b3356e3aff
This brings the code to upstream commit 3ece3d6 (I've made my own Rockbox- specific changes on top of that). Changes include using C99 `bool' throughout, and minor logic fixes for some puzzles. Change-Id: Ie823e73ae49a8ee1de411d6d406df2ba835af541
192 lines
5.1 KiB
C
192 lines
5.1 KiB
C
/*
|
|
* dsf.c: some functions to handle a disjoint set forest,
|
|
* which is a data structure useful in any solver which has to
|
|
* worry about avoiding closed loops.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/*void print_dsf(int *dsf, int size)
|
|
{
|
|
int *printed_elements = snewn(size, int);
|
|
int *equal_elements = snewn(size, int);
|
|
int *inverse_elements = snewn(size, int);
|
|
int printed_count = 0, equal_count, inverse_count;
|
|
int i, n;
|
|
bool inverse;
|
|
|
|
memset(printed_elements, -1, sizeof(int) * size);
|
|
|
|
while (1) {
|
|
equal_count = 0;
|
|
inverse_count = 0;
|
|
for (i = 0; i < size; ++i) {
|
|
if (!memchr(printed_elements, i, sizeof(int) * size))
|
|
break;
|
|
}
|
|
if (i == size)
|
|
goto done;
|
|
|
|
i = dsf_canonify(dsf, i);
|
|
|
|
for (n = 0; n < size; ++n) {
|
|
if (edsf_canonify(dsf, n, &inverse) == i) {
|
|
if (inverse)
|
|
inverse_elements[inverse_count++] = n;
|
|
else
|
|
equal_elements[equal_count++] = n;
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < equal_count; ++n) {
|
|
fprintf(stderr, "%d ", equal_elements[n]);
|
|
printed_elements[printed_count++] = equal_elements[n];
|
|
}
|
|
if (inverse_count) {
|
|
fprintf(stderr, "!= ");
|
|
for (n = 0; n < inverse_count; ++n) {
|
|
fprintf(stderr, "%d ", inverse_elements[n]);
|
|
printed_elements[printed_count++] = inverse_elements[n];
|
|
}
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
done:
|
|
|
|
sfree(printed_elements);
|
|
sfree(equal_elements);
|
|
sfree(inverse_elements);
|
|
}*/
|
|
|
|
void dsf_init(int *dsf, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) dsf[i] = 6;
|
|
/* Bottom bit of each element of this array stores whether that
|
|
* element is opposite to its parent, which starts off as
|
|
* false. Second bit of each element stores whether that element
|
|
* is the root of its tree or not. If it's not the root, the
|
|
* remaining 30 bits are the parent, otherwise the remaining 30
|
|
* bits are the number of elements in the tree. */
|
|
}
|
|
|
|
int *snew_dsf(int size)
|
|
{
|
|
int *ret;
|
|
|
|
ret = snewn(size, int);
|
|
dsf_init(ret, size);
|
|
|
|
/*print_dsf(ret, size); */
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dsf_canonify(int *dsf, int index)
|
|
{
|
|
return edsf_canonify(dsf, index, NULL);
|
|
}
|
|
|
|
void dsf_merge(int *dsf, int v1, int v2)
|
|
{
|
|
edsf_merge(dsf, v1, v2, false);
|
|
}
|
|
|
|
int dsf_size(int *dsf, int index) {
|
|
return dsf[dsf_canonify(dsf, index)] >> 2;
|
|
}
|
|
|
|
int edsf_canonify(int *dsf, int index, bool *inverse_return)
|
|
{
|
|
int start_index = index, canonical_index;
|
|
bool inverse = false;
|
|
|
|
/* fprintf(stderr, "dsf = %p\n", dsf); */
|
|
/* fprintf(stderr, "Canonify %2d\n", index); */
|
|
|
|
assert(index >= 0);
|
|
|
|
/* Find the index of the canonical element of the 'equivalence class' of
|
|
* which start_index is a member, and figure out whether start_index is the
|
|
* same as or inverse to that. */
|
|
while ((dsf[index] & 2) == 0) {
|
|
inverse ^= (dsf[index] & 1);
|
|
index = dsf[index] >> 2;
|
|
/* fprintf(stderr, "index = %2d, ", index); */
|
|
/* fprintf(stderr, "inverse = %d\n", inverse); */
|
|
}
|
|
canonical_index = index;
|
|
|
|
if (inverse_return)
|
|
*inverse_return = inverse;
|
|
|
|
/* Update every member of this 'equivalence class' to point directly at the
|
|
* canonical member. */
|
|
index = start_index;
|
|
while (index != canonical_index) {
|
|
int nextindex = dsf[index] >> 2;
|
|
bool nextinverse = inverse ^ (dsf[index] & 1);
|
|
dsf[index] = (canonical_index << 2) | inverse;
|
|
inverse = nextinverse;
|
|
index = nextindex;
|
|
}
|
|
|
|
assert(!inverse);
|
|
|
|
/* fprintf(stderr, "Return %2d\n", index); */
|
|
|
|
return index;
|
|
}
|
|
|
|
void edsf_merge(int *dsf, int v1, int v2, bool inverse)
|
|
{
|
|
bool i1, i2;
|
|
|
|
/* fprintf(stderr, "dsf = %p\n", dsf); */
|
|
/* fprintf(stderr, "Merge [%2d,%2d], %d\n", v1, v2, inverse); */
|
|
|
|
v1 = edsf_canonify(dsf, v1, &i1);
|
|
assert(dsf[v1] & 2);
|
|
inverse ^= i1;
|
|
v2 = edsf_canonify(dsf, v2, &i2);
|
|
assert(dsf[v2] & 2);
|
|
inverse ^= i2;
|
|
|
|
/* fprintf(stderr, "Doing [%2d,%2d], %d\n", v1, v2, inverse); */
|
|
|
|
if (v1 == v2)
|
|
assert(!inverse);
|
|
else {
|
|
/*
|
|
* We always make the smaller of v1 and v2 the new canonical
|
|
* element. This ensures that the canonical element of any
|
|
* class in this structure is always the first element in
|
|
* it. 'Keen' depends critically on this property.
|
|
*
|
|
* (Jonas Koelker previously had this code choosing which
|
|
* way round to connect the trees by examining the sizes of
|
|
* the classes being merged, so that the root of the
|
|
* larger-sized class became the new root. This gives better
|
|
* asymptotic performance, but I've changed it to do it this
|
|
* way because I like having a deterministic canonical
|
|
* element.)
|
|
*/
|
|
if (v1 > v2) {
|
|
int v3 = v1;
|
|
v1 = v2;
|
|
v2 = v3;
|
|
}
|
|
dsf[v1] += (dsf[v2] >> 2) << 2;
|
|
dsf[v2] = (v1 << 2) | inverse;
|
|
}
|
|
|
|
v2 = edsf_canonify(dsf, v2, &i2);
|
|
assert(v2 == v1);
|
|
assert(i2 == inverse);
|
|
|
|
/* fprintf(stderr, "dsf[%2d] = %2d\n", v2, dsf[v2]); */
|
|
}
|