1654efc313
* Editing a bunch of drivers' thread routines in order to implement a new feature is tedious. * No matter the number of storage drivers, they share one thread. No extra threads needed for CONFIG_STORAGE_MULTI. * Each has an event callback called by the storage thread. * A default callback is provided to fake sleeping in order to trigger idle callbacks. It could also do other default processing. Changes to it will be part of driver code without editing each one. * Drivers may sleep and wake as they please as long as they give a low pulse on their storage bit to ask to go into sleep mode. Idle callback is called on its behalf and driver immediately put into sleep mode. * Drivers may indicate they are to continue receiving events in USB mode, otherwise they receve nothing until disconnect (they do receive SYS_USB_DISCONNECTED no matter what). * Rework a few things to keep the callback implementation sane and maintainable. ata.c was dreadful with all those bools; make it a state machine and easier to follow. Remove last_user_activity; it has no purpose that isn't served by keeping the disk active through last_disk_activity instead. * Even-out stack sizes partly because of a lack of a decent place to define them by driver or SoC or whatever; it doesn't seem too critical to do that anyway. Many are simply too large while at least one isn't really adequate. They may be individually overridden if necessary (figure out where). The thread uses the greatest size demanded. Newer file code is much more frugal with stack space. I barely see use crack 50% after idle callbacks (usually mid-40s). Card insert/eject doesn't demand much. * No forcing of idle callbacks. If it isn't necessary for one or more non-disk storage types, it really isn't any more necessary for disk storage. Besides, it makes the whole thing easier to implement. Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
1132 lines
36 KiB
C
1132 lines
36 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2007 Dave Chapman
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include "storage.h"
|
|
#include "timer.h"
|
|
#include "kernel.h"
|
|
#include "string.h"
|
|
#include "power.h"
|
|
#include "panic.h"
|
|
#include "mmu-arm.h"
|
|
#include "mmcdefs-target.h"
|
|
#include "s5l8702.h"
|
|
#include "led.h"
|
|
|
|
|
|
#ifndef ATA_RETRIES
|
|
#define ATA_RETRIES 3
|
|
#endif
|
|
|
|
|
|
#define CEATA_POWERUP_TIMEOUT 20000000
|
|
#define CEATA_COMMAND_TIMEOUT 1000000
|
|
#define CEATA_DAT_NONBUSY_TIMEOUT 5000000
|
|
#define CEATA_MMC_RCA 1
|
|
|
|
|
|
/** static, private data **/
|
|
static uint8_t ceata_taskfile[16] STORAGE_ALIGN_ATTR;
|
|
static uint16_t ata_identify_data[0x100] STORAGE_ALIGN_ATTR;
|
|
static bool ceata;
|
|
static bool ata_lba48;
|
|
static bool ata_dma;
|
|
static uint64_t ata_total_sectors;
|
|
static struct mutex ata_mutex;
|
|
static struct semaphore ata_wakeup;
|
|
static uint32_t ata_dma_flags;
|
|
static long ata_last_activity_value = -1;
|
|
static long ata_sleep_timeout = 20 * HZ;
|
|
static bool ata_powered;
|
|
static const int ata_retries = ATA_RETRIES;
|
|
static const bool ata_error_srst = true;
|
|
static struct semaphore mmc_wakeup;
|
|
static struct semaphore mmc_comp_wakeup;
|
|
static int spinup_time = 0;
|
|
static int dma_mode = 0;
|
|
static char aligned_buffer[SECTOR_SIZE] STORAGE_ALIGN_ATTR;
|
|
|
|
static int ata_reset(void);
|
|
|
|
|
|
static uint16_t ata_read_cbr(uint32_t volatile* reg)
|
|
{
|
|
while (!(ATA_PIO_READY & 2));
|
|
volatile uint32_t dummy __attribute__((unused)) = *reg;
|
|
while (!(ATA_PIO_READY & 1));
|
|
return ATA_PIO_RDATA;
|
|
}
|
|
|
|
static void ata_write_cbr(uint32_t volatile* reg, uint16_t data)
|
|
{
|
|
while (!(ATA_PIO_READY & 2));
|
|
*reg = data;
|
|
}
|
|
|
|
static int ata_wait_for_not_bsy(long timeout)
|
|
{
|
|
long startusec = USEC_TIMER;
|
|
while (true)
|
|
{
|
|
uint8_t csd = ata_read_cbr(&ATA_PIO_CSD);
|
|
if (!(csd & BIT(7))) return 0;
|
|
if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(0);
|
|
yield();
|
|
}
|
|
}
|
|
|
|
static int ata_wait_for_rdy(long timeout)
|
|
{
|
|
long startusec = USEC_TIMER;
|
|
PASS_RC(ata_wait_for_not_bsy(timeout), 1, 0);
|
|
while (true)
|
|
{
|
|
uint8_t dad = ata_read_cbr(&ATA_PIO_DAD);
|
|
if (dad & BIT(6)) return 0;
|
|
if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(1);
|
|
yield();
|
|
}
|
|
}
|
|
|
|
static int ata_wait_for_start_of_transfer(long timeout)
|
|
{
|
|
long startusec = USEC_TIMER;
|
|
PASS_RC(ata_wait_for_not_bsy(timeout), 2, 0);
|
|
while (true)
|
|
{
|
|
uint8_t dad = ata_read_cbr(&ATA_PIO_DAD);
|
|
if (dad & BIT(0)) RET_ERR(1);
|
|
if ((dad & (BIT(7) | BIT(3))) == BIT(3)) return 0;
|
|
if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(2);
|
|
yield();
|
|
}
|
|
}
|
|
|
|
static int ata_wait_for_end_of_transfer(long timeout)
|
|
{
|
|
