rockbox/firmware/target/mips/ingenic_x1000/nand-x1000.c
Aidan MacDonald 16a1993cad x1000: Remove some #ifdef SPL in the sfc/nand code
Change-Id: I554d590bfa700e521a74b5216e09f9673902d676
2021-04-28 20:04:10 +01:00

526 lines
13 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "nand-x1000.h"
#include "nand-target.h"
#include "sfc-x1000.h"
#include "system.h"
#include <string.h>
#if !defined(NAND_MAX_PAGE_SIZE) || \
!defined(NAND_INIT_SFC_DEV_CONF) || \
!defined(NAND_INIT_CLOCK_SPEED)
# error "Target needs to specify NAND driver parameters"
#endif
/* Must be at least as big as a cacheline */
#define NAND_AUX_BUFFER_SIZE CACHEALIGN_SIZE
/* Writes have been enabled */
#define NAND_DRV_FLAG_WRITEABLE 0x01
/* Defined by target */
extern const nand_chip_desc target_nand_chip_descs[];
#ifdef BOOTLOADER_SPL
# define NANDBUFFER_ATTR __attribute__((section(".sdram"))) CACHEALIGN_ATTR
#else
# define NANDBUFFER_ATTR CACHEALIGN_ATTR
#endif
/* Globals for the driver */
static unsigned char pagebuffer[NAND_MAX_PAGE_SIZE] NANDBUFFER_ATTR;
static unsigned char auxbuffer[NAND_AUX_BUFFER_SIZE] NANDBUFFER_ATTR;
static nand_drv nand_driver;
static void nand_drv_reset(nand_drv* d)
{
d->chip_ops = NULL;
d->chip_data = NULL;
d->pagebuf = &pagebuffer[0];
d->auxbuf = &auxbuffer[0];
d->raw_page_size = 0;
d->flags = 0;
}
/* Driver code */
int nand_open(void)
{
sfc_init();
sfc_lock();
/* Reset driver state */
nand_drv_reset(&nand_driver);
/* Init hardware */
sfc_open();
sfc_set_dev_conf(NAND_INIT_SFC_DEV_CONF);
sfc_set_clock(NAND_INIT_CLOCK_SPEED);
/* Identify NAND chip */
int status = 0;
int nandid = nandcmd_read_id(&nand_driver);
if(nandid < 0) {
status = NANDERR_CHIP_UNSUPPORTED;
goto _err;
}
unsigned char mf_id = nandid >> 8;
unsigned char dev_id = nandid & 0xff;
const nand_chip_desc* desc = &target_nand_chip_descs[0];
while(1) {
if(desc->data == NULL || desc->ops == NULL) {
status = NANDERR_CHIP_UNSUPPORTED;
goto _err;
}
if(desc->data->mf_id == mf_id && desc->data->dev_id == dev_id)
break;
}
/* Fill driver parameters */
nand_driver.chip_ops = desc->ops;
nand_driver.chip_data = desc->data;
nand_driver.raw_page_size = desc->data->page_size + desc->data->spare_size;
/* Configure hardware and run init op */
sfc_set_dev_conf(desc->data->dev_conf);
sfc_set_clock(desc->data->clock_freq);
if((status = desc->ops->open(&nand_driver)) < 0)
goto _err;
_exit:
sfc_unlock();
return status;
_err:
nand_drv_reset(&nand_driver);
sfc_close();
goto _exit;
}
void nand_close(void)
{
sfc_lock();
nand_driver.chip_ops->close(&nand_driver);
nand_drv_reset(&nand_driver);
sfc_close();
sfc_unlock();
}
int nand_enable_writes(bool en)
{
sfc_lock();
int st = nand_driver.chip_ops->set_wp_enable(&nand_driver, en);
if(st >= 0) {
if(en)
nand_driver.flags |= NAND_DRV_FLAG_WRITEABLE;
else
nand_driver.flags &= ~NAND_DRV_FLAG_WRITEABLE;
}
sfc_unlock();
return st;
}
extern int nand_read_bytes(uint32_t byteaddr, int count, void* buf)
{
if(count <= 0)
return 0;
nand_drv* d = &nand_driver;
uint32_t rowaddr = byteaddr / d->chip_data->page_size;
uint32_t coladdr = byteaddr % d->chip_data->page_size;
unsigned char* dstbuf = (unsigned char*)buf;
int status = 0;
sfc_lock();
do {
if(d->chip_ops->read_page(d, rowaddr, d->pagebuf) < 0) {
status = NANDERR_READ_FAILED;
goto _end;
}
if(d->chip_ops->ecc_read(d, d->pagebuf) < 0) {
status = NANDERR_ECC_FAILED;
goto _end;
}
int amount = d->chip_data->page_size - coladdr;
if(amount > count)
amount = count;
memcpy(dstbuf, d->pagebuf, amount);
dstbuf += amount;
count -= amount;
rowaddr += 1;
coladdr = 0;
} while(count > 0);
