEKDAY] = 0;
|
|
|
|
/* AM/PM flag has to be set properly regardles of
|
|
* time format used (H1224 flag in STATUS_REG1)
|
|
* this is not described in datasheet for s35380a
|
|
* but is somehow described in datasheet for s35390a
|
|
*/
|
|
if ( h >= 12 )
|
|
buf[ALARM_HOUR] |= AMPM;
|
|
|
|
rtc_write(INT1_REG, buf, sizeof(buf));
|
|
}
|
|
|
|
/* Read alarm (INT1) data register */
|
|
void rtc_get_alarm(int *h, int *m)
|
|
{
|
|
unsigned char buf[ALARM_REG_SIZE];
|
|
|
|
/* INT1 alarm register can be accessed only when INT1AE is set */
|
|
rtc_enable_alarm(true);
|
|
|
|
/* read the content of INT1 register */
|
|
rtc_read(INT1_REG, buf, sizeof(buf));
|
|
|
|
*h = BCD2DEC(buf[ALARM_HOUR] & 0x3f); /* mask out A1HE and PM/AM bits */
|
|
*m = BCD2DEC(buf[ALARM_MINUTE] & 0x7f); /* mask out A1mE bit */
|
|
|
|
/* Disable alarm - this is not strictly needed in rockbox
|
|
* as after rtc_get_alarm() rtc_set_alarm() or rtc_enable_alarm(false)
|
|
* are called. I just found this weird that simple reading register
|
|
* changes alarm settings.
|
|
*/
|
|
rtc_enable_alarm(false);
|
|
}
|
|
|
|
/* Check if we just triggered alarm.
|
|
* We check both INT1 and INT2. Rockbox uses only INT1 but
|
|
* OF in MPIO HD300 uses both
|
|
*/
|
|
bool rtc_check_alarm_flag(void)
|
|
{
|
|
unsigned char reg;
|
|
rtc_read(STATUS_REG1, ®, 1);
|
|
|
|
return ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2));
|
|
}
|
|
|
|
/* Enable/disable alarm function */
|
|
void rtc_enable_alarm(bool enable)
|
|
{
|
|
unsigned char reg = 0;
|
|
|
|
if (enable)
|
|
reg = STATUS_REG2_INT1AE;
|
|
|
|
rtc_write(STATUS_REG2, ®, 1);
|
|
}
|
|
|
|
/* Return true if wakeup is due to RTC alarm */
|
|
bool rtc_check_alarm_started(bool release_alarm)
|
|
{
|
|
static bool run_before;
|
|
bool rc;
|
|
|
|
if (run_before)
|
|
{
|
|
rc = int_flag;
|
|
int_flag &= ~release_alarm;
|
|
}
|
|
else
|
|
{
|
|
rc = int_flag;
|
|
run_before = true;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
#endif
|