PASS_RC(ata_wait_for_not_bsy(timeout), 2, 0);
|
|
uint8_t dad = ata_read_cbr(&ATA_PIO_DAD);
|
|
if (dad & BIT(0)) RET_ERR(1);
|
|
if ((dad & (BIT(3) | BITRANGE(5, 7))) == BIT(6)) return 0;
|
|
RET_ERR(2);
|
|
}
|
|
|
|
static int mmc_dsta_check_command_success(bool disable_crc)
|
|
{
|
|
int rc = 0;
|
|
uint32_t dsta = SDCI_DSTA;
|
|
if (dsta & SDCI_DSTA_RESTOUTE) rc |= 1;
|
|
if (dsta & SDCI_DSTA_RESENDE) rc |= 2;
|
|
if (dsta & SDCI_DSTA_RESINDE) rc |= 4;
|
|
if (!disable_crc)
|
|
if (dsta & SDCI_DSTA_RESCRCE)
|
|
rc |= 8;
|
|
if (rc) RET_ERR(rc);
|
|
return 0;
|
|
}
|
|
|
|
static bool mmc_send_command(uint32_t cmd, uint32_t arg, uint32_t* result, int timeout)
|
|
{
|
|
long starttime = USEC_TIMER;
|
|
while ((SDCI_STATE & SDCI_STATE_CMD_STATE_MASK) != SDCI_STATE_CMD_STATE_CMD_IDLE)
|
|
{
|
|
if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(0);
|
|
yield();
|
|
}
|
|
SDCI_STAC = SDCI_STAC_CLR_CMDEND | SDCI_STAC_CLR_BIT_3
|
|
| SDCI_STAC_CLR_RESEND | SDCI_STAC_CLR_DATEND
|
|
| SDCI_STAC_CLR_DAT_CRCEND | SDCI_STAC_CLR_CRC_STAEND
|
|
| SDCI_STAC_CLR_RESTOUTE | SDCI_STAC_CLR_RESENDE
|
|
| SDCI_STAC_CLR_RESINDE | SDCI_STAC_CLR_RESCRCE
|
|
| SDCI_STAC_CLR_WR_DATCRCE | SDCI_STAC_CLR_RD_DATCRCE
|
|
| SDCI_STAC_CLR_RD_DATENDE0 | SDCI_STAC_CLR_RD_DATENDE1
|
|
| SDCI_STAC_CLR_RD_DATENDE2 | SDCI_STAC_CLR_RD_DATENDE3
|
|
| SDCI_STAC_CLR_RD_DATENDE4 | SDCI_STAC_CLR_RD_DATENDE5
|
|
| SDCI_STAC_CLR_RD_DATENDE6 | SDCI_STAC_CLR_RD_DATENDE7;
|
|
SDCI_ARGU = arg;
|
|
SDCI_CMD = cmd;
|
|
if (!(SDCI_DSTA & SDCI_DSTA_CMDRDY)) RET_ERR(1);
|
|
SDCI_CMD = cmd | SDCI_CMD_CMDSTR;
|
|
long sleepbase = USEC_TIMER;
|
|
while (TIMEOUT_EXPIRED(sleepbase, 1000)) yield();
|
|
while (!(SDCI_DSTA & SDCI_DSTA_CMDEND))
|
|
{
|
|
if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(2);
|
|
yield();
|
|
}
|
|
if ((cmd & SDCI_CMD_RES_TYPE_MASK) != SDCI_CMD_RES_TYPE_NONE)
|
|
{
|
|
while (!(SDCI_DSTA & SDCI_DSTA_RESEND))
|
|
{
|
|
if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(3);
|
|
yield();
|
|
}
|
|
if (cmd & SDCI_CMD_RES_BUSY)
|
|
while (SDCI_DSTA & SDCI_DSTA_DAT_BUSY)
|
|
{
|
|
if (TIMEOUT_EXPIRED(starttime, CEATA_DAT_NONBUSY_TIMEOUT)) RET_ERR(4);
|
|
yield();
|
|
}
|
|
}
|
|
bool nocrc = (cmd & SDCI_CMD_RES_SIZE_MASK) == SDCI_CMD_RES_SIZE_136;
|
|
PASS_RC(mmc_dsta_check_command_success(nocrc), 3, 5);
|
|
if (result) *result = SDCI_RESP0;
|
|
return 0;
|
|
}
|
|
|
|
static int mmc_get_card_status(uint32_t* result)
|
|
{
|
|
return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SEND_STATUS)
|
|
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_SEND_STATUS_RCA(CEATA_MMC_RCA), result, CEATA_COMMAND_TIMEOUT);
|
|
}
|
|
|
|
static int mmc_init(void)
|
|
{
|
|
sleep(HZ / 10);
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_GO_IDLE_STATE)
|
|
| SDCI_CMD_CMD_TYPE_BC | SDCI_CMD_RES_TYPE_NONE
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NID,
|
|
0, NULL, CEATA_COMMAND_TIMEOUT), 3, 0);
|
|
long startusec = USEC_TIMER;
|
|
uint32_t result;
|
|
do
|
|
{
|
|
if (TIMEOUT_EXPIRED(startusec, CEATA_POWERUP_TIMEOUT)) RET_ERR(1);
|
|
sleep(HZ / 100);
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SEND_OP_COND)
|
|
| SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R3
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NID,
|
|
MMC_CMD_SEND_OP_COND_OCR(MMC_OCR_270_360),
|
|
NULL, CEATA_COMMAND_TIMEOUT), 3, 2);
|
|
result = SDCI_RESP0;
|
|
}
|
|
while (!(result & MMC_OCR_POWER_UP_DONE));
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_ALL_SEND_CID)
|
|
| SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R2
|
|
| SDCI_CMD_RES_SIZE_136 | SDCI_CMD_NCR_NID_NID,
|
|
0, NULL, CEATA_COMMAND_TIMEOUT), 3, 3);
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SET_RELATIVE_ADDR)
|
|
| SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R1
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_SET_RELATIVE_ADDR_RCA(CEATA_MMC_RCA),
|
|
NULL, CEATA_COMMAND_TIMEOUT), 3, 4);
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SELECT_CARD)
|
|
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_SELECT_CARD_RCA(CEATA_MMC_RCA),
|
|
NULL, CEATA_COMMAND_TIMEOUT), 3, 5);
|
|
PASS_RC(mmc_get_card_status(&result), 3, 6);
|
|
if ((result & MMC_STATUS_CURRENT_STATE_MASK) != MMC_STATUS_CURRENT_STATE_TRAN) RET_ERR(7);
|
|
return 0;
|
|
}
|
|
|
|
static int mmc_fastio_write(uint32_t addr, uint32_t data)
|
|
{
|
|
return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_FAST_IO)
|
|
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R4
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_FAST_IO_RCA(CEATA_MMC_RCA) | MMC_CMD_FAST_IO_DIRECTION_WRITE
|
|
| MMC_CMD_FAST_IO_ADDRESS(addr) | MMC_CMD_FAST_IO_DATA(data),
|
|
NULL, CEATA_COMMAND_TIMEOUT);
|
|
}
|
|
|
|
static int mmc_fastio_read(uint32_t addr, uint32_t* data)
|
|
{
|
|
return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_FAST_IO)
