rockbox/uisimulator/sdl/sound.c
Michael Sevakis 2aaf45e643 Get samplerate switching working in the sim to be similar to on target. Make all pcm functions available there as well.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@13320 a1c6a512-1295-4272-9138-f99709370657
2007-05-04 15:14:56 +00:00

497 lines
12 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Nick Lanham
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "autoconf.h"
#include <stdlib.h>
#include <stdbool.h>
#include <memory.h>
#include "debug.h"
#include "kernel.h"
#include "sound.h"
#include "pcm_sampr.h"
#include "SDL.h"
static bool pcm_playing;
static bool pcm_paused;
static int cvt_status = -1;
static unsigned long pcm_frequency = SAMPR_44;
static unsigned long pcm_curr_frequency = SAMPR_44;
static Uint8* pcm_data;
static size_t pcm_data_size;
static size_t pcm_sample_bytes;
static size_t pcm_channel_bytes;
struct pcm_udata
{
Uint8 *stream;
Uint32 num_in;
Uint32 num_out;
FILE *debug;
} udata;
static SDL_AudioSpec obtained;
static SDL_AudioCVT cvt;
extern bool debug_audio;
#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
static void pcm_apply_settings_nolock(void)
{
cvt_status = SDL_BuildAudioCVT(&cvt, AUDIO_S16SYS, 2, pcm_frequency,
obtained.format, obtained.channels, obtained.freq);
pcm_curr_frequency = pcm_frequency;
if (cvt_status < 0) {
cvt.len_ratio = (double)obtained.freq / (double)pcm_curr_frequency;
}
}
void pcm_apply_settings(void)
{
SDL_LockAudio();
pcm_apply_settings_nolock();
SDL_UnlockAudio();
}
static void sdl_dma_start_nolock(const void *addr, size_t size)
{
pcm_playing = false;
pcm_apply_settings_nolock();
pcm_data = (Uint8 *) addr;
pcm_data_size = size;
pcm_playing = true;
SDL_PauseAudio(0);
}
static void sdl_dma_stop_nolock(void)
{
pcm_playing = false;
SDL_PauseAudio(1);
pcm_paused = false;
}
static void (*callback_for_more)(unsigned char**, size_t*) = NULL;
void pcm_play_data(void (*get_more)(unsigned char** start, size_t* size),
unsigned char* start, size_t size)
{
SDL_LockAudio();
callback_for_more = get_more;
if (!(start && size)) {
if (get_more)
get_more(&start, &size);
}
if (start && size) {
sdl_dma_start_nolock(start, size);
}
SDL_UnlockAudio();
}
size_t pcm_get_bytes_waiting(void)
{
return pcm_data_size;
}
void pcm_mute(bool mute)
{
(void) mute;
}
void pcm_play_stop(void)
{
SDL_LockAudio();
if (pcm_playing) {
sdl_dma_stop_nolock();
}
SDL_UnlockAudio();
}
void pcm_play_pause(bool play)
{
size_t next_size;
Uint8 *next_start;
SDL_LockAudio();
if (!pcm_playing) {
SDL_UnlockAudio();
return;
}
if(pcm_paused && play) {
if (pcm_get_bytes_waiting()) {
printf("unpause\n");
pcm_apply_settings_nolock();
SDL_PauseAudio(0);
} else {
printf("unpause, no data waiting\n");
void (*get_more)(unsigned char**, size_t*) = callback_for_more;
if (get_more) {
get_more(&next_start, &next_size);
}
if (next_start && next_size) {
sdl_dma_start_nolock(next_start, next_size);
} else {
sdl_dma_stop_nolock();
printf("unpause attempted, no data\n");
}
}
