2e708c48c5
Basically, existing sizes apply for <= 48KHz audio. Up to 96K, we double the mix buffer. up to 192K, we double it again. Will help reduce the interrupt load and overall latency, keeping it roughtly constant as a function of time, regardless of bitrate. (It is acutally a fixed-size buffer, statically-allocated to handle the worst-case bitrate the player supports. However, at runtime if we are using a lower bitrate we will only use a portion of it in order to keep latancies down) Change-Id: I61ca23180a86502732b0903fe9691c1a8c2aeaea
480 lines
14 KiB
C
480 lines
14 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2011 by Michael Sevakis
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "general.h"
|
|
#include "kernel.h"
|
|
#include "pcm.h"
|
|
#include "pcm-internal.h"
|
|
#include "pcm_mixer.h"
|
|
#include "pcm_sampr.h"
|
|
|
|
/* Channels use standard-style PCM callback interface but a latency of one
|
|
frame by double-buffering is introduced in order to facilitate mixing and
|
|
keep the hardware fed. There must be sufficient time to perform operations
|
|
before the last samples are sent to the codec and so things are done in
|
|
parallel (as much as possible) with sending-out data. */
|
|
|
|
static unsigned int mixer_sampr = HW_SAMPR_DEFAULT;
|
|
static unsigned int mix_frame_size = MIX_FRAME_SAMPLES*4;
|
|
|
|
/* Define this to nonzero to add a marker pulse at each frame start */
|
|
#define FRAME_BOUNDARY_MARKERS 0
|
|
|
|
/* Descriptor for each channel */
|
|
struct mixer_channel
|
|
{
|
|
const void *start; /* Buffer pointer */
|
|
size_t size; /* Bytes remaining */
|
|
size_t last_size; /* Size of consumed data in prev. cycle */
|
|
pcm_play_callback_type get_more; /* Registered callback */
|
|
enum channel_status status; /* Playback status */
|
|
uint32_t amplitude; /* Amp. factor: 0x0000 = mute, 0x10000 = unity */
|
|
chan_buffer_hook_fn_type buffer_hook; /* Callback for new buffer */
|
|
};
|
|
|
|
#if (defined(HW_HAVE_192) || defined(HW_HAVE_176))
|
|
#define FRAME_SIZE_MULT 4
|
|
#elif (defined(HW_HAVE_96) || defined(HW_HAVE_88))
|
|
#define FRAME_SIZE_MULT 2
|
|
#else
|
|
#define FRAME_SIZE_MULT 1
|
|
#endif
|
|
|
|
#define MAX_MIX_FRAME_SAMPLES (MIX_FRAME_SAMPLES * FRAME_SIZE_MULT)
|
|
|
|
/* Because of the double-buffering, playback is always from here, otherwise a
|
|
mechanism for the channel callbacks not to free buffers too early would be
|
|
needed (if we _really_ want it and it's worth it, we _can_ do that ;-) ) */
|
|
static uint32_t downmix_buf[2][MAX_MIX_FRAME_SAMPLES] DOWNMIX_BUF_IBSS MEM_ALIGN_ATTR;
|
|
static int downmix_index = 0; /* Which downmix_buf? */
|
|
static size_t next_size = 0; /* Size of buffer to play next time */
|
|
|
|
/* Descriptors for all available channels */
|
|
static struct mixer_channel channels[PCM_MIXER_NUM_CHANNELS] IBSS_ATTR;
|
|
|
|
/* Packed pointer array of all playing (active) channels in "channels" array */
|
|
static struct mixer_channel * active_channels[PCM_MIXER_NUM_CHANNELS+1] IBSS_ATTR;
|
|
|
|
/* Number of silence frames to play after all data has played */
|
|
#define MAX_IDLE_FRAMES (mixer_sampr*3 / mix_frame_size / 4)
|
|
static unsigned int idle_counter = 0;
|
|
|
|
/** Mixing routines, CPU optmized **/
|
|
#include "asm/pcm-mixer.c"
|
|
|
|
/** Private generic routines **/
|
|
|
|
/* Mark channel active to mix its data */