|
|
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R4
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_FAST_IO_RCA(CEATA_MMC_RCA) | MMC_CMD_FAST_IO_DIRECTION_READ
|
|
| MMC_CMD_FAST_IO_ADDRESS(addr), data, CEATA_COMMAND_TIMEOUT);
|
|
}
|
|
|
|
static int ceata_soft_reset(void)
|
|
{
|
|
PASS_RC(mmc_fastio_write(6, 4), 2, 0);
|
|
sleep(HZ / 100);
|
|
PASS_RC(mmc_fastio_write(6, 0), 2, 1);
|
|
sleep(HZ / 100);
|
|
long startusec = USEC_TIMER;
|
|
uint32_t status;
|
|
do
|
|
{
|
|
PASS_RC(mmc_fastio_read(0xf, &status), 2, 2);
|
|
if (TIMEOUT_EXPIRED(startusec, CEATA_POWERUP_TIMEOUT)) RET_ERR(3);
|
|
sleep(HZ / 100);
|
|
}
|
|
while (status & 0x80);
|
|
return 0;
|
|
}
|
|
|
|
static int mmc_dsta_check_data_success(void)
|
|
{
|
|
int rc = 0;
|
|
uint32_t dsta = SDCI_DSTA;
|
|
if (dsta & (SDCI_DSTA_WR_DATCRCE | SDCI_DSTA_RD_DATCRCE))
|
|
{
|
|
if (dsta & SDCI_DSTA_WR_DATCRCE) rc |= 1;
|
|
if (dsta & SDCI_DSTA_RD_DATCRCE) rc |= 2;
|
|
if ((dsta & SDCI_DSTA_WR_CRC_STATUS_MASK) == SDCI_DSTA_WR_CRC_STATUS_TXERR) rc |= 4;
|
|
else if ((dsta & SDCI_DSTA_WR_CRC_STATUS_MASK) == SDCI_DSTA_WR_CRC_STATUS_CARDERR) rc |= 8;
|
|
}
|
|
if (dsta & (SDCI_DSTA_RD_DATENDE0 | SDCI_DSTA_RD_DATENDE1 | SDCI_DSTA_RD_DATENDE2
|
|
| SDCI_DSTA_RD_DATENDE3 | SDCI_DSTA_RD_DATENDE4 | SDCI_DSTA_RD_DATENDE5
|
|
| SDCI_DSTA_RD_DATENDE6 | SDCI_DSTA_RD_DATENDE7))
|
|
rc |= 16;
|
|
if (rc) RET_ERR(rc);
|
|
return 0;
|
|
}
|
|
|
|
static void mmc_discard_irq(void)
|
|
{
|
|
SDCI_IRQ = SDCI_IRQ_DAT_DONE_INT | SDCI_IRQ_MASK_MASK_IOCARD_IRQ_INT
|
|
| SDCI_IRQ_MASK_MASK_READ_WAIT_INT;
|
|
semaphore_wait(&mmc_wakeup, 0);
|
|
}
|
|
|
|
static int ceata_read_multiple_register(uint32_t addr, void* dest, uint32_t size)
|
|
{
|
|
if (size > 0x10) RET_ERR(0);
|
|
mmc_discard_irq();
|
|
SDCI_DMASIZE = size;
|
|
SDCI_DMACOUNT = 1;
|
|
SDCI_DMAADDR = dest;
|
|
SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST;
|
|
commit_discard_dcache();
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_REG)
|
|
| SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_RES_TYPE_R1
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_CEATA_RW_MULTIPLE_REG_DIRECTION_READ
|
|
| MMC_CMD_CEATA_RW_MULTIPLE_REG_ADDRESS(addr & 0xfc)
|
|
| MMC_CMD_CEATA_RW_MULTIPLE_REG_COUNT(size & 0xfc),
|
|
NULL, CEATA_COMMAND_TIMEOUT), 2, 1);
|
|
if (semaphore_wait(&mmc_wakeup, CEATA_COMMAND_TIMEOUT * HZ / 1000000)
|
|
== OBJ_WAIT_TIMEDOUT) RET_ERR(2);
|
|
PASS_RC(mmc_dsta_check_data_success(), 2, 3);
|
|
return 0;
|
|
}
|
|
|
|
static int ceata_write_multiple_register(uint32_t addr, void* dest, uint32_t size)
|
|
{
|
|
uint32_t i;
|
|
if (size > 0x10) RET_ERR(0);
|
|
mmc_discard_irq();
|
|
SDCI_DMASIZE = size;
|
|
SDCI_DMACOUNT = 0;
|
|
SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST;
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_REG)
|
|
| SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_CMD_RD_WR
|
|
| SDCI_CMD_RES_BUSY | SDCI_CMD_RES_TYPE_R1
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_CEATA_RW_MULTIPLE_REG_DIRECTION_WRITE
|
|
| MMC_CMD_CEATA_RW_MULTIPLE_REG_ADDRESS(addr & 0xfc)
|
|
| MMC_CMD_CEATA_RW_MULTIPLE_REG_COUNT(size & 0xfc),
|
|
NULL, CEATA_COMMAND_TIMEOUT), 3, 1);
|
|
SDCI_DCTRL = SDCI_DCTRL_TRCONT_TX;
|
|
for (i = 0; i < size / 4; i++) SDCI_DATA = ((uint32_t*)dest)[i];
|
|
long startusec = USEC_TIMER;
|
|
if (semaphore_wait(&mmc_wakeup, CEATA_COMMAND_TIMEOUT * HZ / 1000000)
|
|
== OBJ_WAIT_TIMEDOUT) RET_ERR(2);
|
|
while ((SDCI_STATE & SDCI_STATE_DAT_STATE_MASK) != SDCI_STATE_DAT_STATE_IDLE)
|
|
{
|
|
if (TIMEOUT_EXPIRED(startusec, CEATA_COMMAND_TIMEOUT)) RET_ERR(3);
|
|
yield();
|
|
}
|
|
PASS_RC(mmc_dsta_check_data_success(), 3, 4);
|
|
return 0;
|
|
}
|
|
|
|
static int ceata_init(int buswidth)
|
|
{
|
|
uint32_t result;
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SWITCH) | SDCI_CMD_RES_BUSY
|
|
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_SWITCH_ACCESS_WRITE_BYTE
|
|
| MMC_CMD_SWITCH_INDEX(MMC_CMD_SWITCH_FIELD_HS_TIMING)
|
|
| MMC_CMD_SWITCH_VALUE(MMC_CMD_SWITCH_FIELD_HS_TIMING_HIGH_SPEED),
|
|
&result, CEATA_COMMAND_TIMEOUT), 3, 0);
|
|
if (result & MMC_STATUS_SWITCH_ERROR) RET_ERR(1);
|
|
if (buswidth > 1)
|
|
{
|
|
int setting;
|
|
if (buswidth == 4) setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_4BIT;
|
|
else if (buswidth == 8) setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_8BIT;
|
|
else setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_1BIT;
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SWITCH) | SDCI_CMD_RES_BUSY
|
|
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
MMC_CMD_SWITCH_ACCESS_WRITE_BYTE
|
|
| MMC_CMD_SWITCH_INDEX(MMC_CMD_SWITCH_FIELD_BUS_WIDTH)
|
|
| MMC_CMD_SWITCH_VALUE(setting),
|
|
&result, CEATA_COMMAND_TIMEOUT), 3, 2);
|
|
if (result & MMC_STATUS_SWITCH_ERROR) RET_ERR(3);