_end:
sfc_unlock();
return status;
}
int nand_write_bytes(uint32_t byteaddr, int count, const void* buf)
{
nand_drv* d = &nand_driver;
if((d->flags & NAND_DRV_FLAG_WRITEABLE) == 0)
return NANDERR_WRITE_PROTECTED;
if(count <= 0)
return 0;
uint32_t rowaddr = byteaddr / d->chip_data->page_size;
uint32_t coladdr = byteaddr % d->chip_data->page_size;
/* Only support whole page writes right now */
if(coladdr != 0)
return NANDERR_UNALIGNED_ADDRESS;
if(count % d->chip_data->page_size)
return NANDERR_UNALIGNED_LENGTH;
const unsigned char* srcbuf = (const unsigned char*)buf;
int status = 0;
sfc_lock();
do {
memcpy(d->pagebuf, srcbuf, d->chip_data->page_size);
d->chip_ops->ecc_write(d, d->pagebuf);
if(d->chip_ops->write_page(d, rowaddr, d->pagebuf) < 0) {
status = NANDERR_PROGRAM_FAILED;
goto _end;
}
rowaddr += 1;
srcbuf += d->chip_data->page_size;
count -= d->chip_data->page_size;
} while(count > 0);
_end:
sfc_unlock();
return status;
}
int nand_erase_bytes(uint32_t byteaddr, int count)
{
nand_drv* d = &nand_driver;
if((d->flags & NAND_DRV_FLAG_WRITEABLE) == 0)
return NANDERR_WRITE_PROTECTED;
/* Ensure address is aligned to a block boundary */
if(byteaddr % d->chip_data->page_size)
return NANDERR_UNALIGNED_ADDRESS;
uint32_t blockaddr = byteaddr / d->chip_data->page_size;
if(blockaddr % d->chip_data->block_size)
return NANDERR_UNALIGNED_ADDRESS;
/* Ensure length is also aligned to the size of a block */
if(count % d->chip_data->page_size)
return NANDERR_UNALIGNED_LENGTH;
count /= d->chip_data->page_size;
if(count % d->chip_data->block_size)
return NANDERR_UNALIGNED_LENGTH;
count /= d->chip_data->block_size;
int status = 0;
sfc_lock();
for(int i = 0; i < count; ++i) {
if(d->chip_ops->erase_block(d, blockaddr)) {
status = NANDERR_ERASE_FAILED;
goto _end;
}
/* Advance to next block */
blockaddr += d->chip_data->block_size;
}
_end:
sfc_unlock();
return status;
}
int nandcmd_read_id(nand_drv* d)
{
sfc_op op = {0};
op.command = NAND_CMD_READ_ID;
op.flags = SFC_FLAG_READ;
op.addr_bytes = 1;
op.addr_lo = 0;
op.data_bytes = 2;
op.buffer = d->auxbuf;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return (d->auxbuf[0] << 8) | d->auxbuf[1];
}
int nandcmd_write_enable(nand_drv* d)
{
(void)d;
sfc_op op = {0};
op.command = NAND_CMD_WRITE_ENABLE;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return 0;
}
int nandcmd_get_feature(nand_drv* d, int reg)
{
sfc_op op = {0};
op.command = NAND_CMD_GET_FEATURE;
op.flags = SFC_FLAG_READ;
op.addr_bytes = 1;
op.addr_lo = reg & 0xff;
op.data_bytes = 1;
op.buffer = d->auxbuf;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return d->auxbuf[0];
}
int nandcmd_set_feature(nand_drv* d, int reg, int val)
{
sfc_op op = {0};
op.command = NAND_CMD_SET_FEATURE;
op.flags = SFC_FLAG_READ;
op.addr_bytes = 1;
op.addr_lo = reg & 0xff;
op.data_bytes = 1;
op.buffer = d->auxbuf;
d->auxbuf[0] = val & 0xff;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return 0;
}
int nandcmd_page_read_to_cache(nand_drv* d, uint32_t rowaddr)
{
sfc_op op = {0};
op.command = NAND_CMD_PAGE_READ_TO_CACHE;
op.addr_bytes = d->chip_data->rowaddr_width;
op.addr_lo = rowaddr;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return 0;
}
int nandcmd_read_from_cache(nand_drv* d, unsigned char* buf)
{
sfc_op op = {0};
if(d->chip_data->flags & NANDCHIP_FLAG_QUAD) {
op.command = NAND_CMD_READ_FROM_CACHEx4;
op.mode = SFC_MODE_QUAD_IO;
} else {
op.command = NAND_CMD_READ_FROM_CACHE;
op.mode = SFC_MODE_STANDARD;
}
op.flags = SFC_FLAG_READ;
op.addr_bytes = d->chip_data->coladdr_width;
op.addr_lo = 0;