|
|
static void mixer_activate_channel(struct mixer_channel *chan)
|
|
{
|
|
void **elem = find_array_ptr((void **)active_channels, chan);
|
|
|
|
if (!*elem)
|
|
{
|
|
idle_counter = 0;
|
|
*elem = chan;
|
|
}
|
|
}
|
|
|
|
/* Stop channel from mixing */
|
|
static void mixer_deactivate_channel(struct mixer_channel *chan)
|
|
{
|
|
remove_array_ptr((void **)active_channels, chan);
|
|
}
|
|
|
|
/* Deactivate channel and change it to stopped state */
|
|
static void channel_stopped(struct mixer_channel *chan)
|
|
{
|
|
mixer_deactivate_channel(chan);
|
|
chan->size = 0;
|
|
chan->start = NULL;
|
|
chan->status = CHANNEL_STOPPED;
|
|
}
|
|
|
|
/* Main PCM callback - sends the current prepared frame to play */
|
|
static void mixer_pcm_callback(const void **addr, size_t *size)
|
|
{
|
|
*addr = downmix_buf[downmix_index];
|
|
*size = next_size;
|
|
}
|
|
|
|
static inline void chan_call_buffer_hook(struct mixer_channel *chan)
|
|
{
|
|
if (UNLIKELY(chan->buffer_hook))
|
|
chan->buffer_hook(chan->start, chan->size);
|
|
}
|
|
|
|
/* Buffering callback - calls sub-callbacks and mixes the data for next
|
|
buffer to be sent from mixer_pcm_callback() */
|
|
static enum pcm_dma_status MIXER_CALLBACK_ICODE
|
|
mixer_buffer_callback(enum pcm_dma_status status)
|
|
{
|
|
if (status != PCM_DMAST_STARTED)
|
|
return status;
|
|
|
|
downmix_index ^= 1; /* Next buffer */
|
|
|
|
void *mixptr = downmix_buf[downmix_index];
|
|
size_t mixsize = mix_frame_size;
|
|
struct mixer_channel **chan_p;
|
|
|
|
next_size = 0;
|
|
|
|
/* "Loop" back here if one round wasn't enough to fill a frame */
|
|
fill_frame:
|
|
chan_p = active_channels;
|
|
|
|
while (*chan_p)
|
|
{
|
|
/* Find the active channel with the least data remaining and call any
|
|
callbacks for channels that ran out - stopping whichever report
|
|
"no more" */
|
|
struct mixer_channel *chan = *chan_p;
|
|
chan->start += chan->last_size;
|
|
chan->size -= chan->last_size;
|
|
|
|
if (chan->size == 0)
|
|
{
|
|
if (chan->get_more)
|
|
{
|
|
chan->get_more(&chan->start, &chan->size);
|
|
ALIGN_AUDIOBUF(chan->start, chan->size);
|
|
}
|
|
|
|
if (!(chan->start && chan->size))
|
|
{
|
|
/* Channel is stopping */
|
|
channel_stopped(chan);
|
|
continue;
|
|
}
|
|
|
|
chan_call_buffer_hook(chan);
|
|
}
|
|
|
|
/* Channel will play for at least part of this frame */
|
|
|
|
/* Channel with least amount of data remaining determines the downmix
|
|
size */
|
|
if (chan->size < mixsize)
|
|
mixsize = chan->size;
|
|
|
|
chan_p++;
|
|
}
|
|
|
|
/* Add all still-active channels to the downmix */
|
|
chan_p = active_channels;
|
|
|
|
if (LIKELY(*chan_p))
|
|
{
|
|
struct mixer_channel *chan = *chan_p++;
|
|
|
|
if (LIKELY(!*chan_p))
|
|
{
|
|
write_samples(mixptr, chan->start, chan->amplitude, mixsize);
|
|
}
|
|
else
|
|
{
|
|
const void *src0, *src1;
|
|
unsigned int amp0, amp1;
|
|
|
|
/* Mix first two channels with each other as the downmix */
|
|
src0 = chan->start;
|
|
amp0 = chan->amplitude;
|
|
chan->last_size = mixsize;
|
|
|
|
chan = *chan_p++;
|
|
src1 = chan->start;
|
|
amp1 = chan->amplitude;
|
|
|
|
while (1)
|
|
{
|
|
mix_samples(mixptr, src0, amp0, src1, amp1, mixsize);
|
|
|
|
if (!*chan_p)
|
|
break;
|
|
|
|
/* More channels to mix - mix each with existing downmix */
|
|
chan->last_size = mixsize;
|
|
chan = *chan_p++;
|
|
src0 = mixptr;