|
|
if (buswidth == 4)
|
|
SDCI_CTRL = (SDCI_CTRL & ~SDCI_CTRL_BUS_WIDTH_MASK) | SDCI_CTRL_BUS_WIDTH_4BIT;
|
|
else if (buswidth == 8)
|
|
SDCI_CTRL = (SDCI_CTRL & ~SDCI_CTRL_BUS_WIDTH_MASK) | SDCI_CTRL_BUS_WIDTH_8BIT;
|
|
}
|
|
PASS_RC(ceata_soft_reset(), 3, 4);
|
|
PASS_RC(ceata_read_multiple_register(0, ceata_taskfile, 0x10), 3, 5);
|
|
if (ceata_taskfile[0xc] != 0xce || ceata_taskfile[0xd] != 0xaa) RET_ERR(6);
|
|
PASS_RC(mmc_fastio_write(6, 0), 3, 7);
|
|
return 0;
|
|
}
|
|
|
|
static int ceata_check_error(void)
|
|
{
|
|
uint32_t status, error;
|
|
PASS_RC(mmc_fastio_read(0xf, &status), 2, 0);
|
|
if (status & 1)
|
|
{
|
|
PASS_RC(mmc_fastio_read(0x9, &error), 2, 1);
|
|
RET_ERR((error << 2) | 2);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ceata_wait_idle(void)
|
|
{
|
|
long startusec = USEC_TIMER;
|
|
while (true)
|
|
{
|
|
uint32_t status;
|
|
PASS_RC(mmc_fastio_read(0xf, &status), 1, 0);
|
|
if (!(status & 0x88)) return 0;
|
|
if (TIMEOUT_EXPIRED(startusec, CEATA_DAT_NONBUSY_TIMEOUT)) RET_ERR(1);
|
|
sleep(HZ / 20);
|
|
}
|
|
}
|
|
|
|
static int ceata_cancel_command(void)
|
|
{
|
|
*((uint32_t volatile*)0x3cf00200) = 0x9000e;
|
|
udelay(1);
|
|
*((uint32_t volatile*)0x3cf00200) = 0x9000f;
|
|
udelay(1);
|
|
*((uint32_t volatile*)0x3cf00200) = 0x90003;
|
|
udelay(1);
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_STOP_TRANSMISSION)
|
|
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_BUSY
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
0, NULL, CEATA_COMMAND_TIMEOUT), 1, 0);
|
|
PASS_RC(ceata_wait_idle(), 1, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int ceata_rw_multiple_block(bool write, void* buf, uint32_t count, long timeout)
|
|
{
|
|
mmc_discard_irq();
|
|
uint32_t responsetype;
|
|
uint32_t cmdtype;
|
|
uint32_t direction;
|
|
if (write)
|
|
{
|
|
cmdtype = SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_CMD_RD_WR;
|
|
responsetype = SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_BUSY;
|
|
direction = MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_DIRECTION_WRITE;
|
|
}
|
|
else
|
|
{
|
|
cmdtype = SDCI_CMD_CMD_TYPE_ADTC;
|
|
responsetype = SDCI_CMD_RES_TYPE_R1;
|
|
direction = MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_DIRECTION_READ;
|
|
}
|
|
SDCI_DMASIZE = 0x200;
|
|
SDCI_DMAADDR = buf;
|
|
SDCI_DMACOUNT = count;
|
|
SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST;
|
|
commit_discard_dcache();
|
|
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_BLOCK)
|
|
| SDCI_CMD_CMD_TYPE_ADTC | cmdtype | responsetype
|
|
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
|
|
direction | MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_COUNT(count),
|
|
NULL, CEATA_COMMAND_TIMEOUT), 3, 0);
|
|
if (write) SDCI_DCTRL = SDCI_DCTRL_TRCONT_TX;
|
|
if (semaphore_wait(&mmc_wakeup, timeout) == OBJ_WAIT_TIMEDOUT)
|
|
{
|
|
PASS_RC(ceata_cancel_command(), 3, 1);
|
|
RET_ERR(2);
|
|
}
|
|
PASS_RC(mmc_dsta_check_data_success(), 3, 3);
|
|
if (semaphore_wait(&mmc_comp_wakeup, timeout) == OBJ_WAIT_TIMEDOUT)
|
|
{
|
|
PASS_RC(ceata_cancel_command(), 3, 4);
|
|
RET_ERR(5);
|
|
}
|
|
PASS_RC(ceata_check_error(), 3, 6);
|
|
return 0;
|
|
}
|
|
|
|
static int ata_identify(uint16_t* buf)
|
|
{
|
|
int i;
|
|
if (ceata)
|
|
{
|
|
memset(ceata_taskfile, 0, 16);
|
|
ceata_taskfile[0xf] = 0xec;
|
|
PASS_RC(ceata_wait_idle(), 2, 0);
|
|
PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 2, 1);
|
|
PASS_RC(ceata_rw_multiple_block(false, buf, 1, CEATA_COMMAND_TIMEOUT * HZ / 1000000), 2, 2);
|
|
}
|
|
else
|
|
{
|
|
PASS_RC(ata_wait_for_not_bsy(10000000), 1, 0);
|
|
ata_write_cbr(&ATA_PIO_DVR, 0);
|
|
ata_write_cbr(&ATA_PIO_CSD, 0xec);
|
|
PASS_RC(ata_wait_for_start_of_transfer(10000000), 1, 1);
|
|
for (i = 0; i < 0x100; i++) buf[i] = ata_read_cbr(&ATA_PIO_DTR);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ata_set_active(void)
|
|
{
|
|
ata_last_activity_value = current_tick;
|
|
}
|
|
|
|
bool ata_disk_is_active(void)
|
|
{
|
|
return ata_powered;
|
|
}
|
|
|
|
static int ata_set_feature(uint32_t feature, uint32_t param)
|
|
{
|
|
if (ceata)
|
|
{
|
|
memset(ceata_taskfile, 0, 16);
|
|
ceata_taskfile[0x1] = feature;
|
|
ceata_taskfile[0x2] = param;
|
|
ceata_taskfile[0xf] = 0xef;
|
|
PASS_RC(ceata_wait_idle(), 2, 0);
|
|
PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 2, 1);
|
|
PASS_RC(ceata_wait_idle(), 2, 2);
|
|
}
|
|
else
|
|
{
|
|
PASS_RC(ata_wait_for_rdy(2000000), 2, 0);
|
|
ata_write_cbr(&ATA_PIO_DVR, 0);
|
|
ata_write_cbr(&ATA_PIO_FED, feature);
|
|
ata_write_cbr(&ATA_PIO_SCR, param);
|
|
ata_write_cbr(&ATA_PIO_CSD, 0xef);
|
|
PASS_RC(ata_wait_for_rdy(2000000), 2, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ATA_UDMA_TIME register is documented on s3c6400 datasheet, information
|
|
* included in s5l8700 datasheet is wrong or not valid for s5l8702.