op.dummy_bits = 8;
op.data_bytes = d->raw_page_size;
op.buffer = buf;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return 0;
}
int nandcmd_program_load(nand_drv* d, const unsigned char* buf)
{
sfc_op op = {0};
if(d->chip_data->flags & NANDCHIP_FLAG_QUAD) {
op.command = NAND_CMD_PROGRAM_LOADx4;
op.mode = SFC_MODE_QUAD_IO;
} else {
op.command = NAND_CMD_PROGRAM_LOAD;
op.mode = SFC_MODE_STANDARD;
}
op.flags = SFC_FLAG_WRITE;
op.addr_bytes = d->chip_data->coladdr_width;
op.addr_lo = 0;
op.data_bytes = d->raw_page_size;
op.buffer = (void*)buf;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return 0;
}
int nandcmd_program_execute(nand_drv* d, uint32_t rowaddr)
{
sfc_op op = {0};
op.command = NAND_CMD_PROGRAM_EXECUTE;
op.addr_bytes = d->chip_data->rowaddr_width;
op.addr_lo = rowaddr;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return 0;
}
int nandcmd_block_erase(nand_drv* d, uint32_t blockaddr)
{
sfc_op op = {0};
op.command = NAND_CMD_BLOCK_ERASE;
op.addr_bytes = d->chip_data->rowaddr_width;
op.addr_lo = blockaddr;
if(sfc_exec(&op))
return NANDERR_COMMAND_FAILED;
return 0;
}
const nand_chip_ops nand_chip_ops_std = {
.open = nandop_std_open,
.close = nandop_std_close,
.read_page = nandop_std_read_page,
.write_page = nandop_std_write_page,
.erase_block = nandop_std_erase_block,
.set_wp_enable = nandop_std_set_wp_enable,
.ecc_read = nandop_ecc_none_read,
.ecc_write = nandop_ecc_none_write,
};
/* Helper needed by other ops */
static int nandop_std_wait_status(nand_drv* d, int errbit)
{
int reg;
do {
reg = nandcmd_get_feature(d, NAND_FREG_STATUS);
if(reg < 0)
return reg;
} while(reg & NAND_FREG_STATUS_OIP);
if(reg & errbit)
return NANDERR_OTHER;
return reg;
}
int nandop_std_open(nand_drv* d)
{
(void)d;
return 0;
}
void nandop_std_close(nand_drv* d)
{
(void)d;
}
int nandop_std_read_page(nand_drv* d, uint32_t rowaddr, unsigned char* buf)
{
int status;
if((status = nandcmd_page_read_to_cache(d, rowaddr)) < 0)
return status;
if((status = nandop_std_wait_status(d, 0)) < 0)
return status;
if((status = nandcmd_read_from_cache(d, buf)) < 0)
return status;
return 0;
}
int nandop_std_write_page(nand_drv* d, uint32_t rowaddr, const unsigned char* buf)
{
int status;
if((status = nandcmd_write_enable(d)) < 0)
return status;
if((status = nandcmd_program_load(d, buf)) < 0)
return status;
if((status = nandcmd_program_execute(d, rowaddr)) < 0)
return status;
if((status = nandop_std_wait_status(d, NAND_FREG_STATUS_P_FAIL)) < 0)
return status;
return 0;
}
int nandop_std_erase_block(nand_drv* d, uint32_t blockaddr)
{
int status;
if((status = nandcmd_write_enable(d)) < 0)
return status;
if((status = nandcmd_block_erase(d, blockaddr)) < 0)
return status;
if((status = nandop_std_wait_status(d, NAND_FREG_STATUS_E_FAIL) < 0))
return status;
return 0;
}
int nandop_std_set_wp_enable(nand_drv* d, bool en)
{
int val = nandcmd_get_feature(d, NAND_FREG_PROTECTION);
if(val < 0)
return val;
if(en) {
val &= ~NAND_FREG_PROTECTION_ALLBP;
if(d->chip_data->flags & NANDCHIP_FLAG_USE_BRWD)
val &= ~NAND_FREG_PROTECTION_BRWD;
} else {
val |= NAND_FREG_PROTECTION_ALLBP;
if(d->chip_data->flags & NANDCHIP_FLAG_USE_BRWD)
val |= NAND_FREG_PROTECTION_BRWD;
}
sfc_set_wp_enable(false);
int status = nandcmd_set_feature(d, NAND_FREG_PROTECTION, val);
sfc_set_wp_enable(true);
if(status < 0)
return status;
return 0;
}
int nandop_ecc_none_read(nand_drv* d, unsigned char* buf)
{
(void)d;
(void)buf;
return 0;
}
void nandop_ecc_none_write(nand_drv* d, unsigned char* buf)
{
memset(&buf[d->chip_data->page_size], 0xff, d->chip_data->spare_size);
}