|
|
amp0 = MIX_AMP_UNITY;
|
|
src1 = chan->start;
|
|
amp1 = chan->amplitude;
|
|
}
|
|
}
|
|
|
|
chan->last_size = mixsize;
|
|
next_size += mixsize;
|
|
|
|
if (next_size < mix_frame_size)
|
|
{
|
|
/* There is still space remaining in this frame */
|
|
mixptr += mixsize;
|
|
mixsize = mix_frame_size - next_size;
|
|
goto fill_frame;
|
|
}
|
|
}
|
|
else if (idle_counter++ < MAX_IDLE_FRAMES)
|
|
{
|
|
/* Pad incomplete frames with silence */
|
|
if (idle_counter <= 3)
|
|
memset(mixptr, 0, mix_frame_size - next_size);
|
|
|
|
next_size = mix_frame_size;
|
|
}
|
|
/* else silence period ran out - go to sleep */
|
|
|
|
#if FRAME_BOUNDARY_MARKERS != 0
|
|
if (next_size)
|
|
*downmix_buf[downmix_index] = downmix_index ? 0x7fff7fff : 0x80008000;
|
|
#endif
|
|
|
|
/* Certain SoC's have to do cleanup */
|
|
mixer_buffer_callback_exit();
|
|
|
|
return PCM_DMAST_OK;
|
|
}
|
|
|
|
/* Start PCM driver if it's not currently playing */
|
|
static void mixer_start_pcm(void)
|
|
{
|
|
if (pcm_is_playing())
|
|
return;
|
|
|
|
#if defined(HAVE_RECORDING)
|
|
if (pcm_is_recording())
|
|
return;
|
|
#endif
|
|
|
|
/* Requires a shared global sample rate for all channels */
|
|
pcm_set_frequency(mixer_sampr);
|
|
|
|
/* Prepare initial frames and set up the double buffer */
|
|
mixer_buffer_callback(PCM_DMAST_STARTED);
|
|
|
|
/* Save the previous call's output */
|
|
void *start = downmix_buf[downmix_index];
|
|
|
|
mixer_buffer_callback(PCM_DMAST_STARTED);
|
|
|
|
pcm_play_data(mixer_pcm_callback, mixer_buffer_callback,
|
|
start, mix_frame_size);
|
|
}
|
|
|
|
/** Public interfaces **/
|
|
|
|
/* Start playback on a channel */
|
|
void mixer_channel_play_data(enum pcm_mixer_channel channel,
|
|
pcm_play_callback_type get_more,
|
|
const void *start, size_t size)
|
|
{
|
|
struct mixer_channel *chan = &channels[channel];
|
|
|
|
ALIGN_AUDIOBUF(start, size);
|
|
|
|
if (!(start && size) && get_more)
|
|
{
|
|
/* Initial buffer not passed - call the callback now */
|
|
pcm_play_lock();
|
|
mixer_deactivate_channel(chan); /* Protect chan struct if active;
|
|
may also be same callback which
|
|
must not be reentered */
|
|
pcm_play_unlock(); /* Allow playback while doing callback */
|
|
|
|
size = 0;
|
|
get_more(&start, &size);
|
|
ALIGN_AUDIOBUF(start, size);
|
|
}
|
|
|
|
pcm_play_lock();
|
|
|
|
if (start && size)
|
|
{
|
|
/* We have data - start the channel */
|
|
chan->status = CHANNEL_PLAYING;
|
|
chan->start = start;
|
|
chan->size = size;
|
|
chan->last_size = 0;
|
|
chan->get_more = get_more;
|
|
|
|
mixer_activate_channel(chan);
|
|
chan_call_buffer_hook(chan);
|
|
mixer_start_pcm();
|
|
}
|
|
else
|
|
{
|
|
/* Never had anything - stop it now */
|
|
channel_stopped(chan);
|
|
}
|
|
|
|
pcm_play_unlock();
|
|
}
|
|
|
|
/* Pause or resume a channel (when started) */
|
|
void mixer_channel_play_pause(enum pcm_mixer_channel channel, bool play)
|
|
{
|
|
struct mixer_channel *chan = &channels[channel];
|
|
|
|
pcm_play_lock();
|
|
|
|
if (play == (chan->status == CHANNEL_PAUSED) &&
|
|
chan->status != CHANNEL_STOPPED)
|
|
{
|
|
if (play)
|
|
{
|
|
chan->status = CHANNEL_PLAYING;
|
|
mixer_activate_channel(chan);
|
|
mixer_start_pcm();
|
|
}
|
|
else
|
|
{
|
|
mixer_deactivate_channel(chan);
|
|
chan->status = CHANNEL_PAUSED;
|
|
}
|
|
}
|
|
|
|
pcm_play_unlock();
|
|
}
|
|
|
|
/* Stop playback on a channel */