|
|
*
|
|
* On Classic (boosted):
|
|
* HClk = 108 MHz. -> T = ~9.26 ns.
|
|
*
|
|
* Configured values (in nanoseconds):
|
|
*
|
|
* UDMA ATA_UDMA_TIME tACK tRP tSS tDVS tDVH Tcyc WR(MB/s)
|
|
* 0 0x4071152 27.8 166.7 55.6 74.1 46.3 120.4 16.6
|
|
* 1 0x2050d52 27.8 129.6 55.6 55.6 27.8 83.4 24
|
|
* 2 0x2030a52 27.8 101.8 55.6 37 27.8 64.8 30.9
|
|
* 3 0x1020a52 27.8 101.8 55.6 27.8 18.5 46.3 43.2
|
|
* 4 0x1010a52 27.8 101.8 55.6 18.5 18.5 37 54
|
|
*
|
|
* Tcyc = tDVS+tDVH
|
|
* WR[bytes/s] = 1/Tcyc[s] * 2[bytes]
|
|
*/
|
|
static int ata_power_up(void)
|
|
{
|
|
ata_set_active();
|
|
ide_power_enable(true);
|
|
long spinup_start = current_tick;
|
|
if (ceata)
|
|
{
|
|
ata_lba48 = true;
|
|
ata_dma = true;
|
|
PCON(8) = 0x33333333;
|
|
PCON(9) = 0x00000033;
|
|
PCON(11) |= 0xf;
|
|
*((uint32_t volatile*)0x38a00000) = 0;
|
|
*((uint32_t volatile*)0x38700000) = 0;
|
|
PWRCON(0) &= ~(1 << 9);
|
|
SDCI_RESET = 0xa5;
|
|
sleep(HZ / 100);
|
|
*((uint32_t volatile*)0x3cf00380) = 0;
|
|
*((uint32_t volatile*)0x3cf0010c) = 0xff;
|
|
SDCI_CTRL = SDCI_CTRL_SDCIEN | SDCI_CTRL_CLK_SEL_SDCLK
|
|
| SDCI_CTRL_BIT_8 | SDCI_CTRL_BIT_14;
|
|
SDCI_CDIV = SDCI_CDIV_CLKDIV(260);
|
|
*((uint32_t volatile*)0x3cf00200) = 0xb000f;
|
|
SDCI_IRQ_MASK = SDCI_IRQ_MASK_MASK_DAT_DONE_INT | SDCI_IRQ_MASK_MASK_IOCARD_IRQ_INT;
|
|
PASS_RC(mmc_init(), 3, 0);
|
|
SDCI_CDIV = SDCI_CDIV_CLKDIV(4);
|
|
sleep(HZ / 100);
|
|
PASS_RC(ceata_init(8), 3, 1);
|
|
PASS_RC(ata_identify(ata_identify_data), 3, 2);
|
|
dma_mode = 0x44;
|
|
}
|
|
else
|
|
{
|
|
PCON(7) = 0x44444444;
|
|
PCON(8) = 0x44444444;
|
|
PCON(9) = 0x44444444;
|
|
PCON(10) = (PCON(10) & ~0xffff) | 0x4444;
|
|
PWRCON(0) &= ~(1 << 5);
|
|
ATA_CFG = BIT(0);
|
|
sleep(HZ / 100);
|
|
ATA_CFG = 0;
|
|
sleep(HZ / 100);
|
|
ATA_SWRST = BIT(0);
|
|
sleep(HZ / 100);
|
|
ATA_SWRST = 0;
|
|
sleep(HZ / 10);
|
|
ATA_CONTROL = BIT(0);
|
|
sleep(HZ / 5);
|
|
ATA_PIO_TIME = 0x191f7;
|
|
ATA_PIO_LHR = 0;
|
|
ATA_CFG = BIT(6);
|
|
while (!(ATA_PIO_READY & BIT(1))) yield();
|
|
PASS_RC(ata_identify(ata_identify_data), 3, 3);
|
|
uint32_t piotime = 0x11f3;
|
|
uint32_t mdmatime = 0x1c175;
|
|
uint32_t udmatime = 0x4071152;
|
|
uint32_t param = 0;
|
|
ata_dma_flags = 0;
|
|
ata_lba48 = ata_identify_data[83] & BIT(10) ? true : false;
|
|
if (ata_identify_data[53] & BIT(1))
|
|
{
|
|
if (ata_identify_data[64] & BIT(1)) piotime = 0x2072;
|
|
else if (ata_identify_data[64] & BIT(0)) piotime = 0x7083;
|
|
}
|
|
if (ata_identify_data[63] & BIT(2))
|
|
{
|
|
mdmatime = 0x5072;
|
|
param = 0x22;
|
|
}
|
|
else if (ata_identify_data[63] & BIT(1))
|
|
{
|
|
mdmatime = 0x7083;
|
|
param = 0x21;
|
|
}
|
|
if (ata_identify_data[63] & BITRANGE(0, 2))
|
|
{
|
|
ata_dma_flags = BIT(3) | BIT(10);
|
|
param |= 0x20;
|
|
}
|
|
if (ata_identify_data[53] & BIT(2))
|
|
{
|
|
if (ata_identify_data[88] & BIT(4))
|
|
{
|
|
udmatime = 0x1010a52;
|
|
param = 0x44;
|
|
}
|
|
else if (ata_identify_data[88] & BIT(3))
|
|
{
|
|
udmatime = 0x1020a52;
|
|
param = 0x43;
|
|
}
|
|
else if (ata_identify_data[88] & BIT(2))
|
|
{
|
|
udmatime = 0x2030a52;
|
|
param = 0x42;
|
|
}
|
|
else if (ata_identify_data[88] & BIT(1))
|
|
{
|
|
udmatime = 0x2050d52;
|
|
param = 0x41;
|
|
}
|
|
else if (ata_identify_data[88] & BIT(0))
|
|
{
|
|
param = 0x40;
|
|
}
|
|
if (ata_identify_data[88] & BITRANGE(0, 4))
|
|
{
|
|
ata_dma_flags = BIT(2) | BIT(3) | BIT(9) | BIT(10);
|
|
}
|
|
}
|
|
ata_dma = param ? true : false;
|
|
dma_mode = param;
|
|
PASS_RC(ata_set_feature(0x03, param), 3, 4);
|
|
if (ata_identify_data[82] & BIT(5))
|
|
PASS_RC(ata_set_feature(0x02, 0), 3, 5);
|
|
if (ata_identify_data[82] & BIT(6)) PASS_RC(ata_set_feature(0xaa, 0), 3, 6);
|
|
ATA_PIO_TIME = piotime;
|
|
ATA_MDMA_TIME = mdmatime;
|
|
ATA_UDMA_TIME = udmatime;
|
|
}
|
|
spinup_time = current_tick - spinup_start;
|
|
if (ata_lba48)
|
|
ata_total_sectors = ata_identify_data[100]
|
|
| (((uint64_t)ata_identify_data[101]) << 16)
|
|
| (((uint64_t)ata_identify_data[102]) << 32)
|
|
| (((uint64_t)ata_identify_data[103]) << 48);
