rockbox/apps/eq.c
Daniel Stenberg 2acc0ac542 Updated our source code header to explicitly mention that we are GPL v2 or
later. We still need to hunt down snippets used that are not. 1324 modified
files...
http://www.rockbox.org/mail/archive/rockbox-dev-archive-2008-06/0060.shtml


git-svn-id: svn://svn.rockbox.org/rockbox/trunk@17847 a1c6a512-1295-4272-9138-f99709370657
2008-06-28 18:10:04 +00:00

355 lines
13 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006-2007 Thom Johansen
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <inttypes.h>
#include "config.h"
#include "dsp.h"
#include "eq.h"
#include "replaygain.h"
/* Inverse gain of circular cordic rotation in s0.31 format. */
static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
static const unsigned long atan_table[] = {
0x1fffffff, /* +0.785398163 (or pi/4) */
0x12e4051d, /* +0.463647609 */
0x09fb385b, /* +0.244978663 */
0x051111d4, /* +0.124354995 */
0x028b0d43, /* +0.062418810 */
0x0145d7e1, /* +0.031239833 */
0x00a2f61e, /* +0.015623729 */
0x00517c55, /* +0.007812341 */
0x0028be53, /* +0.003906230 */
0x00145f2e, /* +0.001953123 */
0x000a2f98, /* +0.000976562 */
0x000517cc, /* +0.000488281 */
0x00028be6, /* +0.000244141 */
0x000145f3, /* +0.000122070 */
0x0000a2f9, /* +0.000061035 */
0x0000517c, /* +0.000030518 */
0x000028be, /* +0.000015259 */
0x0000145f, /* +0.000007629 */
0x00000a2f, /* +0.000003815 */
0x00000517, /* +0.000001907 */
0x0000028b, /* +0.000000954 */
0x00000145, /* +0.000000477 */
0x000000a2, /* +0.000000238 */
0x00000051, /* +0.000000119 */
0x00000028, /* +0.000000060 */
0x00000014, /* +0.000000030 */
0x0000000a, /* +0.000000015 */
0x00000005, /* +0.000000007 */
0x00000002, /* +0.000000004 */
0x00000001, /* +0.000000002 */
0x00000000, /* +0.000000001 */
0x00000000, /* +0.000000000 */
};
/**
* Implements sin and cos using CORDIC rotation.
*
* @param phase has range from 0 to 0xffffffff, representing 0 and
* 2*pi respectively.
* @param cos return address for cos
* @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
* representing -1 and 1 respectively.
*/
static long fsincos(unsigned long phase, long *cos) {
int32_t x, x1, y, y1;
unsigned long z, z1;
int i;
/* Setup initial vector */
x = cordic_circular_gain;
y = 0;
z = phase;
/* The phase has to be somewhere between 0..pi for this to work right */
if (z < 0xffffffff / 4) {
/* z in first quadrant, z += pi/2 to correct */
x = -x;
z += 0xffffffff / 4;
} else if (z < 3 * (0xffffffff / 4)) {
/* z in third quadrant, z -= pi/2 to correct */
z -= 0xffffffff / 4;
} else {
/* z in fourth quadrant, z -= 3pi/2 to correct */
x = -x;
z -= 3 * (0xffffffff / 4);
}
/* Each iteration adds roughly 1-bit of extra precision */
for (i = 0; i < 31; i++) {
x1 = x >> i;
y1 = y >> i;
z1 = atan_table[i];
/* Decided which direction to rotate vector. Pivot point is pi/2 */
if (z >= 0xffffffff / 4) {
x -= y1;
y += x1;
z -= z1;
} else {
x += y1;
y -= x1;
z += z1;
}
}
*cos = x;
return y;
}
/**
* Calculate first order shelving filter. Filter is not directly usable by the
* eq_filter() function.
* @param cutoff shelf midpoint frequency. See eq_pk_coefs for format.
* @param A decibel value multiplied by ten, describing gain/attenuation of
* shelf. Max value is 24 dB.
* @param low true for low-shelf filter, false for high-shelf filter.
* @param c pointer to coefficient storage. Coefficients are s4.27 format.
*/
void filter_shelf_coefs(unsigned long cutoff, long A, bool low, int32_t *c)
{
long sin, cos;
int32_t b0, b1, a0, a1; /* s3.28 */
const long g = get_replaygain_int(A*5) << 4; /* 10^(db/40), s3.28 */
sin = fsincos(cutoff/2, &cos);
if (low) {
const int32_t sin_div_g = DIV64(sin, g, 25);
cos >>= 3;
b0 = FRACMUL(sin, g) + cos; /* 0.25 .. 4.10 */
b1 = FRACMUL(sin, g) - cos; /* -1 .. 3.98 */
a0 = sin_div_g + cos; /* 0.25 .. 4.10 */
a1 = sin_div_g - cos; /* -1 .. 3.98 */
} else {
const int32_t cos_div_g = DIV64(cos, g, 25);
sin >>= 3;
b0 = sin + FRACMUL(cos, g); /* 0.25 .. 4.10 */
b1 = sin - FRACMUL(cos, g); /* -3.98 .. 1 */
a0 = sin + cos_div_g; /* 0.25 .. 4.10 */
a1 = sin - cos_div_g; /* -3.98 .. 1 */
}
const int32_t rcp_a0 = DIV64(1, a0, 57); /* 0.24 .. 3.98, s2.29 */
*c++ = FRACMUL_SHL(b0, rcp_a0, 1); /* 0.063 .. 15.85 */
*c++ = FRACMUL_SHL(b1, rcp_a0, 1); /* -15.85 .. 15.85 */
*c++ = -FRACMUL_SHL(a1, rcp_a0, 1); /* -1 .. 1 */
}
#ifdef HAVE_SW_TONE_CONTROLS
/**
* Calculate second order section filter consisting of one low-shelf and one
* high-shelf section.