} else if(!pcm_paused && !play) {
printf("pause\n");
SDL_PauseAudio(1);
}
pcm_paused = !play;
SDL_UnlockAudio();
}
bool pcm_is_paused(void)
{
return pcm_paused;
}
bool pcm_is_playing(void)
{
return pcm_playing;
}
void pcm_set_frequency(unsigned int frequency)
{
switch (frequency)
{
HW_HAVE_8_( case SAMPR_8:)
HW_HAVE_11_(case SAMPR_11:)
HW_HAVE_12_(case SAMPR_12:)
HW_HAVE_16_(case SAMPR_16:)
HW_HAVE_22_(case SAMPR_22:)
HW_HAVE_24_(case SAMPR_24:)
HW_HAVE_32_(case SAMPR_32:)
/* 44100 implied */
HW_HAVE_48_(case SAMPR_48:)
HW_HAVE_64_(case SAMPR_64:)
HW_HAVE_88_(case SAMPR_88:)
HW_HAVE_96_(case SAMPR_96:)
break;
default:
frequency = SAMPR_44;
}
pcm_frequency = frequency;
}
/*
* This function goes directly into the DMA buffer to calculate the left and
* right peak values. To avoid missing peaks it tries to look forward two full
* peek periods (2/HZ sec, 100% overlap), although it's always possible that
* the entire period will not be visible. To reduce CPU load it only looks at
* every third sample, and this can be reduced even further if needed (even
* every tenth sample would still be pretty accurate).
*/
#define PEAK_SAMPLES (44100*2/HZ) /* 44100 samples * 2 / 100 Hz tick */
#define PEAK_STRIDE 3 /* every 3rd sample is plenty... */
void pcm_calculate_peaks(int *left, int *right)
{
long samples = (long) pcm_data_size / 4;
short *addr = (short *) pcm_data;
if (samples > PEAK_SAMPLES)
samples = PEAK_SAMPLES;
samples /= PEAK_STRIDE;
if (left && right) {
int left_peak = 0, right_peak = 0, value;
while (samples--) {
if ((value = addr [0]) > left_peak)
left_peak = value;
else if (-value > left_peak)
left_peak = -value;
if ((value = addr [PEAK_STRIDE | 1]) > right_peak)
right_peak = value;
else if (-value > right_peak)
right_peak = -value;
addr += PEAK_STRIDE * 2;
}
*left = left_peak;
*right = right_peak;
}
else if (left || right) {
int peak_value = 0, value;
if (right)
addr += (PEAK_STRIDE | 1);
while (samples--) {
if ((value = addr [0]) > peak_value)
peak_value = value;
else if (-value > peak_value)
peak_value = -value;
addr += PEAK_STRIDE * 2;
}
if (left)
*left = peak_value;
else
*right = peak_value;
}
}
void write_to_soundcard(struct pcm_udata *udata) {
if (cvt.needed) {
Uint32 rd = udata->num_in;
Uint32 wr = (double)rd * cvt.len_ratio;
if (wr > udata->num_out) {
wr = udata->num_out;
rd = (double)wr / cvt.len_ratio;
if (rd > udata->num_in)
{
rd = udata->num_in;
wr = (double)rd * cvt.len_ratio;
}
}
if (wr == 0 || rd == 0)
{
udata->num_out = udata->num_in = 0;
return;
}
if (cvt_status > 0) {
cvt.len = rd * pcm_sample_bytes;
cvt.buf = (Uint8 *) malloc(cvt.len * cvt.len_mult);
memcpy(cvt.buf, pcm_data, cvt.len);
SDL_ConvertAudio(&cvt);
memcpy(udata->stream, cvt.buf, cvt.len_cvt);
udata->num_in = cvt.len / pcm_sample_bytes;
udata->num_out = cvt.len_cvt / pcm_sample_bytes;
if (udata->debug != NULL) {
fwrite(cvt.buf, sizeof(Uint8), cvt.len_cvt, udata->debug);
}
free(cvt.buf);
}
else {
/* Convert is bad, so do silence */
Uint32 num = wr*obtained.channels;