|
|
else ata_total_sectors = ata_identify_data[60] | (((uint32_t)ata_identify_data[61]) << 16);
|
|
ata_total_sectors >>= 3;
|
|
ata_powered = true;
|
|
ata_set_active();
|
|
return 0;
|
|
}
|
|
|
|
static void ata_power_down(void)
|
|
{
|
|
if (!ata_powered) return;
|
|
if (ceata)
|
|
{
|
|
memset(ceata_taskfile, 0, 16);
|
|
ceata_taskfile[0xf] = 0xe0;
|
|
ceata_wait_idle();
|
|
ceata_write_multiple_register(0, ceata_taskfile, 16);
|
|
ceata_wait_idle();
|
|
sleep(HZ);
|
|
PWRCON(0) |= (1 << 9);
|
|
}
|
|
else
|
|
{
|
|
ata_wait_for_rdy(1000000);
|
|
ata_write_cbr(&ATA_PIO_DVR, 0);
|
|
ata_write_cbr(&ATA_PIO_CSD, 0xe0);
|
|
ata_wait_for_rdy(1000000);
|
|
sleep(HZ / 30);
|
|
ATA_CONTROL = 0;
|
|
while (!(ATA_CONTROL & BIT(1))) yield();
|
|
PWRCON(0) |= (1 << 5);
|
|
}
|
|
PCON(7) = 0;
|
|
PCON(8) = 0;
|
|
PCON(9) = 0;
|
|
PCON(10) &= ~0xffff;
|
|
PCON(11) &= ~0xf;
|
|
ide_power_enable(false);
|
|
ata_powered = false;
|
|
}
|
|
|
|
static int ata_rw_chunk_internal(uint64_t sector, uint32_t cnt, void* buffer, bool write)
|
|
{
|
|
if (ceata)
|
|
{
|
|
memset(ceata_taskfile, 0, 16);
|
|
ceata_taskfile[0x2] = cnt >> 5;
|
|
ceata_taskfile[0x3] = sector >> 21;
|
|
ceata_taskfile[0x4] = sector >> 29;
|
|
ceata_taskfile[0x5] = sector >> 37;
|
|
ceata_taskfile[0xa] = cnt << 3;
|
|
ceata_taskfile[0xb] = sector << 3;
|
|
ceata_taskfile[0xc] = sector >> 5;
|
|
ceata_taskfile[0xd] = sector >> 13;
|
|
ceata_taskfile[0xf] = write ? 0x35 : 0x25;
|
|
PASS_RC(ceata_wait_idle(), 2, 0);
|
|
PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 2, 1);
|
|
PASS_RC(ceata_rw_multiple_block(write, buffer, cnt << 3, CEATA_COMMAND_TIMEOUT * HZ / 1000000), 2, 2);
|
|
}
|
|
else
|
|
{
|
|
PASS_RC(ata_wait_for_rdy(100000), 2, 0);
|
|
ata_write_cbr(&ATA_PIO_DVR, 0);
|
|
if (ata_lba48)
|
|
{
|
|
ata_write_cbr(&ATA_PIO_SCR, cnt >> 5);
|
|
ata_write_cbr(&ATA_PIO_SCR, (cnt << 3) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LHR, (sector >> 37) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LMR, (sector >> 29) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LLR, (sector >> 21) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LHR, (sector >> 13) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LMR, (sector >> 5) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LLR, (sector << 3) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_DVR, BIT(6));
|
|
if (write) ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0x35 : 0x39);
|
|
else ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0x25 : 0x29);
|
|
}
|
|
else
|
|
{
|
|
ata_write_cbr(&ATA_PIO_SCR, (cnt << 3) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LHR, (sector >> 13) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LMR, (sector >> 5) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_LLR, (sector << 3) & 0xff);
|
|
ata_write_cbr(&ATA_PIO_DVR, BIT(6) | ((sector >> 21) & 0xf));
|
|
if (write) ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0xca : 0x30);
|
|
else ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0xc8 : 0xc4);
|
|
}
|
|
if (ata_dma)
|
|
{
|
|
PASS_RC(ata_wait_for_start_of_transfer(500000), 2, 1);
|
|
if (write)
|
|
{
|
|
ATA_SBUF_START = buffer;
|
|
ATA_SBUF_SIZE = SECTOR_SIZE * cnt;
|
|
ATA_CFG |= BIT(4);
|
|
}
|
|
else
|
|
{
|
|
ATA_TBUF_START = buffer;
|
|
ATA_TBUF_SIZE = SECTOR_SIZE * cnt;
|
|
ATA_CFG &= ~BIT(4);
|
|
}
|
|
ATA_XFR_NUM = SECTOR_SIZE * cnt - 1;
|
|
ATA_CFG |= ata_dma_flags;
|
|
ATA_CFG &= ~(BIT(7) | BIT(8));
|
|
semaphore_wait(&ata_wakeup, 0);
|
|
ATA_IRQ = BITRANGE(0, 4);
|
|
ATA_IRQ_MASK = BIT(0);
|
|
ATA_COMMAND = BIT(0);
|
|
if (semaphore_wait(&ata_wakeup, 500000 * HZ / 1000000)
|
|
== OBJ_WAIT_TIMEDOUT)
|
|
{
|
|
ATA_COMMAND = BIT(1);
|
|
ATA_CFG &= ~(BITRANGE(2, 3) | BIT(12));
|
|
RET_ERR(2);
|
|
}
|
|
ATA_COMMAND = BIT(1);
|
|
ATA_CFG &= ~(BITRANGE(2, 3) | BIT(12));
|
|
}
|
|
else
|
|
{
|
|
cnt *= SECTOR_SIZE / 512;
|
|
while (cnt--)
|
|
{
|
|
int i;
|
|
PASS_RC(ata_wait_for_start_of_transfer(500000), 2, 1);