* @param cutoff_low low-shelf midpoint frequency. See eq_pk_coefs for format.
* @param cutoff_high high-shelf midpoint frequency.
* @param A_low decibel value multiplied by ten, describing gain/attenuation of
* low-shelf part. Max value is 24 dB.
* @param A_high decibel value multiplied by ten, describing gain/attenuation of
* high-shelf part. Max value is 24 dB.
* @param A decibel value multiplied by ten, describing additional overall gain.
* @param c pointer to coefficient storage. Coefficients are s4.27 format.
*/
void filter_bishelf_coefs(unsigned long cutoff_low, unsigned long cutoff_high,
long A_low, long A_high, long A, int32_t *c)
{
const long g = get_replaygain_int(A*10) << 7; /* 10^(db/20), s0.31 */
int32_t c_ls[3], c_hs[3];
filter_shelf_coefs(cutoff_low, A_low, true, c_ls);
filter_shelf_coefs(cutoff_high, A_high, false, c_hs);
c_ls[0] = FRACMUL(g, c_ls[0]);
c_ls[1] = FRACMUL(g, c_ls[1]);
/* now we cascade the two first order filters to one second order filter
* which can be used by eq_filter(). these resulting coefficients have a
* really wide numerical range, so we use a fixed point format which will
* work for the selected cutoff frequencies (in dsp.c) only.
*/
const int32_t b0 = c_ls[0], b1 = c_ls[1], b2 = c_hs[0], b3 = c_hs[1];
const int32_t a0 = c_ls[2], a1 = c_hs[2];
*c++ = FRACMUL_SHL(b0, b2, 4);
*c++ = FRACMUL_SHL(b0, b3, 4) + FRACMUL_SHL(b1, b2, 4);
*c++ = FRACMUL_SHL(b1, b3, 4);
*c++ = a0 + a1;
*c++ = -FRACMUL_SHL(a0, a1, 4);
}
#endif
/* Coef calculation taken from Audio-EQ-Cookbook.txt by Robert Bristow-Johnson.
* Slightly faster calculation can be done by deriving forms which use tan()
* instead of cos() and sin(), but the latter are far easier to use when doing
* fixed point math, and performance is not a big point in the calculation part.
* All the 'a' filter coefficients are negated so we can use only additions
* in the filtering equation.
*/
/**
* Calculate second order section peaking filter coefficients.
* @param cutoff a value from 0 to 0x80000000, where 0 represents 0 Hz and
* 0x80000000 represents the Nyquist frequency (samplerate/2).
* @param Q Q factor value multiplied by ten. Lower bound is artificially set
* at 0.5.
* @param db decibel value multiplied by ten, describing gain/attenuation at
* peak freq. Max value is 24 dB.
* @param c pointer to coefficient storage. Coefficients are s3.28 format.
*/
void eq_pk_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
{
long cs;
const long one = 1 << 28; /* s3.28 */
const long A = get_replaygain_int(db*5) << 5; /* 10^(db/40), s2.29 */
const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
int32_t a0, a1, a2; /* these are all s3.28 format */
int32_t b0, b1, b2;
const long alphadivA = DIV64(alpha, A, 27);
/* possible numerical ranges are in comments by each coef */
b0 = one + FRACMUL(alpha, A); /* [1 .. 5] */
b1 = a1 = -2*(cs >> 3); /* [-2 .. 2] */
b2 = one - FRACMUL(alpha, A); /* [-3 .. 1] */
a0 = one + alphadivA; /* [1 .. 5] */
a2 = one - alphadivA; /* [-3 .. 1] */
/* range of this is roughly [0.2 .. 1], but we'll never hit 1 completely */
const long rcp_a0 = DIV64(1, a0, 59); /* s0.31 */
*c++ = FRACMUL(b0, rcp_a0); /* [0.25 .. 4] */
*c++ = FRACMUL(b1, rcp_a0); /* [-2 .. 2] */
*c++ = FRACMUL(b2, rcp_a0); /* [-2.4 .. 1] */
*c++ = FRACMUL(-a1, rcp_a0); /* [-2 .. 2] */
*c++ = FRACMUL(-a2, rcp_a0); /* [-0.6 .. 1] */
}
/**
* Calculate coefficients for lowshelf filter. Parameters are as for
* eq_pk_coefs, but the coefficient format is s5.26 fixed point.