udata->num_in = rd;
udata->num_out = wr;
switch (pcm_channel_bytes)
{
case 1:
{
Uint8 *stream = udata->stream;
while (num-- > 0)
*stream++ = obtained.silence;
break;
}
case 2:
{
Uint16 *stream = (Uint16 *)udata->stream;
while (num-- > 0)
*stream++ = obtained.silence;
break;
}
}
if (udata->debug != NULL) {
fwrite(udata->stream, sizeof(Uint8), wr, udata->debug);
}
}
} else {
udata->num_in = udata->num_out = MIN(udata->num_in, udata->num_out);
memcpy(udata->stream, pcm_data, udata->num_out * pcm_sample_bytes);
if (udata->debug != NULL) {
fwrite(pcm_data, sizeof(Uint8), udata->num_out * pcm_sample_bytes,
udata->debug);
}
}
}
void sdl_audio_callback(struct pcm_udata *udata, Uint8 *stream, int len)
{
udata->stream = stream;
/* Write what we have in the PCM buffer */
if (pcm_data_size > 0)
goto start;
/* Audio card wants more? Get some more then. */
while (len > 0) {
if ((ssize_t)pcm_data_size <= 0) {
pcm_data_size = 0;
if (callback_for_more)
callback_for_more(&pcm_data, &pcm_data_size);
}
if (pcm_data_size > 0) {
start:
udata->num_in = pcm_data_size / pcm_sample_bytes;
udata->num_out = len / pcm_sample_bytes;
write_to_soundcard(udata);
udata->num_in *= pcm_sample_bytes;
udata->num_out *= pcm_sample_bytes;
pcm_data += udata->num_in;
pcm_data_size -= udata->num_in;
udata->stream += udata->num_out;
len -= udata->num_out;
} else {
DEBUGF("sdl_audio_callback: No Data.\n");
sdl_dma_stop_nolock();
break;
}
}
}
#ifdef HAVE_RECORDING
void pcm_init_recording(void)
{
}
void pcm_close_recording(void)
{
}
void pcm_record_data(void (*more_ready)(void* start, size_t size),
void *start, size_t size)
{
(void)more_ready;
(void)start;
(void)size;
}
void pcm_stop_recording(void)
{
}
void pcm_record_more(void *start, size_t size)
{
(void)start;
(void)size;
}
void pcm_calculate_rec_peaks(int *left, int *right)
{
if (left)
*left = 0;
if (right)
*right = 0;
}
unsigned long pcm_rec_status(void)
{
return 0;
}
#endif /* HAVE_RECORDING */
int pcm_init(void)
{
SDL_AudioSpec wanted_spec;
udata.debug = NULL;
if (debug_audio) {
udata.debug = fopen("audiodebug.raw", "wb");
}
/* Set 16-bit stereo audio at 44Khz */
wanted_spec.freq = 44100;
wanted_spec.format = AUDIO_S16SYS;
wanted_spec.channels = 2;
wanted_spec.samples = 2048;
wanted_spec.callback =
(void (SDLCALL *)(void *userdata,
Uint8 *stream, int len))sdl_audio_callback;
wanted_spec.userdata = &udata;
/* Open the audio device and start playing sound! */
if(SDL_OpenAudio(&wanted_spec, &obtained) < 0) {
fprintf(stderr, "Unable to open audio: %s\n", SDL_GetError());
return -1;
}
switch (obtained.format)
{
case AUDIO_U8:
case AUDIO_S8:
pcm_channel_bytes = 1;
break;
case AUDIO_U16LSB:
case AUDIO_S16LSB:
case AUDIO_U16MSB:
case AUDIO_S16MSB:
pcm_channel_bytes = 2;
break;
default:
fprintf(stderr, "Unknown sample format obtained: %u\n",
(unsigned)obtained.format);
return -1;
}
pcm_sample_bytes = obtained.channels * pcm_channel_bytes;
pcm_apply_settings_nolock();
sdl_dma_stop_nolock();
return 0;
}
void pcm_postinit(void)
{
}