|
|
void mixer_channel_stop(enum pcm_mixer_channel channel)
|
|
{
|
|
struct mixer_channel *chan = &channels[channel];
|
|
|
|
pcm_play_lock();
|
|
channel_stopped(chan);
|
|
pcm_play_unlock();
|
|
}
|
|
|
|
/* Set channel's amplitude factor */
|
|
void mixer_channel_set_amplitude(enum pcm_mixer_channel channel,
|
|
unsigned int amplitude)
|
|
{
|
|
channels[channel].amplitude = MIN(amplitude, MIX_AMP_UNITY);
|
|
}
|
|
|
|
/* Return channel's playback status */
|
|
enum channel_status mixer_channel_status(enum pcm_mixer_channel channel)
|
|
{
|
|
return channels[channel].status;
|
|
}
|
|
|
|
/* Returns amount data remaining in channel before next callback */
|
|
size_t mixer_channel_get_bytes_waiting(enum pcm_mixer_channel channel)
|
|
{
|
|
return channels[channel].size;
|
|
}
|
|
|
|
/* Return pointer to channel's playing audio data and the size remaining */
|
|
const void * mixer_channel_get_buffer(enum pcm_mixer_channel channel, int *count)
|
|
{
|
|
struct mixer_channel *chan = &channels[channel];
|
|
const void * buf = *(const void * volatile *)&chan->start;
|
|
size_t size = *(size_t volatile *)&chan->size;
|
|
const void * buf2 = *(const void * volatile *)&chan->start;
|
|
|
|
/* Still same buffer? */
|
|
if (buf == buf2)
|
|
{
|
|
*count = size >> 2;
|
|
return buf;
|
|
}
|
|
/* else can't be sure buf and size are related */
|
|
|
|
*count = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/* Calculate peak values for channel */
|
|
void mixer_channel_calculate_peaks(enum pcm_mixer_channel channel,
|
|
struct pcm_peaks *peaks)
|
|
{
|
|
int count;
|
|
const void *addr = mixer_channel_get_buffer(channel, &count);
|
|
|
|
pcm_do_peak_calculation(peaks,
|
|
channels[channel].status == CHANNEL_PLAYING,
|
|
addr, count);
|
|
}
|
|
|
|
/* Adjust channel pointer by a given offset to support movable buffers */
|
|
void mixer_adjust_channel_address(enum pcm_mixer_channel channel,
|
|
off_t offset)
|
|
{
|
|
pcm_play_lock();
|
|
/* Makes no difference if it's stopped */
|
|
channels[channel].start += offset;
|
|
pcm_play_unlock();
|
|
}
|
|
|
|
/* Set a hook that is called upon getting a new source buffer for a channel
|
|
NOTE: Called for each buffer, not each mixer chunk */
|
|
void mixer_channel_set_buffer_hook(enum pcm_mixer_channel channel,
|
|
chan_buffer_hook_fn_type fn)
|
|
{
|
|
struct mixer_channel *chan = &channels[channel];
|
|
|
|
pcm_play_lock();
|
|
chan->buffer_hook = fn;
|
|
pcm_play_unlock();
|
|
}
|
|
|
|
/* Stop ALL channels and PCM and reset state */
|
|
void mixer_reset(void)
|
|
{
|
|
pcm_play_stop();
|
|
|
|
while (*active_channels)
|
|
channel_stopped(*active_channels);
|
|
|
|
idle_counter = 0;
|
|
}
|
|
|
|
/* Set output samplerate */
|
|
void mixer_set_frequency(unsigned int samplerate)
|
|
{
|
|
pcm_set_frequency(samplerate);
|
|
samplerate = pcm_get_frequency();
|
|
|
|
if (samplerate == mixer_sampr)
|
|
return;
|
|
|
|
/* All data is now invalid */
|
|
mixer_reset();
|
|
mixer_sampr = samplerate;
|
|
|
|
/* Work out how much space we really need */
|
|
if (samplerate > SAMPR_96)
|
|
mix_frame_size = 4;
|
|
else if (samplerate > SAMPR_48)
|
|
mix_frame_size = 2;
|
|
else
|
|
mix_frame_size = 1;
|
|
|
|
mix_frame_size *= MIX_FRAME_SAMPLES * 4;
|
|
}
|
|
|
|
/* Get output samplerate */
|
|
unsigned int mixer_get_frequency(void)
|
|
{
|
|
return mixer_sampr;
|
|
}
|