*/
void eq_ls_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
{
long cs;
const long one = 1 << 25; /* s6.25 */
const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */
const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */
const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
const long ap1 = (A >> 4) + one;
const long am1 = (A >> 4) - one;
const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha);
int32_t a0, a1, a2; /* these are all s6.25 format */
int32_t b0, b1, b2;
/* [0.1 .. 40] */
b0 = FRACMUL_SHL(A, ap1 - FRACMUL(am1, cs) + twosqrtalpha, 2);
/* [-16 .. 63.4] */
b1 = FRACMUL_SHL(A, am1 - FRACMUL(ap1, cs), 3);
/* [0 .. 31.7] */
b2 = FRACMUL_SHL(A, ap1 - FRACMUL(am1, cs) - twosqrtalpha, 2);
/* [0.5 .. 10] */
a0 = ap1 + FRACMUL(am1, cs) + twosqrtalpha;
/* [-16 .. 4] */
a1 = -2*((am1 + FRACMUL(ap1, cs)));
/* [0 .. 8] */
a2 = ap1 + FRACMUL(am1, cs) - twosqrtalpha;
/* [0.1 .. 1.99] */
const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */
*c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0.06 .. 15.9] */
*c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-2 .. 31.7] */
*c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 15.9] */
*c++ = FRACMUL_SHL(-a1, rcp_a0, 2); /* [-2 .. 2] */
*c++ = FRACMUL_SHL(-a2, rcp_a0, 2); /* [0 .. 1] */
}
/**
* Calculate coefficients for highshelf filter. Parameters are as for
* eq_pk_coefs, but the coefficient format is s5.26 fixed point.
*/
void eq_hs_coefs(unsigned long cutoff, unsigned long Q, long db, int32_t *c)
{
long cs;
const long one = 1 << 25; /* s6.25 */
const long sqrtA = get_replaygain_int(db*5/2) << 2; /* 10^(db/80), s5.26 */
const long A = FRACMUL_SHL(sqrtA, sqrtA, 8); /* s2.29 */
const long alpha = fsincos(cutoff, &cs)/(2*Q)*10 >> 1; /* s1.30 */
const long ap1 = (A >> 4) + one;
const long am1 = (A >> 4) - one;
const long twosqrtalpha = 2*FRACMUL(sqrtA, alpha);
int32_t a0, a1, a2; /* these are all s6.25 format */
int32_t b0, b1, b2;
/* [0.1 .. 40] */
b0 = FRACMUL_SHL(A, ap1 + FRACMUL(am1, cs) + twosqrtalpha, 2);
/* [-63.5 .. 16] */
b1 = -FRACMUL_SHL(A, am1 + FRACMUL(ap1, cs), 3);
/* [0 .. 32] */
b2 = FRACMUL_SHL(A, ap1 + FRACMUL(am1, cs) - twosqrtalpha, 2);
/* [0.5 .. 10] */
a0 = ap1 - FRACMUL(am1, cs) + twosqrtalpha;
/* [-4 .. 16] */
a1 = 2*((am1 - FRACMUL(ap1, cs)));
/* [0 .. 8] */
a2 = ap1 - FRACMUL(am1, cs) - twosqrtalpha;
/* [0.1 .. 1.99] */
const long rcp_a0 = DIV64(1, a0, 55); /* s1.30 */
*c++ = FRACMUL_SHL(b0, rcp_a0, 2); /* [0 .. 16] */
*c++ = FRACMUL_SHL(b1, rcp_a0, 2); /* [-31.7 .. 2] */
*c++ = FRACMUL_SHL(b2, rcp_a0, 2); /* [0 .. 16] */
*c++ = FRACMUL_SHL(-a1, rcp_a0, 2); /* [-2 .. 2] */
*c++ = FRACMUL_SHL(-a2, rcp_a0, 2); /* [0 .. 1] */
}
/* We realise the filters as a second order direct form 1 structure. Direct
* form 1 was chosen because of better numerical properties for fixed point
* implementations.
*/
#if (!defined(CPU_COLDFIRE) && !defined(CPU_ARM))
void eq_filter(int32_t **x, struct eqfilter *f, unsigned num,
unsigned channels, unsigned shift)
{
unsigned c, i;
long long acc;
/* Direct form 1 filtering code.
y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2],
where y[] is output and x[] is input.
*/
for (c = 0; c < channels; c++) {
for (i = 0; i < num; i++) {
acc = (long long) x[c][i] * f->coefs[0];
acc += (long long) f->history[c][0] * f->coefs[1];
acc += (long long) f->history[c][1] * f->coefs[2];
acc += (long long) f->history[c][2] * f->coefs[3];
acc += (long long) f->history[c][3] * f->coefs[4];
f->history[c][1] = f->history[c][0];
f->history[c][0] = x[c][i];
f->history[c][3] = f->history[c][2];
x[c][i] = (acc << shift) >> 32;
f->history[c][2] = x[c][i];
}
}
}
#endif