|
|
if (write)
|
|
for (i = 0; i < 256; i++)
|
|
ata_write_cbr(&ATA_PIO_DTR, ((uint16_t*)buffer)[i]);
|
|
else
|
|
for (i = 0; i < 256; i++)
|
|
((uint16_t*)buffer)[i] = ata_read_cbr(&ATA_PIO_DTR);
|
|
buffer += 512;
|
|
}
|
|
}
|
|
PASS_RC(ata_wait_for_end_of_transfer(100000), 2, 3);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ata_rw_chunk(uint64_t sector, uint32_t cnt, void* buffer, bool write)
|
|
{
|
|
led(true);
|
|
int rc = ata_rw_chunk_internal(sector, cnt, buffer, write);
|
|
led(false);
|
|
return rc;
|
|
}
|
|
|
|
static int ata_rw_sectors(uint64_t sector, uint32_t count, void* buffer, bool write)
|
|
{
|
|
if (STORAGE_OVERLAP((uint32_t)buffer))
|
|
{
|
|
while (count)
|
|
{
|
|
if (write)
|
|
memcpy(aligned_buffer, buffer, SECTOR_SIZE);
|
|
|
|
PASS_RC(ata_rw_sectors(sector, 1, aligned_buffer, write), 0, 0);
|
|
|
|
if (!write)
|
|
memcpy(buffer, aligned_buffer, SECTOR_SIZE);
|
|
|
|
buffer += SECTOR_SIZE;
|
|
sector++;
|
|
count--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!ata_powered) ata_power_up();
|
|
if (sector + count > ata_total_sectors) RET_ERR(0);
|
|
ata_set_active();
|
|
if (ata_dma && write) commit_dcache();
|
|
else if (ata_dma) commit_discard_dcache();
|
|
if (!ceata) ATA_COMMAND = BIT(1);
|
|
while (count)
|
|
{
|
|
uint32_t cnt = MIN(ata_lba48 ? 8192 : 32, count);
|
|
int rc = -1;
|
|
rc = ata_rw_chunk(sector, cnt, buffer, write);
|
|
if (rc && ata_error_srst) ata_reset();
|
|
if (rc && ata_retries)
|
|
{
|
|
void* buf = buffer;
|
|
uint64_t sect;
|
|
for (sect = sector; sect < sector + cnt; sect++)
|
|
{
|
|
rc = -1;
|
|
int tries = ata_retries;
|
|
while (tries-- && rc)
|
|
{
|
|
rc = ata_rw_chunk(sect, 1, buf, write);
|
|
if (rc && ata_error_srst) ata_reset();
|
|
}
|
|
if (rc) break;
|
|
buf += SECTOR_SIZE;
|
|
}
|
|
}
|
|
PASS_RC(rc, 1, 1);
|
|
buffer += SECTOR_SIZE * cnt;
|
|
sector += cnt;
|
|
count -= cnt;
|
|
}
|
|
ata_set_active();
|
|
return 0;
|
|
}
|
|
|
|
/* API Functions */
|
|
int ata_soft_reset(void)
|
|
{
|
|
int rc;
|
|
mutex_lock(&ata_mutex);
|
|
if (!ata_powered) PASS_RC(ata_power_up(), 1, 0);
|
|
ata_set_active();
|
|
if (ceata) rc = ceata_soft_reset();
|
|
else
|
|
{
|
|
ata_write_cbr(&ATA_PIO_DAD, BIT(1) | BIT(2));
|
|
udelay(10);
|
|
ata_write_cbr(&ATA_PIO_DAD, 0);
|
|
rc = ata_wait_for_rdy(3000000);
|
|
}
|
|
ata_set_active();
|
|
mutex_unlock(&ata_mutex);
|
|
PASS_RC(rc, 1, 1);
|
|
return 0;
|
|
}
|
|
|
|
int ata_hard_reset(void)
|
|
{
|
|
mutex_lock(&ata_mutex);
|
|
PASS_RC(ata_power_up(), 0, 0);
|
|
ata_set_active();
|
|
mutex_unlock(&ata_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int ata_reset(void)
|
|
{
|
|
int rc;
|
|
mutex_lock(&ata_mutex);
|
|
if (!ata_powered) PASS_RC(ata_power_up(), 2, 0);
|
|
ata_set_active();
|
|
rc = ata_soft_reset();
|
|
if (IS_ERR(rc))
|
|
{
|
|
rc = ata_hard_reset();
|
|
if (IS_ERR(rc))
|
|
{
|
|
rc = ERR_RC((rc << 2) | 1);
|
|
ata_power_down();
|
|
sleep(HZ * 3);
|
|
int rc2 = ata_power_up();
|
|
if (IS_ERR(rc2)) rc = ERR_RC((rc << 2) | 2);
|
|
}
|
|
else rc = 1;
|
|
}
|
|
ata_set_active();
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
|
|
int ata_read_sectors(IF_MD(int drive,) unsigned long start, int incount,
|
|
void* inbuf)
|
|
{
|
|
mutex_lock(&ata_mutex);
|
|
int rc = ata_rw_sectors(start, incount, inbuf, false);
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
|
|
int ata_write_sectors(IF_MD(int drive,) unsigned long start, int count,
|
|
const void* outbuf)
|
|
{
|
|
mutex_lock(&ata_mutex);
|
|
int rc = ata_rw_sectors(start, count, (void*)((uint32_t)outbuf), true);
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
|
|
void ata_spindown(int seconds)
|
|
{
|
|
ata_sleep_timeout = seconds * HZ;
|
|
}
|
|
|
|
void ata_sleepnow(void)
|
|
{
|
|
mutex_lock(&ata_mutex);
|
|
ata_power_down();
|
|
mutex_unlock(&ata_mutex);
|
|
}
|
|
|
|
void ata_spin(void)
|
|
{
|
|
ata_set_active();
|
|
}
|
|
|
|
void ata_get_info(IF_MD(int drive,) struct storage_info *info)
|
|
{
|
|
(*info).sector_size = SECTOR_SIZE;
|
|
(*info).num_sectors = ata_total_sectors;
|
|
(*info).vendor = "Apple";
|
|
(*info).product = "iPod Classic";
|
|
(*info).revision = "1.0";
|
|
}
|
|
|
|
long ata_last_disk_activity(void)
|
|
{
|
|
return ata_last_activity_value;
|
|
}
|
|
|
|
int ata_init(void)
|
|
{
|
|
mutex_init(&ata_mutex);
|
|
semaphore_init(&ata_wakeup, 1, 0);
|
|
semaphore_init(&mmc_wakeup, 1, 0);
|
|
semaphore_init(&mmc_comp_wakeup, 1, 0);
|
|
ceata = PDAT(11) & BIT(1);
|
|
ata_powered = false;
|
|
ata_total_sectors = 0;
|
|
|
|
/* get ata_identify_data */
|
|
mutex_lock(&ata_mutex);
|
|
int rc = ata_power_up();
|
|
mutex_unlock(&ata_mutex);
|
|
if (IS_ERR(rc)) return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_ATA_SMART
|
|
static int ata_smart(uint16_t* buf)
|
|
{
|
|
if (!ata_powered) PASS_RC(ata_power_up(), 3, 0);
|
|
if (ceata)
|
|
{
|
|
memset(ceata_taskfile, 0, 16);
|
|
ceata_taskfile[0xc] = 0x4f;
|
|
ceata_taskfile[0xd] = 0xc2;
|
|
ceata_taskfile[0xe] = BIT(6);
|
|
ceata_taskfile[0xf] = 0xb0;
|
|
PASS_RC(ceata_wait_idle(), 3, 1);
|
|
if (((uint8_t*)ata_identify_data)[54] != 'A') /* Model != aAmsung */
|
|
{
|
|
ceata_taskfile[0x9] = 0xd8; /* SMART enable operations */
|
|
PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 3, 2);
|
|
PASS_RC(ceata_check_error(), 3, 3);
|
|
}
|
|
ceata_taskfile[0x9] = 0xd0; /* SMART read data */
|
|
PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 3, 4);
|
|
PASS_RC(ceata_rw_multiple_block(false, buf, 1, CEATA_COMMAND_TIMEOUT * HZ / 1000000), 3, 5);
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
PASS_RC(ata_wait_for_not_bsy(10000000), 3, 6);
|
|
ata_write_cbr(&ATA_PIO_FED, 0xd0);
|
|
ata_write_cbr(&ATA_PIO_LMR, 0x4f);
|
|
ata_write_cbr(&ATA_PIO_LHR, 0xc2);
|
|
ata_write_cbr(&ATA_PIO_DVR, BIT(6));
|
|
ata_write_cbr(&ATA_PIO_CSD, 0xb0);
|
|
PASS_RC(ata_wait_for_start_of_transfer(10000000), 3, 7);
|
|
for (i = 0; i < 0x100; i++) buf[i] = ata_read_cbr(&ATA_PIO_DTR);
|
|
}
|
|
ata_set_active();
|
|
return 0;
|
|
}
|
|
|
|
int ata_read_smart(struct ata_smart_values* smart_data)
|
|
{
|
|
mutex_lock(&ata_mutex);
|
|
int rc = ata_smart((uint16_t*)smart_data);
|
|
mutex_unlock(&ata_mutex);
|
|
return rc;
|
|
}
|
|
#endif /* HAVE_ATA_SMART */
|
|
|
|
#ifdef CONFIG_STORAGE_MULTI
|
|
static int ata_num_drives(int first_drive)
|
|
{
|
|
/* We don't care which logical drive number(s) we have been assigned */
|
|
(void)first_drive;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
unsigned short* ata_get_identify(void)
|
|
{
|
|
return ata_identify_data;
|
|
}
|
|
|
|
int ata_spinup_time(void)
|
|
{
|
|
return spinup_time;
|
|
}
|
|
|
|
int ata_get_dma_mode(void)
|
|
{
|
|
return dma_mode;
|
|
}
|
|
|
|
void INT_ATA(void)
|
|
{
|
|
uint32_t ata_irq = ATA_IRQ;
|
|
ATA_IRQ = ata_irq;
|
|
if (ata_irq & ATA_IRQ_MASK) semaphore_release(&ata_wakeup);
|
|
ATA_IRQ_MASK = 0;
|
|
}
|
|
|
|
void INT_MMC(void)
|
|
{
|
|
uint32_t irq = SDCI_IRQ;
|
|
if (irq & SDCI_IRQ_DAT_DONE_INT) semaphore_release(&mmc_wakeup);
|
|
if (irq & SDCI_IRQ_IOCARD_IRQ_INT) semaphore_release(&mmc_comp_wakeup);
|
|
SDCI_IRQ = irq;
|
|
}
|
|
|
|
int ata_event(long id, intptr_t data)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* GCC does a lousy job culling unreachable cases in the default handler
|
|
if statements are in a switch statement, so we'll do it this way. Only
|
|
the first case is frequently hit anyway. */
|
|
if (LIKELY(id == Q_STORAGE_TICK))
|
|
{
|
|
if (!ata_powered ||
|
|
TIME_BEFORE(current_tick, ata_last_activity_value + ata_sleep_timeout))
|
|
{
|
|
STG_EVENT_ASSERT_ACTIVE(STORAGE_ATA);
|
|
}
|
|
}
|
|
else if (id == Q_STORAGE_SLEEPNOW)
|
|
{
|
|
ata_sleepnow();
|
|
}
|
|
else if (id == Q_STORAGE_SLEEP)
|
|
{
|
|
ata_last_activity_value = current_tick - ata_sleep_timeout + HZ / 5;
|
|
}
|
|
else if (id == SYS_USB_CONNECTED)
|
|
{
|
|
STG_EVENT_ASSERT_ACTIVE(STORAGE_ATA);
|
|
}
|
|
else
|
|
{
|
|
rc = storage_event_default_handler(id, data, ata_last_activity_value,
|
|
STORAGE_ATA);
|
|
}
|
|
|
|
return rc;
|
|
}
|